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ABSTRACT 
Let f: V(G) →{1,2,…,p+q} be an injective function. For a vertex labeling “f”, the induced edge labeling f*(e=uv) is 
defined by, f*(e) = ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣) � or ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣) �. Then “f” is called a “Super Geometric mean labeling” if 
{f(V(G))}∪{f(e) : e∈E(G)} = {1, 2,…,p+q}. A graph which admits Super Geometric mean labeling is called “Super 
Geometric mean graph”. 
 
In this paper we prove that S[A(Tn)], S[D(Tn)], S[A(D(Tn))], Subsivision of triple Triangular snake S[T(Tn)] and 
Subdivision of alternate triple Triangular snake graphs S[A(T(Tn))] are Super Geometric mean graphs. 
 
Key Words: Graph, Geometric mean graph, Super Geometric mean graph, Triangular snake, Double Triangular snake 
and Triple Triangular snake. 
 
 
1. INTRODUCTION 
 
All graphs in this paper are finite, simple and undirected graph G=(V,E) with p vertices and q edges. For a detailed 
survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. 
 
The concept of “Geometric mean labeling” has been introduced by S.Somasundaram, R. Ponraj and P. Vidhyarani in 
[6]. 
 
In this paper we investigate Super Geometic mean labeling behavior of S[A(Tn)], S[D(Tn)], S[A(D(Tn))], Subdivision 
of triple Triangular snake S[T(Tn)] and Subdivision of alternate triple Triangular snake S[A(T(Tn))]. 
 
We will provide a brief summary of definitions and other informations which are necessary for our present 
investigation. 
 
Definition: 1.1 A graph G = (V,E) with p vertices and q edges is called a “Geometric mean graph” if it is possible to 
label the vertices x∈V with distinct labels f(x) from 1,2,…,q+1 in such a way that when each edge e=uv is labeled with, 
f(e=uv) = ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)  � or ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣) � then the edge labels are distinct. In this case, “f ” is called a “Geometric 
mean labeling” of G. 
 
Definition: 1.2 Let f: V(G) → {1,2,…,p+q} be an injective function. For a vertex labeling “f”, the induced edge 
labeling f*(e=uv) is defined by, f* (e) = ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣) � or ��𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)�. Then “ f ” is called a “Super Geometric mean 
labeling” if {f(V(G))}∪{f(e):e∈E(G)}= {1,2,…,p+q}. A graph which admits Super Geometric mean labeling is called 
“Super Geometric mean graph”. 
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Definition: 1.3 If e=uv is an edge of G and w is not a vertex of G, then e is said to be subdivided when it is replaced by 
the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the Subdivision of G and it 
is denoted by S(G). 
 
For example, 

  

 
 
Definition: 1.4 A Triangular snake Tn is obtained from a path u1u2…un by joining ui and ui+1 to a new vertex vi for 
1≤i≤n-1. That is every edge of a path is replaced by a triangle C3. 
 
Definition: 1.5 An Alternate Triangular snake A(Tn) is obtained from a path u1u2…un by joining ui and ui+1 
(alternatively) to new vertex vi. That is every alternate edge of a path is replaced by a triangle C3. 
 
Definition: 1.6 A Double Triangular snake D(Tn) consists of two Triangular snakes that have a common path. 
 
Definition: 1.7 An Alternate Double Triangular snake A[D(Tn)] consists of two Alternate Triangular snakes that 
have a common path. 
 
Definition: 1.8 A Triple Triangular snake T(Tn) consists of three Triangular snakes that have a common path. 
 
Definition: 1.9 An Alternate Triple Triangular snake A[T(Tn] consists of three Alternate Triangular snakes that have 
a common path. 
 
Theorem 1.10: Tn, A(Tn), D(Tn) and A[D(Tn)] are Mean graphs. 
 
Theorem 1.11: Tn, A(Tn), D(Tn) and A[D(Tn)] are Harmonic mean graphs. 
 
Theorem 1.12: Tn, A(Tn), D(Tn), A[D(Tn)], T(Tn) and A[T(Tn)], are Geometric mean graphs. 
 
Theorem 1.13: Tn, A(Tn), D(Tn), A[D(Tn)], T(Tn) and A[T(Tn)] are Super Geometric mean graphs. 
 
2. MAIN RESULTS 
 
Theorem: 2.1 Subdivision of Alternate Triangular snake S[A(Tn)] is a Super Geometric mean graph. 
 
Proof: Let A(Tn) be an Alternate Triangular snake which is obtained from a path Pn=u1u2…un by joining ui and ui+1 
alternatively to a new vertex vi. 
 
Let S[A(Tn)]=A(TN) = G be a graph obtained by subdividing all the edges of A(Tn).  
 
Here we consider the following cases. 
 
Case 1: If Tn starts from u1, 
 
Let ti, 1≤i≤n-1 be the vertices which subdivide the edges uiui+1. 
 
Let ri be the vertices which subdivide the edges u2i-1 vi. 
 
Let si be the vertices which subdivide the edges u2i vi 
 
We have to consider two subcases. 
 
Subcase (1) (a) : If ‘n’ is odd, then 
 
Define a function f: V[A(TN)] → {1,2,…,p+q} by, 
  f(u1)=8 
  f(u2i-1) = 15i-14, 2≤i≤�𝑛𝑛−1

2
� + 1 

  f(u2i) = 15i-3, 1≤i≤�𝑛𝑛−1
2
� 

  f(t1) = 10 
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  f(t2i-1) = 15i-9, 2≤i≤�𝑛𝑛−1

2
� 

  f(t2i) = 15i-1, 1≤i≤�𝑛𝑛−1
2
� 

  f(v1)=1 
  f(vi) = 15i-8, 2≤i≤�𝑛𝑛−1

2
� 

  f(ri) = 15i-11, 1≤i≤�𝑛𝑛−1
2
� 

  f(s1) = 5 
  f(si) = 15i-5, 2≤i≤�𝑛𝑛−1

2
� 

 
The labeling pattern of S[A(T7)] is shown in the following figure. 

 
Figure: 1 

 
From the above labeling pattern, we get, {f(V(G))}∪{f(e):e∈E(G)}={1,2,…,p+q} 
 
∴ In this case, “f” provides a Super Geometric mean labeling of A(TN) 
 
Subcase (1) (b): If ‘n’ is even, then 
 
Define a function f: V[A(TN)] → {1,2,…,p+q} by, 
  f(u1)=8 
  f(u2i-1) = 15i-14, 2≤i≤�𝑛𝑛

2
� 

  f(u2i) = 15i-3, 1≤i≤�𝑛𝑛
2
� 

  f(t1) = 10 
  f(t2i-1) = 15i-9, 2≤i≤�𝑛𝑛

2
� 

  f(t2i) = 15i-1, 1≤i≤�𝑛𝑛−2
2
� 

  f(v1)=1 
  f(vi) = 15i-8, 2≤i≤�𝑛𝑛

2
� 

  f(ri) = 15i-11, 1≤i≤�𝑛𝑛
2
� 

  f(s1) = 5 
  f(si) = 15i-5, 2≤i≤�𝑛𝑛

2
� 
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The labeling pattern of S[A(T6)] is given below. 

 
Figure: 2 

 
From the above labeling pattern, we get, {f(V(G))}∪{f(e):e∈E(G)}={1,2,…,p+q} 
 
In this case, A(TN) is a Super Geometric mean graph. 
 
Case 2: If Tn starts from u2,  
 
Let ti, 1≤i≤n-1 be the vertices which subdivide the edges uiui+1. 
 
Let ri and si be the vertices which subdivide the edges u2ivi and u2i+1 vi respectively. 
 
Here we have to consider two subcases. 
 
Subcase (2) (a): If ‘n’ is odd, then 
 
Define a function f: V[A(TN)]→{1,2,…,p+q} by, 
  f(u2i-1) = 15i-14, 1≤i≤�𝑛𝑛−1

2
� + 1  

  f(u2i) = 15i-10, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i-1) = 15i-12, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i) = 15i-5, 1≤i≤�𝑛𝑛−1
2
� 

  f(ri) = 15i-7, 1≤i≤�𝑛𝑛−1
2
� 

  f(si) = 15i-1, 1≤i≤�𝑛𝑛−1
2
� 

  f(vi) = 15i-4, 1≤i≤�𝑛𝑛−1
2
� 

 
The labeling pattern of S[A(T7)] is displayed below. 
 

 
Figure: 3 
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From the above labeling pattern, we get {f(V(G))}∪(f(e):e∈E(G)}={1,2,…,p+q} 
 
Hence A(TN) admits a Super Geometric mean labeling. 
 
Subcase (2) (b): If ‘n’ is even, then 
 
Define a function f: V[A(TN)]→{1,2,…,p+q} by, 
  f(u2i-1) = 15i-14, 1≤i≤�𝑛𝑛

2
� 

  f(u2i) = 15i-10, 1≤i≤�𝑛𝑛
2
� 

  f(t2i-1) = 15i-12, 1≤i≤�𝑛𝑛
2
� 

  f(t2i) = 15i-5, 1≤i≤�𝑛𝑛−2
2
� 

  f(ri) = 15i-7, 1≤i≤�𝑛𝑛−2
2
� 

  f(si) = 15i-1, 1≤i≤�𝑛𝑛−2
2
� 

  f(vi) = 15i-4, 1≤i≤�𝑛𝑛−2
2
� 

 
The labeling pattern of S[A(T8)] is shown below. 

 
Figure: 4 

 
From the above labeling pattern, both vertices and edges together get distinct labels from {1, 2, 3,…,p+q}. 
 
From all the above cases, we conclude that Subdivision of Alternate Triangular snake is a Super Geometric mean 
graph. 
 
Theorem: 2.2 Subdivision of Double Triangular snake S[D(Tn)] is a Super Geometric mean graph. 
 
Proof:  Let D(Tn) be a Double Triangular snake which is obtained from a path  Pn =u1u2…un by joining ui and ui+1 
with two new vertices vi and wi, 1≤ i ≤ n-1. 
 
Let S[D(Tn)] = D(TN) = G be a graph obtained by subdividing all the edges of D(Tn). 
 
Let ti, xi, yi, ri and si be the new vertices which subdivide the edges ui ui+1, uivi, ui+1vi, uiwi and ui+1wi, 1≤i≤n-1 
respectively. 
 
Define a function f: V[D(TN)]→{1,2,…,p+q} by, 
  f(u1) = 6 
  f(ui) = 18i-17, 2≤i≤n 
  f(t1) = 9 
  f(ti) = 18i-10, 2≤i≤n-1 
  f(r1) = 10 
  f(ri) = 18i-13, 2≤i≤n-1 
  f(si) = 18i-1, 1≤i≤n-1 
  f(w1) = 12 
  f(wi)=18i-5, 2≤i≤n-1 
  f(x1) = 4 
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  f(xi) = 18i-12, 2≤i≤n-1 
  f(y1) = 13 
  f(yi) = 18i-6, 2≤i≤n-1 
  f(v1) = 1 
  f(vi) =18i-8, 2≤i≤n-1 
 
From the above labeling pattern, {f[V(D(TN))]}∪{f(e):e∈E(G)}={1,2,…,p+q}. 
 
Hence D(TN) is a Super Geometric mean graph. 
 
Example 2.3: A Super Geometric mean labeling of S[D(T5)] is displayed below. 

 
 Figure: 5 

  
Theorem: 2.4 Subdivision of Alternate Double Triangular snake S[A(D(Tn))] is a Super Geometric mean graph. 
 
Proof: Let A[D(Tn)] be an Alternate Double Triangular snake which is obtained from a path Pn=u1u2…un by joining ui 
and ui+1 alternatively with two new vertices vi and wi. 
 
Let S[A(D(Tn))] = A[D(TN)] = G be a graph obtained by subdividing all the edges of A[D(Tn)]. 
 
Here we consider two cases. 
 
Case 1: If D(Tn) starts from u1,  
 
Let ti, xi, yi, ri and si be the vertices which subdivide the edges uiui+1, u2i-1 vi, u2ivi, u2i-1 wi and  u2i wi respectively. 
 
We have to consider two subcases. 
 
Subcase (1) (a): If ‘n’ is odd, then 
 
Define a function f: V[A(D(TN))] →{1,2,…,p+q}by, 
  f(u1) = 6 
  f(u2i-1) = 22i-21, 2≤i≤ �𝑛𝑛−1

2
� + 1 

  f(u2i) = 22i-3, 1≤i≤ �𝑛𝑛−1
2
� 

  f(t1) = 9 
  f(t2i-1) = 22i-14, 2≤i≤ �𝑛𝑛−1

2
� 

  f(t2i) = 22i-1, 1≤i≤ �𝑛𝑛−1
2
� 

  f(r1) = 10 
  f(ri) = 22i-17, 2≤i≤ �𝑛𝑛−1

2
� 

  f(si) = 22i-5, 1≤i≤ �𝑛𝑛−1
2
� 

  f(w1) = 12 
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  f(wi) = 22i-9,  2≤i≤ �𝑛𝑛−1

2
� 

  f(x1) = 4 
  f(xi) = 22i-16, 2≤i≤ �𝑛𝑛−1

2
� 

  f(y1) = 13 
  f(yi) = 22i-10, 2≤i≤ �𝑛𝑛−1

2
� 

  f(v1) = 1 
  f(vi) = 22i-12, 2≤i≤ �𝑛𝑛−1

2
� 

   
The labeling pattern of S[A(D(T7))] is given below 

 
Figure: 6 

 
∴ From the above labeling pattern, we get {f(V(G))}∪{f(e): e∈E(G)={1,2,…,p+q}, 
 
In this case “f” provides a Super Geometric mean labeling of A[D(TN)]. 
 
Subcase (1) (b): If ‘n’ is even, then 
 
Define a function f: V[A(D(TN))] →{1,2,…,p+q} by, 
  f(u1) = 6 
  f(u2i-1) = 22i-21, 2≤i≤ �𝑛𝑛

2
� 

  f(u2i) = 22i-3, 1≤i≤ �𝑛𝑛
2
� 

  f(t1) = 9 
  f(t2i-1) = 22i-14, 2≤i≤ �𝑛𝑛

2
� 

  f(t2i) = 22i-1, 1≤i≤ �𝑛𝑛−2
2
� 

  f(r1) = 10 
  f(ri) = 22i-17, 2≤i≤ �𝑛𝑛

2
� 

  f(si) = 22i-5, 1≤i≤ �𝑛𝑛
2
� 

  f(w1) = 12 
  f(wi) = 22i-9,  2≤i≤ �𝑛𝑛

2
� 

  f(x1) = 4 
  f(xi) = 22i-16, 2≤i≤ �𝑛𝑛

2
� 

  f(y1) = 13 
  f(yi) = 22i-10, 2≤i≤ �𝑛𝑛

2
� 

  f(v1) = 1 
  f(vi) = 22i-12, 2≤i≤ �𝑛𝑛

2
� 
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The labeling pattern of S[A(D(T6))] is shown  below 

 
Figure: 7 

 
From the above labeling pattern, we get 
 {f(V(G))}∪{f(e):e∈E(G)}={1, 2,…,p+q}. 
 
Hence A[D(TN)] admits Super Geometric mean labeling. 
 
Case 2: If D (Tn) Starts from u2. 
 
Let ti, xi, yi, ri and si be the vertices which subdivide the edges ui ui+1, u2i vi, u2i+1vi, u2iwi and u2i+1 wi respectively. 
 
We have to consider two subcases. 
 
Subcase (2) (a): If ‘n’ is odd, then 
 
 
Define a function f: V[A(D(TN))]→{1,2,…,p+q} by, 
  f(u2i-1) = 22i-21, 1≤i≤�𝑛𝑛−1

2
� + 1 

  f(u2i) = 22i-17, 1≤i≤�𝑛𝑛−1
2
�  

  f(t2i-1) = 22i-19, 1≤i≤�𝑛𝑛−1
2
�  

  f(t2i) = 22i-10 1≤i≤�𝑛𝑛−1
2
�  

  f(ri) = 22i-13, 1≤i≤�𝑛𝑛−1
2
�  

  f(si) = 22i-1, 1≤i≤�𝑛𝑛−1
2
�  

  f(w1) = 18 
  f(wi) = 22i-5, 2≤i≤�𝑛𝑛−1

2
� 

  f(xi) = 22i-12, 1≤i≤�𝑛𝑛−1
2
� 

  f(yi) = 22i-6, 1≤i≤�𝑛𝑛−1
2
� 

  f(vi) = 22i-8, 1≤i≤�𝑛𝑛−1
2
� 
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The labeling pattern of S[A(D(T7))] is displayed below. 

 
Figure: 8 

 
From the above labeling pattern, both vertices and edges together get distinct labels from {1, 2, 3,…,p+q}. 
 
Hence A[D(TN)] is a Super Geometric mean graph. 
 
Subcase (2) (b): If ‘n’ is even, then 
 
Define a function f: V[A(D(TN))] →{1,2,…,p+q} by, 
  f(u2i-1) = 22i-21, 1≤i≤�𝑛𝑛

2
� 

  f(u2i) = 22i-17, 1≤i≤�𝑛𝑛
2
�  

  f(t2i-1) = 22i-19, 1≤i≤�𝑛𝑛
2
� 

  f(t2i) = 22i-10 1≤i≤�𝑛𝑛−2
2
� 

  f(ri) = 22i-13, 1≤i≤�𝑛𝑛−2
2
� 

  f(si) = 22i-1, 1≤i≤�𝑛𝑛−2
2
� 

  f(w1) = 18 
  f(wi) = 22i-5, 2≤i≤�𝑛𝑛−2

2
� 

  f(xi) = 22i-12, 1≤i≤�𝑛𝑛−2
2
� 

  f(yi) = 22i-6, 1≤i≤�𝑛𝑛−2
2
� 

  f(vi) = 22i-8, 1≤i≤�𝑛𝑛−2
2
� 

 
The labeling pattern of S[A(D(T6))] is displayed below. 

 
Figure: 9 
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From the above labeling pattern, we get {f(V(G))}∪{f(e):e∈E(G)}={1,2,…,p+q} 
 
This makes “f” a Super Geometric mean labeling of A[D(TN)]. 
 
From all the above cases, we conclude that Subdivision of Alternate Double Triangular snake is a Super Geometric 
mean graph. 
 
Theorem: 2.5 Subdivision of Triple Triangular snake S[T(Tn)] is a Super Geometric mean graph. 
 
Proof: Let T(Tn) be a Triple Triangular snake which is obtained from a path  Pn = u1u2…un by joining ui and ui+1 with 
three new vertices vi, wi and zi,1≤i≤n-1. 
 
Let S[T(Tn)] = T(TN) = G be the graph obtained by subdividing all the edges of T(Tn). 
 
Let ti, ri, si, xi, yi, mi and ni be the vertices which subdivide the edges uiui+1, uizi, ui+1,zi, uivi, ui+1vi, uiwi and ui+1wi 
respectively.  
 
Define a function f:V(G)→{1,2,…,p+q} by, 
  f(u1) = 6 
  f(ui) = 25i-24, 2≤i≤n 
  f(ti) = 25i-1, 1≤i≤n-1 
  f(m1) = 9 
  f(mi) = 25i-21, 2≤i≤n-1 
  f(n1) = 22 
  f(ni) = 25i-5, 2≤i≤n-1 
  f(w1) = 19 
  f(wi) = 25i-17, 2≤i≤n-1 
  f(r1) = 4 
  f(ri) = 25i-15, 2≤i≤n-1 
  f(s1) = 10 
  f(si) = 25i-6, 2≤i≤n-1  
  f(z1) = 1 
  f(zi) = 25i-9, 2≤i≤n-1 
  f(x1) = 11 
  f(xi) = 25i-18, 2≤i≤n-1 
  f(yi) = 25i-7, 1≤i≤n-1 
  f(v1) = 15 
  f(vi) = 25i-13, 2≤i≤n-1 
 
From the above labeling pattern, {f(V(G))}∪{f(e): e∈E(G)} = {1, 2,…,p+q}. 
 
Hence Subdivision of Triple Triangular snake is a Super Geometric mean graph. 
 
Example 2.6: A Super Geometric mean labeling of S[T(T5)] is shown below. 

 
Figure: 10 
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Theorem: 2.7 Subdivision of Alternate Triple Triangular snake S[A(T(Tn))] is a Super Geometric mean graph. 
 
Proof: Let A[T(Tn)] be an Alternate Triple Triangular snake which is obtained from a path Pn  = u1u2…un by joining 
ui and ui+1 alternatively with three new vertices vi, wi and zi. 
 
Let S[A(T(Tn))] = A[T(TN)]=G be the graph obtained by subdividing all the edges of A[T(Tn)]. 
 
Here we consider two cases. 
 
Case: 1 If T(Tn) Starts from u1, 
 
Let ti, mi, ni, xi. yi, ri and si be the vertices which subdivide the edges uiui+1, u2i-1wi, u2iwi, , u2i-1vi, u2i vi, u2i-1zi and u2izi 
respectively. 
 
We have to consider two subcases. 
 
Subcase (1) (a): If ‘n’ is odd, then 
 
Define a function f: V(G)→{1,2,...,p+q} by, 
  f(u1) = 6 
  f(u2i-1) = 29i-28, 2≤i≤�𝑛𝑛−1

2
� + 1 

  f(u2i) = 29i-3, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i-1) = 29i-5, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i) = 29i-1, 1≤i≤�𝑛𝑛−1
2
� 

  f(m1) = 9 
  f(mi) = 29i-25, 2≤i≤�𝑛𝑛−1

2
� 

  f(n1) = 22 
  f(ni) = 29i-9, 2≤i≤�𝑛𝑛−1

2
� 

  f(w1) = 19 
  f(wi) = 29i-21, 2≤i≤�𝑛𝑛−1

2
� 

  f(x1) = 11 
  f(xi) = 29i-22, 2≤i≤�𝑛𝑛−1

2
� 

  f(yi) = 29i-11, 1≤i≤�𝑛𝑛−1
2
� 

  f(v1) = 15 
  f(vi) = 29i-17, 2≤i≤�𝑛𝑛−1

2
� 

  f(r1) = 4 
  f(ri) = 29i-19, 2≤i≤�𝑛𝑛−1

2
� 

  f(s1) =10 
  f(si) = 29i-10, 2≤i≤�𝑛𝑛−1

2
� 

  f(z1) = 1 
  f(zi) = 29i-13, 2≤i≤�𝑛𝑛−1

2
� 
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The labeling pattern of S[A(T(T5))] is displayed below. 

 
Figure: 11 

 
From the above labeling pattern, we get {f(V(G))}∪{f(e):e∈E(G)}={1,2,…,p+q} 
 
Hence “f” provides a Super Geometric mean labeling of G. 
 
Subcase (1) (b): If ‘n’ is even, then 
 
Define a function f: V(G)→{1,2,...,p+q} by, 
  f(u1) = 6 
  f(u2i-1) = 29i-28, 2≤i≤�𝑛𝑛

2
� 

  f(u2i) = 29i-3, 1≤i≤�𝑛𝑛
2
� 

  f(t2i-1) = 29i-5, 1≤i≤�𝑛𝑛
2
� 

  f(t2i) = 29i-1, 1≤i≤�𝑛𝑛−2
2
� 

  f(m1) = 9 
  f(mi) = 29i-25, 2≤i≤�𝑛𝑛

2
� 

  f(n1) = 22 
  f(ni) = 29i-9, 2≤i≤�𝑛𝑛

2
� 

  f(w1) = 19 
  f(wi) = 29i-21, 2≤i≤�𝑛𝑛

2
� 

  f(x1) = 11 
  f(xi) = 29i-22, 2≤i≤�𝑛𝑛

2
� 

  f(yi) = 29i-11, 1≤i≤�𝑛𝑛
2
� 

  f(v1) = 15 
  f(vi) = 29i-17, 2≤i≤�𝑛𝑛

2
� 

  f(r1) = 4 
  f(ri) = 29i-19, 2≤i≤�𝑛𝑛

2
� 

  f(s1) = 10 
  f(si) = 29i-10, 2≤i≤�𝑛𝑛

2
� 

  f(z1) = 1 
  f(zi) = 29i-13, 2≤i≤�𝑛𝑛

2
� 
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The labeling pattern of S[A(T(T6))] is given below 

 
Figure: 12 

 
From the above labeling pattern, we get {f(V(G))}∪{f(e):e∈E(G)}={1,2,...,p+q} 
 
Hence G admits Super Geometric mean labeling. 
 
Case 2: If T(Tn) starts from u2, 
 
Let ti, mi, ni, xi, yi, ri and si be the vertices which subdivide the edges uiui+1, u2iwi, u2i+1wi, u2ivi, u2i+1vi,u2izi and u2i+1zi 
respectively. 
 
We have to consider two subcases. 
 
Subcase (2) (a): If ‘n’ is odd, then 
 
Define a function f: V(G) →{1,2,…,p+q} by, 
  f(u2i-1) = 29i-28, 1≤i≤�𝑛𝑛−1

2
�+1 

  f(u2i) = 29i-24, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i-1) = 29i-26, 1≤i≤�𝑛𝑛−1
2
� 

  f(t2i) = 29i-1, 1≤i≤�𝑛𝑛−1
2
� 

  f(m1) = 9 
  f(mi) = 29i-21, 2≤i≤�𝑛𝑛−1

2
� 

  f(ni) = 29i-5, 1≤i≤�𝑛𝑛−1
2
� 

  f(w1) = 13 
  f(wi) = 29i-17, 2≤i≤�𝑛𝑛−1

2
� 

  f(xi) = 29i-18, 1≤i≤�𝑛𝑛−1
2
� 

  f(yi) = 29i-7, 1≤i≤�𝑛𝑛−1
2
� 

  f(vi) = 29i-13, 1≤i≤�𝑛𝑛−1
2
� 

  f(r1) = 15 
  f(ri) = 29i-15, 2≤i≤�𝑛𝑛−1

2
� 

  f(si) = 29i-6, 1≤i≤�𝑛𝑛−1
2
� 

  f(zi) = 29i-9, 1≤i≤�𝑛𝑛−1
2
� 
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The labeling pattern of S[A(T(T7))] is shown below. 

 
 

Figure: 13 
 
From the above labeling pattern, both vertices and edges together get distinct labels from {1, 2,…,p+q}. 
 
This makes “f” a Super Geometric mean labeling of G. 
 
Subcase (2) (b): If ‘n’ is even, then 
 
Define a function f: V(G) →{1,2,…,p+q} by, 
  f(u2i-1) = 29i-28, 1≤i≤�𝑛𝑛

2
� 

  f(u2i) = 29i-24, 1≤i≤�𝑛𝑛
2
� 

  f(t2i-1) = 29i-26, 1≤i≤�𝑛𝑛
2
� 

  f(t2i) = 29i-1, 1≤i≤�𝑛𝑛−2
2
� 

  f(m1) = 9 
  f(mi) = 29i-21, 2≤i≤�𝑛𝑛−2

2
� 

  f(ni) = 29i-5, 1≤i≤�𝑛𝑛−2
2
� 

  f(w1) = 13 
  f(wi) = 29i-17, 2≤i≤�𝑛𝑛−2

2
� 

  f(xi) = 29i-18, 1≤i≤�𝑛𝑛−2
2
� 

  f(yi) = 29i-7, 1≤i≤�𝑛𝑛−2
2
� 

  f(vi) = 29i-13, 1≤i≤�𝑛𝑛−2
2
� 

  f(r1) = 15 
  f(ri) = 29i-15, 2≤i≤�𝑛𝑛−2

2
� 

  f(si) = 29i-6, 1≤i≤�𝑛𝑛−2
2
� 

  f(zi) = 29i-9, 1≤i≤�𝑛𝑛−2
2
� 
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The labeling pattern of S[A(T(T6))] is displayed below. 

 
Figure: 14 

 
From the above labeling pattern we get, {f(V(G))}∪{f(e):e∈E(G)}={1, 2,…,p+q}. 
 
Hence G admits a Super Geometric mean labeling. 
 
From all the above cases, we conclude that Subdivision of Alternate Triple Triangular snake is a Super Geometric mean 
graph. 
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