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ABSTRACT 
An edge trimagic total labeling of a (p, q) graph G is a bijection f: V(G)∪E(G) → {1, 2, …, p+q} such that for each 
edge uv∈E(G), the value of f(u)+f(uv)+f(v) is equal to either k1or k2 or k3. In this paper we prove that the disconnected 
graphs (Cm⨀K1)∪Pn, (Cm⨀K1)∪Cn and Pm∪Pn∪Pr admit edge trimagic total labeling and super edge trimagic total 
labeling. 
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1. INTRODUCTION 
 
A Graph labeling is an assignment of integers to the elements of a graph, the vertices or edges or both subject to certain 
conditions. In 1967 Rosa introduced the concept of graph labeling. In 1970, Kotzig and Rosa[7] defined, the magic 
labeling of graph G is a bijection f: V∪E → {1, 2, …,p+q} such that for each edge uv∈E, f(u)+f(uv)+f(v) is a magic 
constant. W. D. Wallis [8] introduced this as edge magic total labeling. J. Baskar Babujee introduced the bimagic 
labeling of graphs in 2004[1]. In 2013, C. Jayasekaran, M. Regees and C. Davidraj introduced the edge trimagic total 
labeling of graphs [4]. M. Regees and C. Jayasekaran proved that some classes and families of graphs are edge trimagic 
total [5, 6]. Some definitions relevant to this paper are given below. 
 
Definition 1.1: [4] An edge trimagic total labeling of a (p, q) graph G is a bijective function f: V(G)∪E(G) → {1, 2, …, 
p+q} such that for each edge xy ∈ E(G), the value of f(x)+f(xy)+f(y) is equal to any of the distinct constants k1 or k2 or 
k3. A graph G is said to be edge trimagic total if it admits an edge trimagic total labeling. An edge trimagic total 
labeling is called a super edge trimagic total labeling if G has the additional property that the vertices are labeled with 
smallest positive integers. 
 
Definition 1.2: The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph G =G1∪G2 with vertex set               
V = V1∪V2 and the edge set E = E1∪E2. 
 
Definition 1.4: [4] If G is of order n, the corona of G with H, G H is the graph obtained by taking one copy of G and 
n copies of H and joining the ith vertex of G with every vertex in the ith copy of H. 
 
The dynamic survey of graph labeling by J.A.Gallian[3] can be used for further references. The notations and 
terminology are taken from [2]. This paper prove that the graphs (Cm⨀K1)∪Pn, (Cm⨀K1)∪Cn and Pm∪Pn∪Pr are edge 
trimagic total and super edge trimagic total. 
 
2. MAIN RESULTS            
 
Theorem 2.1: (Cm⨀K1) ∪Pn admits an edge trimagic total labeling.  
 
Proof: Let u1u2…umu1 be the cycle Cm and let vi be the vertex which is joined to the vertex ui of the cycle                
Cm, 1 ≤ i ≤ m. The resultant graph is Cm⨀K1. Let w1w2…wn be the path Pn. Then (Cm⨀K1) ∪Pn is a disconnected graph 
with 2m + n vertices and 2m + n – 1 edges. 
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Define a bijection f: V∪E → {1, 2, …, 4m+2n–1} such that, 
 
Case-1: n is odd. 
 
f(ui) = i, 1 ≤ i ≤ m, f(vi) = m+ i, 1 ≤ i ≤ m,  
 

f(wi) = �
2m + i+1

2
  ,1 ≤ i ≤ n and i is odd      

2m + n+i+1
2

,1 ≤ i ≤ n and i is even, 
� 

 
f(uiui+1) = 4m+2n–2i–1, 1 ≤ i ≤ m–1; f(uivi) = 4m+2n–2i, 1 ≤ i ≤ m; 
 
f(wiwi+1) = 2m+2n – i, 1 ≤ i ≤ n – 1and f(umu1) = 4m+2n–1. 
 
Now we can verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants               
λ1 = 4m+2n, λ2 = 5m+2n  and λ3 = 12m+5n+3

2
.  

 
Case-2: n is even. 
 
f(ui) = i, 1 ≤ i ≤ m, f(vi) = m+ i, 1 ≤ i ≤ m,  
 

f(wi) = �
2m + i+1

2
  ,1 ≤ i ≤ n and i is odd      

2m + n+i
2

,1 ≤ i ≤ n and i is even,     
� 

 
f(uiui+1) = 4m+2n–2i–1, 1 ≤ i ≤ m–1; f(uivi) = 4m+2n–2i, 1 ≤ i ≤ m; 
 
f(wiwi+1) = 2m+2n – i, 1 ≤ i ≤ n – 1 and f(umu1) = 4m+2n–1. 
 
Now we can verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                
λ1 = 4m+2n, λ2 = 5m+2n  and λ3 = 12m+5n+2

2
 .  

 
By case 1 and case 2, the graph (Cm⨀K1)∪Pn admits an edge trimagic total labeling for all m and n. 
 
Corollary 2.2: The graph (Cm⨀K1) ∪Pn admits a super edge trimagic total labeling. 
 
Proof: We proved that the graph (Cm⨀K1)∪Pn admits an edge trimagic total labeling. The labeling given in the proof 
of Theorem 2.1, the vertices get labels 1, 2… 2m+n. Since the graph (Cm⨀K1) ∪Pn has 2m+n vertices and all the 
vertices are labeled with smallest positive integers, the graph (Cm⨀K1)∪Pn admits a super edge trimagic total labeling. 
 
Example 2.3: The super edge trimagic total labeling of (C6⨀K1) ∪ P7 is given in figure 1. 
 

 
Figure-1: (C6⨀K1)∪P7  with λ1 = 38, λ2 = 44 and λ3 = 55. 
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Theorem 2.4: (Cm⨀K1) ∪Cn admits an edge trimagic total labeling. 
 
Proof: Let u1u2…umu1 be the cycle Cm and let vi be the vertex which is joined to the vertex ui of the cycle                 
Cm, 1 ≤ i ≤ m. The resultant graph is C m⨀K1. Let w1w2…wnw1 be the cycle Cn. Then G = (Cm⨀K1) ∪ Cn is a 
disconnected graph with 2m + n vertices and 2m + n edges. 
 
Define a bijection f: V∪E→ {1, 2, …, 4m+2n} such that, 
 
Case-1: n is odd. 
 
f(ui) = i, 1 ≤ i ≤ m, f(vi) = m+ i, 1 ≤ i ≤ m, 
 

 f(wi) = �
2m + i+1

2
 ,1 ≤ i ≤ n and i is odd         

2m + n+i+1
2

,1 ≤ i ≤ n and i is even,     
� 

 
f(uiui+1) = 4m+2n–2i, 1 ≤ i ≤ m–1; f(uivi) = 4m+2n–2i+1, 1 ≤ i ≤ m; 
 
f(wiwi+1) = 2m+2n – i, 1 ≤ i ≤ n – 1, f(umu1) = 4m+2n and f(wnw1) = 2m+2n. 
 
Now we can verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                
λ1 = 4m+2n+1, λ2 = 5m+2n+1  and λ3 = 12m+5n+3

2
.  

 
Case-2: n is even. 
 
f(ui) = i, 1 ≤ i ≤ m, f(vi) = m+ i, 1 ≤ i ≤ m, 
 

 f(wi) = �
2m + i+1

2
 ,1 ≤ i ≤ n and i is odd         

2m + n+i
2

,1 ≤ i ≤ n and i is even,     
� 

 
f(uiui+1) = 4m+2n–2i, 1 ≤ i ≤ m–1; f(uivi) = 4m+2n–2i+1, 1 ≤ i ≤ m; 
 
f(wiwi+1) = 2m+2n – i, 1 ≤ i ≤ n – 1, f(umu1) = 4m+2n and f(wnw1) = 2m+2n. 
 
Now we can verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 4m+2n+1, λ2 = 5m+2n+1  and λ3 = 12m+5n+2

2
. 

 
Example 2.5: The super edge trimagic total labeling of (C6⨀K1) ∪C5 is given in figure 2. 
 

 
Figure-2: (C6⨀K1) ∪C5 with λ1 = 35, λ2 = 41 and λ3 = 50. 

 
Corollary 2.6: The graph (Cm⨀K1)∪Cn admits a super edge trimagic total labeling. 
 
Proof: We proved that the graph (Cm⨀K1) ∪Cn admits an edge trimagic total labeling. The labeling given in the proof 
of Theorem 2.4, the vertices get labels 1, 2, …, 2m+n. Since the graph (Cm⨀K1) ∪Cn has 2m+n vertices and all the 
vertices are labeled with smallest positive integers, the graph (Cm⨀K1) ∪Cn admits a super edge trimagic total labeling. 
 



M. Regees* / Super Edge Trimagic Total Labeling of Some Disconnected Graphs / IJMA- 6(7), July-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                     155   

 
Theorem 2.7: The graph Pm∪Pn∪Pr admits an edge trimagic total labeling. 
 
Proof: Let V = {ui / 1 ≤ i ≤ m}∪{vj / 1 ≤ j≤ n} ∪{wk / 1 ≤ k ≤ r} be the vertex set and  
E= {uiui+1 /1 ≤ i ≤ m –1}∪{vjvj+1/1≤ j≤ n–1}∪{ wkwk+1/1 ≤ k ≤ r –1} be the edge set of the graph Pm∪Pn∪Pr. The 
disconnected graph Pm∪Pn∪Pr has m+n+r vertices and m+n+r–3 edges. 
 
Define a bijection f: V∪E→ {1, 2, …, 2m+2n+2r–3} such that, 
 
For all cases the edge labels are f(uiui+1) = 2m+2n+2r–i–2, 1 ≤ i ≤ m–1,  
 

f(vjvj+1) = m+2n+2r–i–1,1 ≤ j ≤ n–1 and f(wkwk+1) = m+n+2r–k,1 ≤ k ≤ r–1. 
 
Case-1: m odd, n is even and r odd. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i+1

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd   

m+ n+j
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k+1
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 5m+4n+4r–1

2
, λ2 = 6m+5n+4r

2
 and λ3 = 6m+6n+5r+3

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for odd m, even n and odd r. 
 
Case-2: m, n and r are odd. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i+1

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd        

m+ n+j+1
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k+1
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                  
λ1 = 5m+4n+4r–1

2
, λ2 = 6m+5n+4r+1

2
 and λ3 = 6m+6n+5r+3

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m , n and r are odd.   
 
Case-3: m, n odd and r even. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i+1

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd       

m+ n+j+1
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k
2

,1 ≤ k ≤ r and k is even,
�  
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It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                  
λ1 = 5m+4n+4r–1

2
, λ2 = 6m+5n+4r+1

2
 and λ3 = 6m+6n+5r+2

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m, n odd and r even. . 
 
Case-4: m odd and n, r even. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i+1

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd

m+ n+j
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 5m+4n+4r–1

2
, λ2 = 6m+5n+4r–1

2
 and λ3 = 6m+6n+5r+2

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m odd and n, r even. 
 
Case-5: m, n and r are even. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd

m+ n+j
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 5m+4n+4r–2

2
, λ2 = 6m+5n+4r–1

2
 and λ3 = 6m+6n+5r+2

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m, n and r are even. 
 
Case-6: m, n even and r odd. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i

2
,1 ≤ i ≤ m and i is even,   

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd

m+ n+j
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k+1
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 5m+4n+4r–2

2
, λ2 = 6m+5n+4r–1

2
 and λ3 = 6m+6n+5r+3

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m, n even and r odd. 
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Case-7: m even and n, r odd. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i

2
,1 ≤ i ≤ m and i is even,    

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd       

m+ n+j+1
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k+1
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                   
λ1 = 5m+4n+4r–2

2
, λ2 = 6m+5n+4r+1

2
 and λ3 = 6m+6n+5r+3

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m even and n, r odd. 
 
Case-8: m even, n odd and r even. 

f(ui) = �
i+1
2

, 1 ≤ i ≤ m and i is odd       
m+i

2
,1 ≤ i ≤ m and i is even,

�      

 

f(vj) = �
m+ j+1

2
, 1 ≤ j ≤ n and j is odd      

m+ n+j+1
2

,1 ≤ j ≤ n and j is even,
�  

 

f(wk) = �
m+n+ k+1

2
, 1 ≤ k ≤ r and k is odd      

m+n+ r+k
2

,1 ≤ k ≤ r and k is even,
�  

 
It is easy to verify that for each edge uv∈E, the value of f(u)+f(uv)+f(v) yields any of the trimagic constants                 
λ1 = 5m+4n+4r–2

2
, λ2 = 6m+5n+4r+1

2
 and λ3 = 6m+6n+5r+3

2
. Therefore, the graph Pm∪Pn∪Pr admits an edge trimagic total 

labeling for m even and n, r odd. 
 
The above cases prove that the graph Pm∪Pn∪Pr admits an edge trimagic total labeling for all m, n and r. 
 
Corollary 2.8: The graph Pm∪Pn∪Pr admits a super edge trimagic total labeling. 
 
Proof: We proved that the graph Pm∪Pn∪Pr admits an edge trimagic total labeling. The labeling given in the proof of 
Theorem 2.7, the vertices get labels 1, 2, …, m+n+r. Since the graph Pm∪Pn∪Pr has m+n+r vertices and all the vertices 
are labeled with smallest positive integers, the graph Pm∪Pn∪Pr admits a super edge trimagic total labeling. 
 
Example 2.9: The super edge trimagic total labeling of P8∪P7∪P9 is given in figure 3. 
 

 
Figure-3: P8∪P7∪P9 with λ1 = 51, λ2 = 60 and λ3 = 69. 

 
3. CONCLUSION 
 
Here we presented some results concerning edge trimagic total labeling and super edge trimagic total labeling for 
disconnected graphs (Cm⨀K1)∪Pn, (Cm⨀K1)∪Cn and Pm∪Pn∪Pr. However, there are many graphs which were not been 
studied. We believe that these results can be extended to vertex trimagic total labeling of graphs. 
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