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ABSTRACT 

In this paper, we introduce and study the notions of b-H-open sets and (bH, λ)-continuity in hereditary generalized 
topological spaces. We also find the decomposition of (µ, λ)-continuity and (σH, λ) -continuity. 
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1. INTRODUCTION AND PRELIMINARIES 
 
A family µ of subsets of X is called a generalized topology (GT)[1], if ∅∈ µ and µ  is closed under arbitrary  union. The 
generalized topology µ is said to be strong [7], if  X∈µ.  A hereditary class H of X is a non-empty collection of subsets 
of X such that A⊂ B, B ∈ H implies A∈H [2]. If  µ  is a GT on X and A ⊂ X,  x ∈ X  then x ∈ Aµ∗[2] iff  x ∈ M  ∈ µ    
⇒ M ∩ A ∉H.  A function f: (X, µ, H) → (Y, λ) is called (µ, λ) - continuous [1] (resp.  (αH, λ) -continuous [9] , (πH, λ) - 
continuous[9], (σH, λ) -continuous[9],  (δH, λ) --continuous [8]) if the inverse image of each  λ -open set in  Y  is µ-open 
(resp. α - H -open π - H -open, σ - H -open, δ - H -open) . 
 
Definition 1.1: A subset A of a hereditary generalized topological space (X, µ, H) is said to be 

(a) α - H –open [2] if A ⊆ iµ (cµ∗(iµ (A))), 
(b) β - H –open [2] if A ⊆ cµ(iµ (cµ∗(A))), 
(c) σ - H –open [2] if A ⊆ cµ∗(iµ (A)), 
(d) π - H –open [2] if A ⊆ iµ (cµ∗(A)), 
(e) δ - H –open [2] if iµ (cµ∗(A)) ⊆ cµ∗(iµ (A)), 
(f) strongβ - H -open [2] if A ⊆ cµ∗(iµ (cµ∗(A))), 
(g) S - H -set [10] if iµ (A) = cµ∗(iµ (A)), 
(h) t - H -set [10] if  iµ (cµ∗(A)) = iµ (A), 
(i) BH -set [10] if A = U ∩V, where U ∈ µ and V is t - H -set. 

 
Lemma 1.2: [6] Let (X, µ, H) be a hereditary generalized topological space and A, B be subsets of X. Then the 
following holds: 

(a) If A⊆ B, then A∗⊆ B∗. 
(b) If G ∈ µ, then G ∩ A∗⊆ (G ∩ A)∗. 
(c) A∗ = cµ(A∗) ⊆ cµ(A). 

 
2. b- H-OPEN SETS  
 
Definition 2.1: A subset A of a hereditary generalized topological space (X, µ, H) is said to be b - H- open, if              
A ⊆ iµ(c∗µ (A)) ∪ c∗µ(iµ (A)). 
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Proposition 2.2:  Let (X, µ, H) be a hereditary generalized topological space. Then the following holds: 

(a) Every σ - H -open set is b - H -open. 
(b) Every π - H -open set is b - H -open. 
(c) Every b - H -open set is strong β - H -open. 
(d) Every b - H -open set is β - H -open. 

 
Proof:  

(a) Let A be σ - H -open.  Then A ⊆ c∗µ (iµ (A)) ⊆ iµ (c∗µ(A)) ∪ c∗µ(iµ (A)). Hence A is b - H–open.  
(b) Let A be π - H -open. Then A ⊆ iµ (cµ∗(A)) ⊆ iµ (cµ∗(A)) ∪ cµ∗(iµ (A)). Hence A is b - H -open. 
(c) Let A be b-H-open.  

Then A ⊂iµ(cµ∗(A)) ∪cµ∗(iµ(A)) ⊂cµ∗(iµ(cµ∗(A))) ∪c∗µ(iµ(A)) = c∗µ(iµ(c∗µ(A)) ∪iµ(A))⊂c∗µ (iµ (c∗µ(A) ∪ A)) =     
c∗µ (iµ (c∗µ(A))). Hence A is strong β - H –open. 

(d) Let A be b - H -open.  
Then A ⊂ iµ (c∗µ (A)) ∪ c∗µ (iµ (A)) ⊂ cµ(iµ (c∗µ (A)) ∪ c∗µ (iµ(A))) = cµ (iµ(c∗µ(A))) ∪cµ (c∗µ(iµ (A))) =             
cµ (iµ(c∗µ (A))) ∪ cµ ((iµ (A))∗∪ iµ (A)) ⊂ cµ (iµ (c∗µ(A))) ∪ cµ(cµ (iµ (A)) ∪ iµ(A)) = cµ(iµ(c∗µ(A))) ∪ cµ (iµ (A)) 
⊂ cµ (iµ (c∗µ(A))). Hence A is β - H -open. 

 
Remark 2.3: The following examples show that the converse of Proposition 2.2 need not be true. 
 
Example 2.4: Let X = {a, b, c, d}, µ = {∅, {b},{b, c},{c, d},{b, c, d}} and H = {∅,{a},{b}}.  Then 

1. A = {c} is b - H -open set but not σ - H -open. 
2. A = {a, b} is b - H -open set but not π - H -open. 
3. A = {a, c} is β - H -open but not b - H -open. 

 
Theorem 2.5: Let (X, µ, H) be a hereditary generalized topological space and A ⊆ X. If A is b - H -open and S - H -
set, then A is π - H -open. 
 
Proof:  If A is S - H -set, then iµ(A) = cµ∗(iµ (A)).  Since A is b - H -open, then  
A ⊆ iµ (c∗µ(A)) ∪ c∗µ(iµ (A)) = iµ (c∗µ (A)) ∪ iµ (A) = iµ (A ∪ A∗) ∪ iµ (A) ⊆ iµ (A ∪ A∗) = iµ (c∗µ(A)). Hence A is π - H -
open. 
 
Theorem 2.6: Let (X, µ, H) be a hereditary generalized topological space and A ⊆ X. If A is b - H -open and t - H -set, 
then A is σ - H -open.  
 
Proof: If A is t - H -set, then iµ (A) = iµ (cµ∗(A)). Since A is b - H -open, then   
A⊆ iµ (c∗µ (A)) ∪ c∗µ (iµ (A)) = iµ (A) ∪ c∗µ(iµ (A)) = iµ (A) ∪ (iµ (A) ∪ (iµ (A))∗) = iµ (A) ∪ (iµ(A))∗ = c∗µ (iµ(A)) . 
Hence A is σ - H -open. 
 
Proposition 2.7: Let (X, µ, H) be a hereditary generalized topological space. Then the following are equivalent. 

(a) Every β - H -open set is σ - H -open. 
(b) Every b - H -open set is σ - H -open. 
(c) Every π - H -open set is σ - H -open. 

 
Proof: It follows from Proposition 2.2. 
 
Proposition 2.8: Let (X, µ, H) be a hereditary generalized topological space. Then arbitrary union of b - H-open sets is 
b - H -open. 
 
Proof: Let Uα   be b - H -open for α ∈Δ, we have Uα⊆ iµ(cµ∗(Uα)) ∪ cµ∗(iµ (Uα)). Then Lemma 1.2. we have 
∪α∈ΔUα⊆∪α∈Δ (cµ∗(iµ (Uα)) ∪ iµ (cµ∗(Uα))) = ∪α∈Δ ((iµ (Uα ) ∪ (iµ (Uα ))∗) ∪ iµ (Uα∪ Uα∗))⊆((iµ (∪α∈Δ Uα) ∪                 
(∪α∈Δ (iµ(Uα )))∗) ∪ (iµ (∪α∈Δ  Uα) ∪ (∪α∈Δ Uα)∗))⊆((iµ (∪α∈Δ  Uα) ∪ (iµ (∪α∈Δ  (Uα ))∗)) ∪ (iµ (∪α∈Δ Uα) ∪ (∪α∈Δ  Uα)∗))⊆ 
iµ (c∗µ (∪α∈Δ)) ∪ c∗µ(iµ (∪α∈Δ)) . Hence ∪α∈Δ Uα   is b - H –open. 
 
Proposition 2.9: Let (X, µ, H) be a hereditary generalized topological space and A, B be subsets of X . If A is b - H -
open and B is µ -open, then A∩ B is b - H -open. 
 
Proof: If A is b - H -open, then A ⊆ iµ (c∗µ (A)) ∪ c∗µ (iµ (A)) and A ∩ B ⊆ (iµ(c∗µ(A)) ∪ c∗µ(iµ (A))) ∩ B=(iµ(c∗µ (A)) 
∩ B) ∪ (c∗µ (iµ (A)) ∩ B)= (iµ(A ∪ A∗) ∩ B) ∪ (((iµ (A))∗∪ iµ (A)) ∩ B)= (iµ(A ∪ A∗) ∩ iµ (B)) ∪ (((iµ (A))∗∩ B) ∪      
(iµ (A) ∩ B)) ⊆ (iµ ((A ∪ A∗) ∩ B)) ∪ ((iµ(A ∩ B))∗∪ iµ (A ∩ B))= (iµ((A ∩ B) ∪ (A∗∩ B))) ∪ ((iµ(A ∩ B))∗∪                
iµ (A ∩ B)) ⊆ iµ ((A ∩ B) ∪ (A ∩ B)∗) ∪ c∗µ (iµ (A ∩ B))= iµ(c∗µ (A ∩ B)) ∪ c∗µ (iµ (A ∩ B)) . Hence A ∩ B is b - H –
open. 
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Remark 2.10: The following examples show that the intersection of two b - H -open sets need not be b - H -open. 
 
Example 2.11: Let X = {a, b, c, d}, µ = {∅,{b},{b, c},{c, d},{b, c, d}} and H = {∅,{a},{b}}.   
 
Consider A = {a, b} and B = {a, c, d} are b - H -open sets, but A∩ B = {b} is not b - H -open set.  
 
Proposition 2.12: Let (X, µ, H) be a hereditary generalized topological space and A ⊂ X. Then the following are 
equivalent: 

(a) A is σ - H -open. 
(b) A is both b - H -open and δ - H -open. 

 
Proof:  
(a) ⇒ (b): If A is σ - H –open, then A ⊂ cµ∗(iµ (A)). Now iµ (cµ∗(A)) ⊂ c∗µ(A) ⊂c∗µ (c∗µ (iµ(A))) ⊂ c∗µ (iµ(A)). Hence A is 
δ - H -open. Obviously A is b - H - open. 
 
(b) ⇒ (a): If A  is b - H -open and δ - H -open, then A ⊂ iµ (cµ∗(A)) ∪ cµ∗(iµ (A)) and iµ (cµ∗(A)) ⊂ cµ∗(iµ (A)), therefore A 
⊂ cµ∗(iµ (A)) . Hence A is σ - H -open. 
 
Remark 2.13: The following example shows that the notions b - H -open and δ - H -open are independent. 
 
Example 2.14: Let X = {a, b, c, d}, µ = {∅, {b}, {b, c}, {c, d}, {b, c, d}} and H = {∅, {a}, {b}}. Then 

(a) A = {c} is b - H -open but not δ - H -open. 
(b) A = {a} is δ - H -open but not b - H -open. 

 
Proposition 2.15: Let (X, µ, H) be a hereditary generalized topological space and x ∈X. Then {x} is µ -open if and 
only if {x} is σ - H –open.  
 
Proof: Let {x} be a µ -open. Then {x} = iµ({x}) ⊆ cµ∗(iµ({x})). Hence {x} is σ - H -open.  Conversely, assume that {x} 
is σ - H –open. Then {x}⊆ cµ∗(iµ ({x})). Now  iµ({x})  is either {x} or  ∅.  We have cµ∗(∅) = ∅ , but  {x}⊆ cµ∗(iµ ({x})), 
so iµ ({x})≠∅. Hence iµ ({x})={x}. Thus {x} is µ -open.  
 
Lemma 2.16: Let  (X, µ, H)  be a hereditary generalized topological space, A ⊆ X and  U ∈ µ. If A∩U = ∅, then       
c∗µ (A) ∩ U = ∅. 
 
Proposition 2.17: Let (X, µ, H) be a hereditary generalized topological space and let x ∈ X. Then the following are 
equivalent: 

(a) {x} is  π - H –open. 
(b) {x} is  b - H –open. 
(c) {x} is strong  β - H -open. 

 
Proof:   
(a) ⇒ (b) and (b) ⇒ (c) follows from proposition 2.2. 
 
(c) ⇒ (a): Assume that {x} is strong β - H -open and {x} is not π - H -open. Then {x}⊄  iµ (c∗µ({x})) , that is,             
{x} ∩ iµ (c∗µ({x})) = ∅. We have iµ (c∗µ ({x})) is µ -open, it follows from Lemma 2.15, c∗µ ({x}) ∩ iµ(c∗µ ({x})) = ∅ 
and thus iµ (c∗µ({x})) = ∅. Therefore c∗µ (iµ (c∗µ ({x}))) = ∅ . But {x} is strong β - H -open, a contradiction. Hence {x} 
is π - H -open. 
 
Proposition 2.17: Let (X, µ, H) be a hereditary generalized topological space and let x ∈ X. Then the following are 
equivalent: 

(a) {x} is  π - H –open. 
(b) {x} is  b - H –open. 
(c) {x} is strong  β - H -open. 

 
Proof:   
(a) ⇒ (b) and (b) ⇒ (c) follows from proposition 2.2. 
 
(c) ⇒ (a): Assume that {x} is strong β - H -open and {x} is not π - H -open. Then {x}⊄  iµ (c∗µ({x})) , that is,  
{x} ∩ iµ (c∗µ({x})) = ∅. We have iµ (c∗µ ({x})) is µ -open, it follows from Lemma 2.15, c∗µ ({x}) ∩ iµ(c∗µ ({x})) = ∅ 
and thus iµ (c∗µ({x})) = ∅ . Therefore c∗µ (iµ (c∗µ ({x}))) = ∅. But {x} is strong β - H -open, a contradiction. Hence {x} 
is π - H -open. 
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Proposition 2.18: Let (X, µ, H) be a hereditary generalized topological space and A ⊆ X such that (iµ (A∗))∗⊆ iµ (A∗). 
Then the following are equivalent: 

(a) A ⊆ iµ (A∗). 
(b) A is b - H -open and A⊆ A∗. 

 
Proof:  
(a) ⇒ (b): If A ⊆ iµ(A∗) ⊆ A∗ . Since A ⊆ iµ (A∗) ⊂ iµ (A∗) ∪ iµ (A) ⊆ iµ (A∗∪ A) = iµ (c∗µ (A)) ⊆ iµ(c∗µ (A)) ∪         
c∗µ(iµ (A)). Then A is b - H -open. 
 
(b) ⇒ (a): If A is a b - H -open and A ⊆ A∗, then A ⊆ iµ (c∗µ(A)) ∪ c∗µ (iµ (A)) = iµ (A ∪ A∗) ∪ (iµ (A) ∪ (iµ (A))∗) ⊆   
(iµ (A∗) ∪ iµ (A)) ∪ (iµ(A))∗ = iµ (A∗) ∪ (iµ(A))∗ = iµ (A∗). 
 
Definition 2.19: A subset A of a hereditary generalized topological space (X, µ, H) is said to be b-H-closed if its 
complement is b - H -open. 
 
Theorem 2.20: Let (X, µ, H) be a hereditary generalized topological space and A ⊆ X.  If A is b - H -closed, then        
iµ (c∗µ(A)) ∩ c∗µ(iµ (A)) ⊆ A . 
 
Proof: If A is b - H -closed, then X −A is b - H -open. We have  
X - A ⊆ c∗µ (iµ (X - A)) ∪ iµ (c∗µ(X - A)) ⊆ cµ (iµ (X - A)) ∪ iµ (cµ(X - A)) = (X - (iµ (cµ(A)))) ∪ (X - (cµ (iµ (A)))) ⊆     
(X - (iµ(c∗µ (A)))) ∪ (X - (c∗µ(iµ(A)))) = X- ((iµ (c∗µ(A)))∪ c∗µ(iµ (A))). Hence iµ (c∗µ) ∪ c∗µ(iµ (A)) ⊆ A. 
 
Remark 2.21: The following example shows that the converse of theorem 2.20 need not be true. 
 
Example 2.22: Let X = {a, b, c, d}, µ = {∅,{b},{b, c},{c, d},{b, c, d}} and H = {∅,{a},{b}}. Let A = {c}, then   
iµ (c∗µ (A)) ∩ c∗µ (iµ (A)) ⊆A but A is not b - H –closed. 
 
Corollary 2.23: Let (X, µ, H)  be a hereditary generalized topological space and A ⊆ X such that X-iµ (c∗µ(A)) =   
c∗µ(iµ (X - A)) and X - c∗µ (iµ(A)) = iµ(c∗µ (X - A)) . Then A is b - H -closed if and only if iµ (c∗µ (A)) ∩ c∗µ (iµ (A)) ⊆ A. 
 
Proof: By theorem 2.20, if A b - H -closed, then iµ(c∗µ (A)) ∩ c∗µ (iµ(A)) ⊆ A. Conversely, if iµ (c∗µ (A))∩c∗µ (iµ (A)) ⊆ 
A , then X - A ⊆ X - (iµ (c∗µ(A))∩c∗µ (iµ (A))) ⊆ (X - iµ (c∗µ (A))) ∪ (X - c∗µ (iµ (A))) = c∗µ(iµ (X - A)) ∪ iµ (c∗µ(X - A)). 
Therefore, X − A is b - H -open and hence A is b - H -closed. 
 
Definition 2.24: A subset A of a hereditary generalized topological space (X, µ, H) is said to be strong BH -set if          
A = U ∩V, where U ∈ µ and V is a t - H -set and iµ (c∗µ(V)) = c∗µ (iµ(V)) 
 
Proposition 2.25: Let (X, µ, H) be a hereditary generalized topological space and A ⊆ X. If A is a strong BH -set, then 
A is BH -set. 
 
Proof: Obvious. 
 
Remark 2.26: The following example shows that the converse of proposition 2.25 need not be true. 
 
Example 2.27: Let X = {a, b, c, d}, µ = {∅, {b}, {b, c}, {c, d}, {b, c, d}} and H = {∅, {a}, {b}}. A = {b} is BH -set but 
not strong BH -set. 
 
Proposition 2.28: Let (X, µ, H) be a strong hereditary generalized topological space and A⊆ X. Then the following are 
equivalent. 

(a) A is µ -open. 
(b) A is b - H -open and a strong  BH -set. 

 
Proof:  
(a) ⇒ (b): Clearly every µ -open set is b - H -open. Now every µ -open set is strong BH -set, because X is t - H -set and 
iµ (c∗µ(X)) = c∗µ (iµ (X)). 
 
(b) ⇒ (a): If  A  is  b - H -open  and  strong  BH -set, then  A  ⊆ iµ (cµ∗(A)) ∪ cµ∗(iµ(A)) = iµ (cµ∗(U ∩ V)) ∪ cµ∗(iµ(U∩V)), 
where U  is µ -open and  V  is  t - H - set and iµ(c∗µ (V)) = c∗µ (iµ(V)) . Hence A ⊆ (iµ(c∗µ (U )) ∩ iµ (c∗µ (V ))) ∪           
(c∗µ (iµ (U )) ∩ c∗µ (iµ(V))) ⊆ U ∩(iµ (c∗µ(V)) ∪c∗µ(iµ (V ))) = U∩iµ (c∗µ(V)) = U∩iµ (V) = iµ(U ∩V) = iµ (A). Hence A 
is µ -open. 
 
Remark 2.29: The following examples show that the notions of b - H -open and strong BH -set are independent. 
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Example 2.30: Let X = {a, b, c, d}, µ = {∅, {b}, {b, c}, {c, d}, {b, c, d}} and H = {∅, {a}, {b}}. 

1. A = {d} is strong BH -set but not b - H -open.  
2. A = {a, b} is b - H -open but not strong BH -set.  

 
3. DECOMPOSITION OF (µ, λ) -CONTINUITY AND (σH, λ) - CONTINUITY  
 
Definition 3.1: A function f: (X, µ, H) → (Y, λ) is called (bH, λ) -Continuous function, if the inverse image of each      
λ -open set in Y is b - H -open in X. 
 
Proposition 3.2: If a function f: (X, µ, H) → (Y, λ) is either (σH, λ) -continuous or (πH, λ) -continuous, then f is (bH, λ) 
-continuous. 
 
Proof: Obvious. 
 
Remark 3.3: The following example shows that the converse of Proposition 3.2 need not be true. 
 
Example 3.4: Let X = Y= {a, b, c, d}, µ = λ = {∅, {a}, {c}, {b, d}, {a, c}, {a, b, c}, X} and H = {∅, {a}, {d}, {a, d}}.  
Define f: (X, µ, H) →(Y, λ) by f (a) = a, f (b). Then f is (bH, λ) -continuous but not strong BH -continuous. In Example 
3.8 f is strong BH–continuous but not (bH, λ) –continuous. Since f−1({b, d}) = {b, c} is b - H -open but it is neither σ - H 
-open nor π - H –open. 
 
Definition 3.5:  A function f: (X, µ, H) → (Y, λ) is B H -continuous (resp. strong BH -continuous) if the inverse image 
of  λ -open set in  Y  is  BH -set  (resp. strong BH -set)  in  X. 
 
Theorem 3.6: If a function f: (X, µ, H) → (Y, λ) is strong BH -continuous, then f is BH -continuous. 
 
Proof: It follows from Proposition 2.25. 
 
Remark 3.7: The following example shows that the converse of theorem 3.6 need not be true. 
 
Example 3.8: Let X = {a, b, c}, µ = {∅, {a, c}} and H= {∅, {a}, {b}}. Also, let Y = X and λ = {∅, {a {a, c}}. 
Define f: (X, µ, H) →  (Y, λ) by f (a) = a, f (b) = c and f (c) = b. Then f is strong BH -continuous but not                      
BH -continuous. 
 
Proposition 3.9:  Let (X, µ, H) be a strong hereditary generalized topological space. For a function f: (X, µ, H) →     
(Y, λ), the following are equivalent: 

(a) f is  (µ, λ) -continuous, 
(b) f is  (bH, λ) -continuous and strong  BH -continuous. 

 
Proof: This is an immediate consequence from Proposition 2.28. 
 
Remark 3.10: The following examples show that the notions of (bH, λ)-continuous and BH -continuous are 
independent. 
 
Example 3.11: Let X = {a, b, c, d}, µ = {∅, {c}, {a, b}, {a, b, c}, {b, c, d}, X} and H = {∅, {d}}. Also, let                   
Y = {a, b, c} and λ = {∅, {a}, {b}, {a, b}}. Define a function f: (X, µ, H) →  (Y, λ) such that f (a) = f (b) = a,                 
f (c) = f (d) = b. Then f is (bH, λ) -continuous but not strong BH -continuous. In Example 3.8 f is strong BH–continuous 
but not (bH, λ) –continuous.  
 
Proposition 3.12: Let (X, µ, H) be a hereditary generalized topological space. For a function f: (X, µ, H) → (Y, λ), the 
following are equivalent: 

(a) f is  (σH, λ) –continuous.                                                                                                                                    
(b) f is  (bH, λ) -continuous and  (δH, λ) -continuous. 

 
Proof: This is an immediate consequence from Proposition 2.12. 
 
Remark 3.13: The notions of (δH, λ) -continuous and (bH, λ) -continuous are independent as shown in the following 
examples. 
 
Example 3.14: Let X = {a, b, c, d}, µ = {∅, {a, b}, {b, d}, {a, b, c}, X} and H = {∅, {a}, {b}, {a, b}}. Also let Y= X 
and  λ = {∅, {a}, {c}, {b, d}, {a, c}, {a, b, c}, X}.  Define function f: (X, µ, H) → (Y, λ) such that f (a) = a, f (b) = f (c) 
= b. Then f   is (δH, λ) -continuous but neither (bH, λ) –continuous nor (σH, λ) - continuous. 
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Example 3.15: Let X = {a, b, c, d}, µ={∅,{c},{b, d},{a, b, c},{b, c, d}, X} and H = {∅, {a}, {b}, {d}, {a, d}}. Let       
Y = {a, b, c}, λ = {∅, {a, c}, {b, c}, {a, b, c}}. Define the identity function f: X → Y is (bH, λ) -continuous but it is 
neither (δH, λ) -continuous nor (σH, λ) -continuous. 
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