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ABSTRACT

The aim of this work is to provide some approximation by generalized Shannon sampling operators, which are defined
by band-limited kernels, and they are linear combinations of translated sinc- functions.

INTRODUCTION

The generalized sampling operators for the uniformly continuous and bounded functions f € C(R) ([8], [11] are given
by
SeN(®) =Xi_f (5)s(Gt—k), (tER;G>0) (1)

The operator S;: C(R) — C(R) to be well-defined where the condition

S ls(w k)| <o (vER) 2)
is satisfied. A systematic study of sampling operators (1) for arbitrary kernel functions s with (2) was initiated at WTH
Aachen by P. L. Butzer and his students since 1977([12],[14]).

Definition 1.1 [14]: If s:R — R is a bounded function such that (2) the absolute convergence being uniform on
compact subsets of

Yi——lsw=K)|=1 (vER) (3)
Then s is said to be a kernel for sampling operators (1).

sin mt

— which do not satisfy (2), we get the classical Shannon operator
(887 £)(E) = e f (5) sinc(Gt — k). (t€R ;G >0) )

If the kernel function is s(t) = sinc(t) ==

In this paper we estimate the order of approximation in terms of modulus of smoothness in weighted L, space
(a>0, 0<p<1).

2. PRELIMINARY RESULTS
2.1The modulus of smoothness in Lp , space (a >0, 0 <P < 1)

Definition 2.1.1(Weight function) [1]: An integrable function w is called a weight function on the interval [a,b] if
w(x) > 0 forall x € [a,b]. For example w(x) = e**, a > 0.
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Consider the space L, ,(X),0 <p <1 of all unbounded functions fon X such that |f(x)| < Me®*, where M is a
positive real number, which are equipped with the following quasi norm
1

(x)
IR = (5, B

eax

"dx) <o ©)

Let f be unbounded function on R, and § = 0, the modulus of smoothness w (f; 5)p‘a inL,, (X), a >0,
0 < p <1 isdefined exactly asin case 1 < p < 00:[22]
1

b—kh PN
olf; o = sup (17 |ok C2)) ©)
0<h<é
2.2 The space AP“

Definition 2.2.1 ([10]):

(a) A sequence), = (x]-)]_ez C Ris called an admissible partition of R or an admissible sequence, if it
satisfies 0 < infjzAj< supjez A< .

(b) Let) = (Xj)jez be an admissible partition of R, and let A;= x; —x;_;. The discrete £, (¥) — norm of a
sequence of function values fy,  on the partition (¥) of the function f:R - Cis defined for 1 < p < oo by

1

Iflle, 5y = {SealfCx;)]" A5 )

() Thespace AP for 1 < p < o is defined by
AP = {f; ||f||{;p o < oo} for each admissible sequence (3).

We can defined AP* o> 0,0 <p <1 the space of all unbounded functions f on admissible sequence (3}) of R,
such that

p —
A, e = {Zrez

1

1 LR TS
fx) Aj}p ®)

eax

Theorem 2.1.2: For f € AP* ,(a@ > 0,0 <p < 1),and k € R then

sz = £l . < Conc(£:5) ©)
Proof:
1
. sinc _ p D
”ngcf _f”:a = {Z}'EZ %"x)m A].}P
Zic;_m f(g)sinc (Gt—k)—f (x)

Py

= {Ej ez pre Aj}
o kY. N p p

< sup {Zjez Izk-_mf((;)s;zmt ) f(X)I Aj}

p
a|

1

T =

() B sine (Gt—k)—F(x)

elXX

< sup {Zjez

By using (3) we have

poNp
A,.}

<C(P) {ZjEZ |A;{1f (é) e

<coatr O

< C(P)wy (f; é)p,a

eax

Isg™ £ = £II} , < sup {Zjez

1

ij};

2.3 Band-limited kernels

By (see [2], [4], [5], [6].[7]) an even window function A € Cj_; 13, A(0) = 1,A(u) = 0 (Ju| = 1), an even band-limited
kernel s, defined the equality
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s(t) = s, (t) = fol A(u)cos(mtu)du. (10)

We studied the generalized sampling operators Sy, : C(R) — C(R) with the kernels in form (9) in ([2], [3], [5], [6], and
[7]).

Many the band-limited kernel have been used in applications ([15], [16], [17], [18]). Many kernels can be defined by
(9), e.g.

1) Ap() =1-u%r=>1 defines the Zygmund (or Riesz) kernel, denoted by Z, = Z.(t), which special case
r = 1, the Fej er kernel (see[19])

sp(t) = %sinc2 (%) (11)
2) () = cosn(j + 1/2)u,j = 0,1,2, ... defines the Rogosinski-type kernel (see [4]) in the form

(1) = (sinc(t +j+1/2) +sinc(t—j— 1/2)) (12)

Ay () = cos? (%) = %(1 + cosntu) defines the Hann kernel (see[5])

su(® = 577 (13)
Powers of the Hann window (see [15])
m [T 1 om m m

Aym(u) = cos (7) = Z_mzk=0 (k) cos ((k - ;) nu) (14)

3) Give the general Hann kernel in the form
S I'(1+m)
Sum (0 =2 r(1+53-t)r(1+5+) (15)

From ([5], Prorposition 2) we have that form = 0,1,2,...,and { < m

1 t/m—1~ —(
Sum (O = Fkazo£ ( K ) SH,¢ (t +k— mT) (16)
4) The Blackman-Harris window function
m m—1
Aca (W) = X ay cos kmu = Zkzzjo ayy cos(2kmu) + ZLZO J azir1 cos((2k + 1)mu) (17)

Where ( |x] is the largest integer less than or equal to x € R)

ZLZJO A = le(ZJ Aok+1 = % (18)

Defines through (9) the Blackman-Harris kernel (see [7])
Sca(t) = %ZZLO ai (sinc(t — k) + sinc(t + k)) (129)
Proposition 2.3.1([20])

Form € N,1 < £ < m the kernel

s(t) = sinc(t) — %ka;[f(—l)”&qk [A%%sinc(t — k) + Af'sinc(t + k)] (20)

20+1
With q € R"=11, $nf q, = 1 is a Blackman Harris kernel s¢ , ) With parameter vector a(q) € R™*2.

3. MAIN RESULTS

In this suction we shall estimates error approximation of some sampling operators S;f: C(R) — C(R) which is linear
combinations of translated sinc-functions.

3.1 Rogosinski-type sampling operators

Let consider the Rogosinski-type sampling operators Rg; defined by the kernel functions r; in (9). These kernel
functions are deduced by the window functions A (u) := cosn(j + 1/2)u,j € N. (see[20])

Theorem 3.1.1: Assume that a Rogosinski-type sampling operator Rg; (j = 0,1,2,...),G > 0 defined by (1) with the
kernel (10). Then for f € A”*, (a > 0,0 < p < 1) we have

IRef~f]I” , < Cjooy G %)P (20)

where the constant C; is inde'pendent of fand G.
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Proof: Since the Rogosinski-type kernel in (10) is a linear componation of translated sinc-function. Then we give this
operator Rg; which is representation

(RG]f)(t) = Yjez f( ) [ (smc (t +j+ ) + sinc (t —-j—= %))]
2 [Zrea £(3) sine (t41+ 5) + Byea £(3) sine (e-5 3]
-0 e+ 2 (s (- 22)
We obtain
(Rg;f)(® — f(t) = %[(ssmc 0) (t+22) + (s £) (1= 22)] - £y
(sgref) (t + 2’—“) + (S8 f) (t - 2]—“) - (t + 2]—“)
+f(t + 2]—“) - f(t 2]“) + f( 2’“) 2f(t)

2G

(RG]f) (t + ﬂ) - f(t + 2’“) + (sgne ) (t - ﬁ)
- f(t - %) + (f(t + 2’“) — 2f(0) + f(t - %))
Since 0 < p < 1 then by properties of trigopnometric inequality for qua5| norm we have
I(Resf) — oI, < 20 [I A (“SS‘“f .+ st =11, + )

p.a/ |

<o fsier—d, +1e, (£1) |

N | =

N~

A2j+1f
26

By using theorem (2.1.2) we have
I(Ros ) = A, <20 o (£2) 'a+%(1+%)m2(f;%>m]

<o), [ 411022

< Gjw, (f, é)m

3.2 Hann sampling operators

Consider Hann sampling operators Hy ,, (m = 0,1,2,...). The Hann kernel (see [21] sy 1, (t) = O(Jt|™ 1) as|t| - oo.
from (15) if £ = 0 we have aliner combination of sinc —function because Hy, o = sinc.

Theorem 3.2.1: For the Hann sampling operator Hg ., (m = 1,2, ...) defined by (1) with the kernel (14). Then for
feAP*,(a>0,0<p<1)wehave

p 1
[Homf— 17, < Cnov, (£ G)P’a. (21)
where the constant C,, is independent of fand G.

Proof: According to ([20] equation (9)) we give this operator (HG,m) which has the form

(Homf)(®) = %[(HG,m—lf) (t - _> + (Hgm-1f) (t + )]

Hence

(Homf)®) = £ = 3 [(Ho ) (t = 50) + (Homaf) (t+0)| - O
—(HG,m_lf) (t - E) - f(t - ﬁ) + f(t - ﬁ) + (Hgm-1f) (t + )
_ —f(t+w)+f(t+w>—2f(t)
[(Homaf) (t—50) = £(t=22) + (Homaf) (t +5¢)
_ —f(t+ﬂ) + (f(t+ﬂ) — 2f(t) + (t—%))

Since 0 < p < 1 we have from properties of quasi norm,
p
pa)]

ICt0m) =1, = 223 (o = A, + Ptm-o6 = I, 4]
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By using induction the proof give
1
et =17, <20 [IHaof =1, + 3oz (655), |

From (15) if we take £ = 0 then we have a linear combination of sinc-function because Sy; o = sinc . hence
Hgo = S8™,

Therefore by using theorem (2.1.2) we have
[Homf =7, <27 |Con (£ 1) + o f 1)
- wy | 6= —wy | ==
G,m pa = 202 (b e 2 2\b5e ba

<c, (u)z ( i)m) .

3.3 Blackman-Harris sampling operators

Before over 52 years ([15], [16], [17], [18]) The Blackman window has been used in signal analysis. Recently Lasser
and Obermaier [13] studied the role of the Blackman window for defining approximative identities in Fourier
approximation.

Theorem 3.3.1: consider C; , be the blackman-harris sampling operator defined by (1) with the kernel (18).
Then for f € AP*, (0> 0,0 < p < 1) we have

lceat~1ll}, < Tawn (£5), (22)

where the constant T, is indebendent of fand G.
Proof: from (18) we show that the blackman-harris kernel is a linear combination of translated sinc-functions.

Therefore the operator Cg , can be representation by
(Coal)(® =3 Tyer f(L) B, ay (sine(Gt — j + k) + sinc(Gt —  — k)
= %Zﬂ’zo ay [Z]-EZ f(é) (sinc(Gt —j+Kk+ e f(la) sinc(Gt — j — k))]
=3 a5 (o4 ) + () (- )
Therefore
(Coaf)(® — f(6) = 3 By [(58" ) (t+ ) + (3 ) (t— )| - f®)
o [l s D e (0 () - r(e)
=220 +<f(t+§)—2f(t)+f(t—§))

p )
p,a

Since 0 < p < 1, by properties of quasi norm we obtain

ICoaf =P, < 2P S B lay <||Cc_af— i +lceaf =1, + [|A%F
! ! ! G

< 2P %Zgl:olakl (“CG.af_ f”i,a +%(1)2 (f; E)P,o)

By using theorem (2.1.2) we have

lcaat =17, < 22 Solal[con (52), +502(52), |
< o, (f; é)m [Zp Dk=olakl (C + kz—z)]
< Mo, (£ %)M

Theorem 3.3.2: For C, (a € R"*1) let ¢,1 < ¢ < m be fixed. For a parameter vector g € R™~**1, such that we have
for the kernel (13) a representation via central differences(4) inform (14),

Then for f € AP, (0. > 0,0 < p < 1) we have

1
[ICeaf — f”;a < Dy,0m2 (fi E)P,a (22)
where the constant D, ¢ is independent of fand G.
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Proof: For kernel (20) we get operator Cg , which is representation

(Ceaf)® = iz f(é—) [sinc(t) - 22;+1 Yot (—1)* q;[Affsinc(t — ) + Af¥sinc(t — j)]]

= Yjez f(é—) sinc(Gt — k) —Yjez f(]g) [22;“ Yo (—1)* q;[Affsinc(t — ) + Af¥sinc(t — j)]]
= (ST )() — 577 IS (—1)* gy Tjez £ (1) [43sinc(e — ) + AFsinc(t — )]

= (ST )(©) — 7 Za’ (—1* g [ Tyer £ (L) sine(GE =) + 8% Ty £(2) sine (G — )

Therefore . .
(Coaf) () = (ST £)(0) — sorr Do’ (=10 q [A3 (58 £) (£ = 1) + a2¢(sgme 1) (1 + )]

We obtain . .

(Coaf)(®) = 1) = (ST £)(6) — 37 E (= 1)+ q; [834(s3 f) (t = 1) + a2¢(52 ) (e + )] - t(®

st (0 - - e+ 1)
+A%! ((Sé}“c O (t+1)—f(t+1)+ (e + ’E))
p¥((sgmef) (t—21) - f(t—2

— (Séinc f) _Zzlﬁz}iaf(_l)j-w q; G ZE G | ( G) ( G) )
+Aé ((Sg‘“C f) (t + é—) - f(t + ’E))
o (a2 )) + (s + )

Since 0 < p < 1 from properties of quasi norm we obtain

= (ST N® = () — Fmr Z (D
2

ICaat =17, < 2 [Iste- ), + Sratlalisers - i, + Sl

p
AF'f ]
G p.a

< 2| (L 3l (Ise -] ) + s 2l (w2 (63), )]

By using theorem (2.1.2) we have
lcaaf =l < 22 (1+ 225" o] + 5z 5 ) woe (£5),

G
1
< Da W7y (f, —) .
’ G/pa
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