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ABSTRACT 
In the present paper, we consider a new boundaries conditions of the tired kind. we prove the basis property, 
completeness, and the minimality of the eigen functions with a nonlocal Oddness condition of the tired kind. 
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1. INTRODUCTION  
 
The classical Frankl problem was considered in [3]. The problem was further developed in [2, pp.339-345], [8, pp.235-
252]. The modified Frankl problem with a nonlocal boundary condition of the first kind was studied in [1, 6]. The basis 
property of an eigen functions of the Frankl problem with a nonlocal parity conditions in the space sobolev was studied 
in[7]. In the present paper, we consider a new boundaries conditions of the tired kind and prove the completeness, the 
basis property, and the minimality of the eigen functions in the space 2L . This analysis may be of interest in itself. 
 
2. PRELIMINARIES 
 
Definition 2.1: In the domain

1 2
( )D D D D     , we seek a solution of the modified generalizedFrankl problem 

 2
1 2sgn( ) sgn( ) 0 in ( ),xx yyu y u x y u D D Dµ + − −+ + + = ∪ ∪  (1) 

with the boundary conditions 

 (1, ) 0, 0, ,
2

u πθ θ  = ∈  
 (2) 

 (0, ) 0, ( 1,0) (0,1)u y y
x
∂

= ∈ − ∪
∂

 (3) 

 (0, ) (0, ), [0,1], (0, 0) ( , 0).ku y u y y ku u x= − ∈ + = −  (4) 
where ( , )u x y  is a regular solution in the class 

 0 2 2
1 2 1 2( ) ( ) ( ),u C D D D C D C D+ − − − −∈ ∪ ∪ ∩ ∩  

and where 

1

2

( , ) : 0 1,0 ,
2
1( , ) : 1, 0 ,

2
1( , ) : 1 ,0 ,
2

D r r

D x y y x y y

D x y x y x x

πθ θ+

−

−

 = < < < < 
 

− = − < < + < < 
 
 = − < < − < < 
 

 

                                                  
( , 0) ( , 0), ,0 1.u ux x x

y y
κ κ∂ ∂

+ = − −∞ < < ∞ < <
∂ ∂

                                               (5) 
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Definition 2.2: .System{ }n n Nx X∈ ⊂  is called complete in X if [{ } ] .n n NL x X∈ =  
 
Definition 2.3: .System{ }n n Nx X∈ ⊂  is called minimal in X  if [{ } ], .k n n Nx L x k N∈∈ ∀ ∈/  
 
Remark 2.1: If the system{ }n n Nx X∈ ⊂ minimal in ( ),pL I then it is also minimal in ( ),pL J for J I⊃ , and if it is 

complete in ( )pL J for .J I⊂  
 
Theorem 2.5 ([5]): The eigenvalues and eigenfunctions of problem (1-5) can be written out in two series. 
 
In the first series, the eigenvalues 2

nkλ µ= are found from the equation 

 
4

( ) 0,
n nk

J    (6) 

where ,  1, 2 ,...,nk n kµ = , are roots of the Bessel equation (6), ( )J zα , is the Bessel function [4], and the 
eigenfunctions are given by the formula 

 

4

4 1

4 2

( ) cos(4 ) , in ;
2

( ) cosh(4 ) , in ;
( ) cosh(4 ) , in ,

nk n nk

nk nk n nk

nk n nk

A J r n D

u kA J n D
kA J R n D

πµ θ

µ ρ ψ
µ ϕ

+

−

−

  −   = 




 (7) 

where cos , sinx r y rθ θ= = for 2 2 20 ,
2

r x yπθ≤ ≤ = + in D+ , cosh , sinh ,x yρ ψ ρ ψ= =  for, 0 1,ρ< <  
2 2 20, ,x yψ ρ−∞ < < = −  in 1D− , and, sinh , cosh ,x R y Rϕ ϕ= = −  for, 2 2 20 , R y xϕ< < +∞ = − in 2D− . 

 
In the second series, the eigenvalues 2

nkλ µ=  are found from the equation 

                                                                    4( ) ( ) 0.n nkJ µ+ =




                                                
 (8) 

where ,  1, 2 ,...n k =  and the ( )nkµ are the roots of the Bessel equation (8). 

 

4( )

4( ) 1

4( ) 2

( ) cos 4( ) , in ;
2

( )[cosh 4( ) cos 4( ) sinh 4( ) cos 4( )], in ;
2

( ) cosh 4( ) [cos 4( ) sin 4( ) ], in ,
2 2

nk n nk

nk nk n nk

nk n nk

A J r n D

u A J n n n n D

kA J R n n n D

πµ θ

πµ ρ ϕ κ ψ

π πµ ϕ

+
+

+ −

+ −

  + −   


= + + + + +

 + + − +
















   




  

 (9) 

where 
2

1 1arcsin , 0,
21

κ
π κ

 ∆ = ∆∈ 
 +

, and 

           
12 2

40
( ) 1,nk n nkA J r rdrµ =∫  

           
12 2

40
( ) 1,nk n nkA J r rdrµ+ =∫ 



 0nkA >  and 0nkA > . 

 
3. THE COMPLETENESS, THE BASIS PROPERTY, and MINIMALITY of THE EIGENFUNCTIONS 
 
Theorem 3.1: The function system 

 
0 1

cos(4 ) , cos 4( ) ,
2 2n n

n nπ πθ θ
∞ ∞

= =

      − + −      
      

  (10) 

is complete and a Riesz basis in 2 0,
2

L π 
 
 

,  provided that
1 1,

4 2
− ∈ 

 
 . 
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Proof: In order to prove this theorem we use the method in [1, 6] by considering convergence function 

 
0 1

( ) cos 4 cos 4( ) ,
2 2n n

n n
f A n B nπ πθ θ θ

∞ ∞

= =

   = − + + −   
   

∑ ∑   (11) 

In 2 0,
2

L π 
 
 

and Riesz basis the system sin 4( )
2

n π θ  + −  
  

 for 
1 3,

4 4
− ∈ 

 
 . 

 

Remark 3.2: For 
1

4
−

<  the system (10) is not complete but is minimal, for
3
4

> is complete but isnot minimal, and 

if 
1

4
−

= , is complete and minimal. 

 
Theorem 3.3: The system of eigenfunctions 

 4( , ) ( ) cos(4 ) ,
2nk nk n nku r A J r n πθ µ θ = − 

 
 

 4( )( , ) ( )[cosh 4( ) cos 4( ) ,
2nk nk n nku r A J r n n πθ µ ϕ+= + +





 
   

is complete and basis in the space 2 0,
2

L π 
 
 

, therefore 

 
0

2

( , ) ( , ) 0,nkf r u r rdrd

π

θ θ θ =∫  

2
0

( , ) ( , ) 0,nkf r u r rdrd
π

θ θ θ =∫   

and 0,
2

f L π ∈  
 

 then 0f = in 0,
2
π 

 
 

. 

 
Proof: Using fobini theorem and Lebesgue‘s integral for any , 1, 2,...n k = we have 

 2
0

0 ( , ) ( , )nkf r u r rd dr
π

θ θ θ= ∫  

 
1

2
40 0

( ( ) ( , ) cos(4 ) ) ,
2n nkrJ r f r n d dr

π πµ θ θ θ − 
 ∫ ∫  

Again since 2 0,
2

f L π ∈  
 

so; 

 
1 22
0 0

 | ( , ) | .f r d dr
π

θ θ < ∞∫ ∫  

 
In so much system 4 1{ ( )}n nk kr J rµ ∞

= in 2 (0,1)L is orthogonal and complete, it is enough to prove: 

 22
0

( , ) cos(4 )   (0,1).
2

r f r n d L
π πθ θ θ − ∈ 

 ∫  

 
Using the Holder inequality 

 2 22 2 2
0 0 0

1| ( , ) co s(4 ) | | ( , ) |
2 2

r f r n d r f r d d
π π ππθ θ θ θ θ θ − < 

 ∫ ∫ ∫  

 2 22 2
0 0

| ( , ) | | ( , ) | ,
4 4

r f r d r f r d
π ππ πθ θ θ θ= =∫ ∫  
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with the integration interval (0,1). 

1 12 22 2
0 0 0 0
| ( , ) co s(4 ) |  | ( , ) | .

2 4
r f r n d dr r f r drd

π ππ πθ θ θ θ θ − < < ∞ 
 ∫ ∫ ∫ ∫  

 
This inequality is equivalent to 

 

1
21 22

0 0
| ( , ) cos(4 ) | .

2
r f r n d dr

π πθ θ θ
  − < ∞  

  
∫ ∫  

 

Also system 4 1{ ( )}n nk kr J rµ ∞
=  is orthogonal and complete in 2 0,

2
L π 
 
 

of relation 

 
1

2
40 0

( ( ) ( , ) cos(4 ) ) 0,
2n nkr J r r f r n d dr

π πµ θ θ θ − = 
 ∫ ∫  

imply that 

 2
0

( , ) cos(4 ) 0.
2

r f r n d
π πθ θ θ − = 

 ∫  

 
According to theorem 2,we conclude that ( , ) 0f r θ =  in 2 (0,1).L Similarly, if we consider the above calculations for 

sequence
1

cos 4( ) ,
2 n

n π θ
∞

=

  + −  
  



 
 
We have  

2
0

( , ) cos 4( ) 0.
2

r f r n d
π πθ θ θ + − = 

 ∫   

 

Because completeness
0

cos 4( ) , ( , ) 0
2 n

n f rπ θ θ
∞

=

  + − =  
  

 in 2 (0,1).L  

 
The proof of the theorem is complete. 
 
 
Theorem 3.4: The system of eigenfunctions ( , )nku r θ and ( , )nku r θ of the problem (1)-(5) is a Riesz basis in the 

space 0, ,
2

L π 
 
   

where, ( ) 

( )1 11 12 2 2 2
4 4( )0 0

( ) ,  ( )nk n nk nk n nkA J r rdr A J r rdrµ µ
− −

+= =∫ ∫ 

. 

 
Proof: Theorem 3.3 results from Theorem 3.2 and the completeness and orthogonality of the system 4 1{ ( )}nk n nk kA J rµ ∞

=

, for 0n > and  

4( ) 1{ ( ) }nk n nk kA J rµ ∞
+ =

for 1n > in 2 (0,1).L  
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