
International Journal of Mathematical Archive-6(7), 2015, 128-137 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 6(7), July – 2015                                                                                                                128 

 
pg**- CLOSED SETS IN TOPOLOGICAL SPACES 

 
PUNITHA THARANI 

Associate Professor, St. Mary’s College, Tuticorin. 
 

PRISCILLA PACIFICA* 
Assistant Professor, St. Mary’s College, Tuticorin. 

 
(Received On: 23-06-15; Revised & Accepted On: 28-07-15) 

 
 

ABSTRACT 
In this paper we introduce a new class of sets called pg**- closed sets in topological spaces which is properly placed 
in between the class of closed sets and gsp-closed sets. As an application, we introduce new spaces namely,             
p𝑇𝑇1 2⁄

∗∗ - space, 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐
∗ -space, 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space, 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space and p𝑇𝑇𝑐𝑐∗ -space. Further, pg** -continuous, pg**-irresolute 

mappings are also introduced and investigated. 
 
Key words: pg**-closed set, pg**-continuous map, pg**-irresolute map, p𝑇𝑇1 2⁄

∗∗ - space, 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐
∗ -space, 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space,   
𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space and p𝑇𝑇𝑐𝑐∗-spaces. 
 
 
1. INTRODUCTION  
 
Levine [11]introduced the class of g-closed sets in 1970. Arya and Tour [3]defined gs-closed sets in 1990. Dontchev 
[9] , Gnanambal [10] Palaniappan and Rao [17] introduced gsp-closed sets, gpr-closed sets and rg-closed sets 
respectively. Veerakumar [18]introduced g*-closed sets in 1991. Dontchev [8] introduced gsp-closed sets in 1995.P M 
Helen [20] introduced g**-closed sets. Levine [11]  Devi [6,8] introduced 𝑇𝑇1 2⁄ -spaces, 𝑇𝑇𝑏𝑏  spaces and 𝑇𝑇𝛼𝛼 𝑏𝑏  spaces 
respectively. The purpose of this paper is to introduce the concepts of pg**-closed set, pg**-continuous map, pg**-
irresolute maps. p𝑇𝑇1 2⁄

∗∗ - space, 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐
∗-space, 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space, 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space and p𝑇𝑇𝑐𝑐∗-space are introduced and investigated. 

 
2. PRILIMINARIES 
 
Throughout this paper (X,𝜏𝜏),(Y,𝜎𝜎) and (Z,𝜂𝜂) represent non-empty topological spaces of which no separation axioms 
are assumed unless otherwise stated. For a subset A of a space (X,𝜏𝜏), cl(A) and int(A) denote the closure and the 
interior of A respectively. The class of all closed subsets of a space (X,𝜏𝜏) is denoted by C(X,𝜏𝜏). The smallest semi-
closed (resp.pre-closed and 𝛼𝛼-closed) set containing a subset A of (X, 𝜏𝜏) is called the semi-closure (resp.pre-closure and 
𝛼𝛼-closure) of A and is denoted by scl(A) (resp.pcl(A) and 𝛼𝛼cl(A)). 
 
Definition 2.1: A subset A of a topological space (X, 𝜏𝜏) is called  

(1) a pre-open set [14] if A ⊆ int(cl(A) and a pre-closed set if cl(int(A))⊆ A. 
(2) a semi-open set [12] if A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆ A. 
(3) a semi-preopen set [1] if A ⊆ cl(int(cl(A)) and a semi-preclosed set [1] if int(cl(int(A))) ⊆ A. 
(4) an 𝛼𝛼-open set [16] if A ⊆  int(cl(int(A))) and an 𝛼𝛼-closed set [16] if  cl(int(cl(A)) ⊆ A. 
(5) a regular-open set [14] if int(cl(A) = A and regular-closed set [14] if A = int(cl(A). 

 
Definition 2.2: A subset A of topological space (X,𝜏𝜏) is called 

(1) a generalized closed set (briefly g-closed) [1] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,𝜏𝜏). 
(2) generalized semi-closed set (briefly gs-closed) [3] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X,𝜏𝜏). 
(3) an 𝛼𝛼-generalized closed set (briefly 𝛼𝛼g-closed) [19] if  𝛼𝛼cl (A) ⊆ U whenever A ⊆ U and U is open in (X,𝜏𝜏). 
(4) a generalized semi pre-closed set (briefly gsp-closed) [9] if sp cl(A) ⊆ U whenever A ⊆ U and U is open in 

(X,𝜏𝜏). 
(5) a regular generalized closed set (briefly rg-closed) [17]if cl(A) ⊆ U whenever A ⊆ U and U is regular open in 

(X,𝜏𝜏). 
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(6) a generalized pre-closed set (briefly gp-closed) [13] if p cl (A) ⊆ U whenever A ⊆ U and U is open in (X,𝜏𝜏). 
(7) a generalized pre regular-closed set (briefly gpr-closed)[10] if p cl(A) ⊆ U whenever A ⊆ U and U is regular 

open in (X,𝜏𝜏). 
(8) a g*-closed set [18] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X,𝜏𝜏). 
(9) a wg-closed set [16] if cl(int(A) whenever A ⊆ U and U is open in (X,𝜏𝜏). 
(10) a g**-closed set [20] if cl(A) ⊆ U whenever A ⊆ U and U is g*-open in (X,𝜏𝜏). 

 
Definition 2.3: A function f: (X,𝜏𝜏) →(Y, 𝜎𝜎) is called  

(1) g-continuous [4] if 𝑓𝑓−1(V) is a g-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(2) 𝛼𝛼g-continuous [10] if 𝑓𝑓−1(V) is an 𝛼𝛼g-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(3) gs-continuous [7] if 𝑓𝑓−1(V) is a gs-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(4) gsp-continuous [9] if 𝑓𝑓−1(V) is a gsp-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(5) rg-continuous [17] if 𝑓𝑓−1(V) is a rg-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(6) gp-continuous [2] if 𝑓𝑓−1(V) is a gp-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(7) gpr-continuous [10] if 𝑓𝑓−1(V) is a gpr-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(8) g*-continuous [18] if 𝑓𝑓−1(V) is a g*-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(9) g*-irresolute[18] if 𝑓𝑓−1(V) is a g*-closed set of (X,𝜏𝜏) for every g*-closed set V of (Y, 𝜎𝜎). 
(10) wg-continuous [16] if 𝑓𝑓−1(V) is a wg-closed set of (X,𝜏𝜏) for every closed set V of (Y, 𝜎𝜎). 
(11) g**-continuous[20] if 𝑓𝑓−1(V) is a g**-closed set of (X,𝜏𝜏) for every closed set V of (Y,𝜎𝜎). 
(12) g**-irresolute[20] if 𝑓𝑓−1(V) is a g**-closed set of (X,𝜏𝜏) for every g**-closed set V of (Y, 𝜎𝜎). 

 
Definition 2.4: A topological space (X,𝜏𝜏) is said to be 

(1) a 𝑇𝑇1 2⁄ -space [11] if every g-closed set in it is closed. 
(2) a Tb space [6] if every gs-closed set in it is closed. 
(3) a 𝑇𝑇𝛼𝛼 𝑏𝑏  -space [8] if every 𝛼𝛼g-closed set in it is closed. 
(4) a 𝑇𝑇1 2⁄

∗ -space [18] if every g*-closed set in it is closed. 
(5) a 𝑇𝑇1 2⁄

∗∗ -space [20] if every g**-closed set is closed. 
(6) a 𝑇𝑇∗∗ 1 2⁄ -space [20] if every g**-closed set is g*- closed. 

 
3. Basic properties of pg**- closed sets 
 
We introduce the following definition 
 
Definition 3.1: A subset A of (X,𝜏𝜏) is said to be a pg**-closed set if pcl(A)⊆U whenever A ⊆U and U is g*-open in X. 
 
The class of pg**- closed subset of (X,𝜏𝜏) is denoted by PG**C(X,𝜏𝜏). 
 
Proposition 3.2: Every closed set is pg**- closed. 
 
Proof follows from the definition. 
 
The following example supports that a pg**- closed set need not be closed in general. 
 
Proposition 3.3: Every pre closed set is pg**- closed. 
 
Proof follows from the definition. 
 
Proposition 3.4: Every g**-closed set is pg**- closed. 
 
Proof follows from the definition. 
 
Proposition 3.5: Every g*-closed set is pg**- closed. 
 
Proof follows from the definition. 
 
Proposition 3.6: Every g-closed set is pg**- closed. 
 
Proof follows from the definition. 
 
The converse of the above propositions need not be true in general. 
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Example 3.7: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}. Let A = {𝑎𝑎} then A is a pg**- closed set but not a closed set and a 
g**-closed set of (X,𝜏𝜏). So the class of pg**- closed sets properly contains the class of closed sets and the class of         
g**-closed sets. Also A = {𝑎𝑎} is not a g-closed set.              
 
Example 3.8: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}}. Let A = {𝑎𝑎, 𝑏𝑏} then A is a pg**- closed set but not a pre closed set and a 
g*-closed set of (X,𝜏𝜏). So the class of pg**- closed sets properly contains the class of pre closed sets and the class of      
g*-closed sets. 
 
Proposition 3.9: Every pg**- closed set is (1) rg-closed (2) gpr-closed (3) gsp-closed. 
 
Proof follows from the definition. 
 
The converse of the above propositions need not be true in general as seen in the following examples. 
 
Example 3.10: In example (3.8), let A = {𝑎𝑎} is gpr-closed and rg-closed but it is not pg**- closed. Let X = {a, b, c}, 
𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}}. Let A = {𝑎𝑎} then A is a gsp-closed set but not a pg**- closed set of (X,𝜏𝜏). Therefore the 
class of pg**- closed sets is properly contained in the class of gpr-closed, rg-closed, gsp-closed sets. 
 
Remark 3.11: pg**- closedness is independent from 𝛼𝛼-closedness, semi-closedness, sg-closedness, g𝛼𝛼-closedness, 
g𝛼𝛼*-closedness and semi-preclosedness. 
 
Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}}. Let A = {𝑎𝑎, 𝑏𝑏} then A is a pg**- closed set. A is neither 𝛼𝛼-closed nor semi-
closed, in fact, it is not even a semi-preclosed set. Also it is not sg-closed, g𝛼𝛼-closed and g𝛼𝛼*-closed set. 
 
Proposition 3.12: If A and B are pg**- closed sets, then A∪B is also a pg**- closed set.  
 
Proof follows from the fact that pcl(A∪B) = pcl(A) ∪  pcl(B). 
 
Proposition 3.13: If A is both g*-open and pg**- closed, then A is pre closed. 
 
Proof follows from the definition of pg**- closed sets. 
 
Proposition 3.14: A is a pg**- closed of (X,𝜏𝜏) if pcl(A)∖A does not contain any non-empty g*-closed set.   
 
Proof: Let F be a g*-closed set of (X,𝜏𝜏) such that F ⊆ pcl(A)∖A. Then A ⊆ 𝑋𝑋 ∖ 𝐹𝐹. Since A is pg**- closed and 𝑋𝑋 ∖ 𝐹𝐹 is 
g*-open, pcl(A)⊆ 𝑋𝑋 ∖ 𝐹𝐹. This implies F⊆ 𝑋𝑋 ∖ pcl(A). So, F⊆ (𝑋𝑋 ∖ pcl(A))  ∩ (pcl(A)∖A) ⊆ (𝑋𝑋 ∖ pcl(A)) ∩ (pcl(A) = 
𝜙𝜙. Therefore F = 𝜙𝜙. 
 
Proposition 3.15: If A is a pg**- closed set of (X,𝜏𝜏) such that 𝐴𝐴 ⊆ 𝐵𝐵 ⊆ 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴), then B is also a  pg**- closed set of 
(X,𝜏𝜏). 
 
Proof: Let U be a g*-open set of (X,𝜏𝜏) such that 𝐵𝐵 ⊆U. Then 𝐴𝐴 ⊆U, since A is pg**- closed, then 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴) ⊆U. Now 
𝑝𝑝𝑝𝑝𝑝𝑝(𝐵𝐵) ⊆ 𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)� = 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)) ⊆U. Therefore B is also a pg**- closed set of (X,𝜏𝜏). 
 
4. pg**- continuous and pg**- irresolute maps. 
 
We introduce the following definitions. 
 
Definition 4.1: A function f ∶ (X, τ) → (Y, σ) is calledpg**- continuous if f−1(V) is a pg**- closed set of (X, τ) for 
every closed set of (Y, σ). 
 
Theorem 4.2: Every continuous map is pg**- continuous.                                                                                          
 
Proof: Let f ∶ (X, τ) → (Y, σ) be continuous and let F be any closed set of Y, then f−1(V) is closed in X. Since every 
closed set is pg**- closed, f−1(V) is pg**- closed. Therefore f is pg**- continuous. 
 
The following example shows that the converse of the above theorem need not be true in general.    
 
Example 4.3: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏}�, f ∶ (X, τ) → (Y, σ) is defined as the identity map. 
The inverse image of all the closed sets of (Y, σ) are pg**- closed in (X, τ). Therefore f is pg**- continuous but not 
continuous.                                                                       
Thus the class of all pg**- continuous maps properly contains the class of continuous maps.                                                                                                                                     
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Theorem 4.4: Every pg**- continuous map is rg- continuous, gpr- continuous and gsp-continuous maps.                                                                                                                                  
 
Proof: Let f ∶ (X, τ) → (Y, σ)  be a pg**- continuous map. Let V be a closed set of (Y, σ). Since f is pg**- continuous, 
then f−1(V) is pg**- closed set in (X, τ). By proposition (3.9) f−1(V) is rg-closed, gpr-closed and gsp-closed set of 
(X, τ).                                                                                                          
 
The converse of the above theorem need not be true as seen in the following example.                                                                                                                
 
Example 4.5: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏, 𝑐𝑐}�.  Let f ∶ (X, τ) → (Y, σ)   be the identity map. 
Then f−1({a}) = {a} is not pg**- closed in(X, τ). But {a} is rg-closed and gpr-closed. Therefore f is rg- continuous and 
gpr- continuous but f is not pg**- continuous.  
 
Example 4.6: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏, 𝑐𝑐}�.                          
 
Let f ∶ (X, τ) → (Y, σ) be the identity map. Then f−1({a}) = {a} is not pg**- closed in(X, τ). But {a} is gsp-closed. 
Therefore f is gsp - continuous but f is not pg**- continuous.                                                                                                         
 
Thus the class of all pg**-continuous maps is properly contained in the classes of rg-continuous, gpr- continuous and 
gsp-continuous maps.                                                                                                              
 
The following example shows that the compositions of two pg**- continuous maps need not be a pg**- continuous 
map.   
 
Example 4.7: Let 𝑋𝑋 = 𝑌𝑌 = 𝑍𝑍 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}  and let f ∶ (X, τ) → (Y, σ) , g ∶ (Y, σ) → (Z, 𝜂𝜂)  , be the identity maps.              
𝜏𝜏 = �𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑎𝑎}�  , 𝜂𝜂 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏}� . (𝑓𝑓 ∘ 𝑔𝑔)−1({𝑎𝑎, 𝑐𝑐}) = 𝑓𝑓−1(𝑔𝑔−1({𝑎𝑎, 𝑐𝑐})) = 𝑓𝑓−1({𝑎𝑎, 𝑐𝑐}) = {𝑎𝑎, 𝑐𝑐} 
is not pg**- closed in(X, τ). But 𝑓𝑓 and𝑔𝑔 are pg**- continuous maps.      
 
Theorem 4.8: Every g*- continuous map is pg**- continuous map.                                                                                                                                                    
 
Proof: Let f ∶ (X, τ) → (Y, σ) be g*- continuous and let V be a closed set of Y. Then f−1(V) is g*- closed and hence by 
proposition (3.5), it is pg**- closed. Hence 𝑓𝑓 is pg**- continuous map.                                                                                                                                                                   
 
The following example shows that the converse of the above theorem is not true in general.  
 
Example 4.9: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏}�. Let f ∶ (X, τ) → (Y, σ) be the identity map. Then 
A = {a, c} is closed in (Y, σ) and is pg**- closed in (X, τ) but not g*- closed in (X, τ). Therefore is𝑓𝑓 is pg**- continuous 
but not g*- continuous.      
 
Theorem 4.10: Every g - continuous map is pg**- continuous map.                                                                                                                                                    
 
Proof: Let f ∶ (X, τ) → (Y, σ) be g - continuous and let V be a closed set of Y. Then f−1(V) is g- closed and hence by 
proposition (3.6), it is pg**- closed. Hence 𝑓𝑓 is pg**- continuous map.                                                                                                                                                                   
 
The following example shows that the converse of the above theorem is not true in general.  
 
Example 4.11: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑎𝑎, 𝑏𝑏}�. Let  f ∶ (X, τ) → (Y, σ)  be the identity 
map. Then A = {c} is closed in (Y, σ)  and is pg**- closed in (X, τ)  but not g - closed in (X, τ) . Therefore is𝑓𝑓  is          
pg**- continuous but not g - continuous. 
 
Theorem 4.12: Every g**- continuous map is pg**- continuous map.                                                                                                                                                    
 
Proof: Let f ∶ (X, τ) → (Y, σ) be g**- continuous and let V be a closed set of Y. Then f−1(V) is g**- closed and hence 
by proposition (3.4), it is pg**- closed. Hence 𝑓𝑓 is pg**- continuous map.                                                                                                                                                                   
 
The following example shows that the converse of the above theorem is not true in general.  
 
Example 4.13: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑏𝑏, 𝑐𝑐}�. Let f ∶ (X, τ) → (Y, σ) be the identity map. 
Then A = {a}  is closed in (Y, σ)  and is pg**- closed in (X, τ)  but not g**- closed in (X, τ) . Therefore is 𝑓𝑓  is               
pg**- continuous but not g**- continuous.    
 
Definition 4.14: A function f ∶ (X, τ) → (Y, σ) is calledpg**- irresolute if f−1(V) is a pg**- closed set of (X, τ) for 
every pg**- closed set V of (Y, σ). 
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Definition 4.15: Let (X, τ) and (Y, σ) be two topological spaces and f ∶ (X, τ) → (Y, σ) is said to be pg**- resolute if 
f(U) is pg**- open in Y whenever U is pg**- open in X. 
 
Definition 4.16: A function f ∶ (X, τ) → (Y, σ) is calledpg**-homeomorphism if  

(i) f is one – one and onto. 
(ii) f is  pg**- irresolute and pg**- resolute. 

 
Theorem 4.17: Every pg**- irresolute function is pg**- continuous. 
 
Proof follows from the definition. 
 
Theorem 4.18: Every g - irresolute function is pg**- continuous. 
 
Proof follows from the definition. 
 
Theorem 4.19: Every g*- irresolute function is pg**- continuous. 
 
Proof follows from the definition. 
 
Theorem 4.20: Every g**- irresolute function is pg**- continuous. 
 
Proof follows from the definition. 
 
Converse of the above theorems need not be true in general as seen in the following example. 
 
Example 4.21: Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}�,𝜎𝜎 = �𝜙𝜙.𝑋𝑋, {𝑎𝑎}�. Let f ∶ (X, τ) → (Y, σ) by  f(a) = b, f(b) = a, 
f(c) = c, {b, c} is the only closed set of Y. f−1({b, c}) = {𝑎𝑎, 𝑐𝑐}  is pg**- closed in (X, τ) . Therefore f is                      
pg**- continuous. {b, c} is g – closed, g*- closed and g**-closed set of Y but f−1({b, c}) = {𝑎𝑎, 𝑐𝑐} is not g – closed,     
g*-closed and g**-closed set in X. 
 
Therefore f is not g – irresolute, g*- irresolute and g**- irresolute. Therefore f is pg**- continuous but not                      
g – irresolute, g*- irresolute and g**- irresolute. Also {𝑏𝑏, 𝑐𝑐} is a pg**-closed set in Y but f−1({b, c}) = {𝑎𝑎, 𝑐𝑐} is not 
pg**- closed in (X, τ). Therefore f is not a pg**- irresolute. Hence f is pg**- continuous but not pg**- irresolute. 
 
Theorem 4.22: Let f ∶ (X, τ) → (Y, σ) and  g ∶ (Y, σ) → (Z, 𝜂𝜂) , be any two functions then, 

(i) 𝑔𝑔 ∘ 𝑓𝑓 is pg**- continuous if g is continuous and 𝑓𝑓 is pg**- continuous. 
(ii) 𝑔𝑔 ∘ 𝑓𝑓 is pg**- irresolute if both 𝑓𝑓 and g are pg**- irresolute. 
(iii) 𝑔𝑔 ∘ 𝑓𝑓 is pg**- continuous if g is pg**- continuous and 𝑓𝑓 is pg**- irresolute. 

 
5. Applications of pg**- closed sets 
 
As applications of pg**- closed sets, new spaces, namely, p𝑇𝑇1 2⁄

∗∗ - space, 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐
∗-space, 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space, 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space and      

p𝑇𝑇𝑐𝑐∗-space are introduced. 
 
We introduce the following definition. 
 
Definition 5.1: A space (X,𝜏𝜏) is called a p𝑇𝑇1 2⁄

∗∗ space if every pg**- closed set is closed. 
 
Theorem 5.2: Every p𝑇𝑇1 2⁄

∗∗ space is 𝑇𝑇1 2⁄  space. 
 
Proof follows from the definition. 
 
Theorem 5.3: Every p𝑇𝑇1 2⁄

∗∗ space is 𝑇𝑇1 2⁄
∗  space. 

 
Proof follows from the definition. 
 
The converse need not be true in general as seen in the following example. 
 
Example 5.4: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}}, G*C(X,𝜏𝜏)  = {𝜑𝜑,𝑋𝑋, {𝑏𝑏, 𝑐𝑐}} = C(X,𝜏𝜏). Therefore (X,𝜏𝜏) is a 𝑇𝑇1 2⁄

∗  space 
but not p𝑇𝑇1 2⁄

∗∗ space since  {𝑎𝑎, 𝑏𝑏} is a pg**- closed set but not a closed set of (X,𝜏𝜏). 
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Theorem 5.5: Every 𝑇𝑇𝑏𝑏 space is p𝑇𝑇1 2⁄

∗∗  space. 
 
Proof follows from the definition. 
 
The converse need not be true in general as seen in the following example. 
 
Example 5.6: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}}. (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗  space but not a 𝑇𝑇𝑏𝑏 space since {𝑎𝑎} is           
gs-closed but not closed.  
 
Remark 5.7: 𝑇𝑇𝑑𝑑 -ness is independent of p𝑇𝑇1 2⁄

∗∗ -ness as it can be seen from the following example. 
 
Example 5.8: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}}. (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗  space but not a 𝑇𝑇𝑑𝑑 space since {𝑎𝑎} is          
gs-closed but not g-closed.  
 
Example 5.9: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏, 𝑐𝑐}}. (X,𝜏𝜏) is a 𝑇𝑇𝑑𝑑space but not a p𝑇𝑇1 2⁄

∗∗  space since {𝑐𝑐} is pg**- closed 
but not closed. 
 
Theorem 5.10: The following conditions are equivalent in topological space (X,𝜏𝜏). 

(i) (X,𝜏𝜏) is a p𝑇𝑇1 2⁄
∗∗  space. 

(ii) Every singleton of X is either g*-closed or open. 
 
Proof: 
(i) ⟹ (ii):  Let (X,𝜏𝜏) be a p𝑇𝑇1 2⁄

∗∗  space. Let 𝑥𝑥 ∈ 𝑋𝑋 and suppose {𝑥𝑥} is not g*-closed. Then 𝑋𝑋 ∖ {𝑥𝑥} is not g*-open. This 
implies that X is the only g*-open set containing𝑋𝑋 ∖ {𝑥𝑥}. Therefore 𝑋𝑋 ∖ {𝑥𝑥} is closed since (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗  space. 
Therefore {𝑥𝑥} is open in (X,𝜏𝜏). 
 
(ii) ⟹ (i):  Let A be a  pg**- closed set of (X,𝜏𝜏)𝐴𝐴 ⊆ 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴) ⊆ 𝑐𝑐𝑐𝑐(𝐴𝐴) and let 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴) this implies 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐(𝐴𝐴). By (ii) 
{𝑥𝑥} isg*-closed or open.  
 
Case-(i):  Let {𝑥𝑥} be g*-closed. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)) ∖ 𝐴𝐴 contains a non-empty g*-closed set {𝑥𝑥}. But it is not 
possible by proposition (3.14). Therefore  𝑥𝑥 ∈ 𝐴𝐴. 
 
Case-(ii): Let {𝑥𝑥} be open. Now 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐(𝐴𝐴), then {𝑥𝑥}⋂𝐴𝐴 ≠ 𝜙𝜙. Therefore 𝑥𝑥 ∈ 𝐴𝐴 and so 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝐴𝐴 and hence A = 𝑐𝑐𝑐𝑐(𝐴𝐴) 
or A is closed. Therefore (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗  space. 
 
We introduce the following definition. 
 
Definition 5.11: A space (X,𝜏𝜏) is called an 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space if every 𝛼𝛼g-closed set of (X,𝜏𝜏) is pg**-closed. 
 
Theorem 5.12: Every 𝑇𝑇𝑏𝑏𝛼𝛼 -space is an 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space but not conversely. 
 
Example 5.13: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}}. (X,𝜏𝜏) is an 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space but not 𝑇𝑇𝑏𝑏𝛼𝛼 -space since {𝑎𝑎, 𝑐𝑐} is 𝛼𝛼g-closed 
but not closed. 
 
Definition 5.14: A subset A of a space (X,𝜏𝜏) is called a pg**-open set if its complement is a pg**- closed set of (X,𝜏𝜏). 
 
Theorem 5.15: If (X,𝜏𝜏) is an 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space for each 𝑥𝑥 ∈ 𝑋𝑋, {𝑥𝑥} is either 𝛼𝛼g-closed or pg**-open. 
 
Proof: Let 𝑥𝑥 ∈ 𝑋𝑋 suppose that {𝑥𝑥} is not an 𝛼𝛼g-closed set of (X,𝜏𝜏). Then {𝑥𝑥} is not a closed set since every closed set 
is an 𝛼𝛼g-closed set. Therefore 𝑋𝑋 ∖ {𝑥𝑥} is not open. Therefore 𝑋𝑋 ∖ {𝑥𝑥} is an 𝛼𝛼g-closed set since X is the only open set 
which contains 𝑋𝑋 ∖ {𝑥𝑥}. Since (X,𝜏𝜏) is an 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space, 𝑋𝑋 ∖ {𝑥𝑥} is a pg**- closed set or {𝑥𝑥} is pg**-open. 
 
Remark 5.16: The converse of the above theorem is not true as it can be seen from the following example. 
 
Example 5.17: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}. (X,𝜏𝜏) is not a 𝑇𝑇𝛼𝛼𝛼𝛼 𝑐𝑐

∗-space but {𝑏𝑏}𝛼𝛼g-closed and {𝑎𝑎} and {𝑐𝑐} are 
pg**-open. 
 
We introduce the following definition. 
 
Definition 5.18: A space (X,𝜏𝜏) is called a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space if every pg**- closed set of (X,𝜏𝜏) is a g*- closed set. 
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Theorem 5.19: Every p𝑇𝑇1 2⁄

∗∗  space is 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space. 

 
Proof: Let (X,𝜏𝜏) be a p𝑇𝑇1 2⁄

∗∗  space. Let A be a pg**- closed set of (X,𝜏𝜏). Since (X,𝜏𝜏) is a p𝑇𝑇1 2⁄
∗∗ -space, A is closed. But 

since every closed set is g*- closed, A is g*- closed. Therefore (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space.          

 
Theorem 5.20: Every 𝑇𝑇𝑏𝑏 -space is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space. 
 
Proof: Let (X,𝜏𝜏) be a 𝑇𝑇𝑏𝑏 - space. Then by theorem (4.5), it is a p𝑇𝑇1 2⁄

∗∗  space. Therefore by theorem (4.19), it is          
𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.21: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑏𝑏}, {𝑎𝑎, 𝑏𝑏}}, (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space but not a    𝑇𝑇𝑏𝑏 - space since A = {𝑎𝑎} 
is gs-closed but not closed. 
 
Theorem 5.22: Every 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space is a 𝑇𝑇1 2⁄
∗ -space. 

 
Proof: Let (X,𝜏𝜏) be a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space. Let A be a g- closed set of (X,𝜏𝜏). Then by proposition (3.6), A is pg**- closed. 
Since (X,𝜏𝜏) is an 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space, A is g*- closed. Therefore it is a 𝑇𝑇1 2⁄
∗ -space . 

 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.23: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a 𝑇𝑇1 2⁄

∗ -space but not a 𝑇𝑇1 2⁄𝑝𝑝
∗∗ - space since A = {𝑐𝑐} is 

pg**- closed but not g*- closed. 
 
Theorem 5.24: Every 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space is a 𝑇𝑇1 2⁄
∗∗ -space. 

 
Proof: Let (X,𝜏𝜏) be a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space. Let A be a g**- closed set of (X,𝜏𝜏). Then by proposition (3.4), A is pg**- closed. 
Since (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space, A is g*- closed. Therefore it is a 𝑇𝑇1 2⁄
∗∗ -space . 

 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.25: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a 𝑇𝑇1 2⁄

∗∗ -space but not a 𝑇𝑇1 2⁄𝑝𝑝
∗∗ - space since A = {𝑐𝑐} is 

pg**- closed but not g*- closed. 
 
Theorem 5.26: If (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space, then for each 𝑥𝑥 ∈ 𝑋𝑋, {𝑥𝑥} is either closed or g*-open. 
 
Proof: Suppose (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space. Let 𝑥𝑥 ∈ 𝑋𝑋 and let {𝑥𝑥} not be closed. Then 𝑋𝑋 ∖ {𝑥𝑥} is not open set. Therefore 
𝑋𝑋 ∖ {𝑥𝑥} is a g-closed set since X is the only open set which contains 𝑋𝑋 ∖ {𝑥𝑥}. By theorem (3.6) 𝑋𝑋 ∖ {𝑥𝑥} is a pg**- closed 
set. Since (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space, 𝑋𝑋 ∖ {𝑥𝑥} is g*-closed set. Therefore {𝑥𝑥} is g*-open. 
 
Definition 5.27: A space (X,𝜏𝜏) is called an 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space if every pg**-closed set of (X,𝜏𝜏) is g-closed. 
 
Theorem 5.28: Every p𝑇𝑇1 2⁄

∗∗ -space is a 𝑇𝑇𝑝𝑝∗ 1 2⁄
∗ -space. 

 
Proof: Let (X,𝜏𝜏) be a p𝑇𝑇1 2⁄

∗∗ - space. Let A be a pg**- closed set of (X,𝜏𝜏).Then A is closed since (X,𝜏𝜏) is a p𝑇𝑇1 2⁄
∗∗ -space. 

But every closed set is g-closed set, Therefore A is g- closed. Therefore (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄
∗ -space. 

 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.29: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}}, (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space but not a p𝑇𝑇1 2⁄
∗∗ -space since A = {𝑐𝑐} is          

pg**- closed but not closed. 
 
Theorem 5.30: The space (X,𝜏𝜏) is ap𝑇𝑇1 2⁄

∗∗ -space if and only if it is a 𝑇𝑇𝑝𝑝∗ 1 2⁄
∗ -space and a 𝑇𝑇1 2⁄  space. 

 
Proof: Necessity: Let (X,𝜏𝜏 ) be a p𝑇𝑇1 2⁄

∗∗ -space. Let A be a g-closed set of (X,𝜏𝜏 ). Then by theorem (3.6) A is               
pg**- closed. Also since (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗ -space, A is a closed set. Therefore  (X,𝜏𝜏) is a 𝑇𝑇1 2⁄  space. By theorem (4.24) 
(X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space.  
Sufficiency:  Let (X,𝜏𝜏) be a 𝑇𝑇1 2⁄  space and a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space. Let A be a pg**- closed set. Then A is g-closed since (X,𝜏𝜏) 
is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space. Also since (X,𝜏𝜏) is a 𝑇𝑇1 2⁄ -space, A is a closed set. Therefore (X,𝜏𝜏) is a p𝑇𝑇1 2⁄
∗∗ -space. 
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Theorem 5.31: Every 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space is a 𝑇𝑇𝑝𝑝∗ 1 2⁄
∗ -space. 

 
Let (X,𝜏𝜏) be a 𝑇𝑇1 2⁄𝑝𝑝

∗∗ -space. Let A be a pg**- closed set. Then A is g*-closed since (X,𝜏𝜏) is a 𝑇𝑇1 2⁄𝑝𝑝
∗∗ -space. But every 

g*-closed set is g-closed, and hence A is a g-closed set. Therefore (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄
∗ -space. 

 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.32: Let X = {a, b, c,d}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}}, (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ -space but not a 𝑇𝑇1 2⁄𝑝𝑝
∗∗ - space since A = {𝑐𝑐} is     

pg**- closed but not g*- closed. 
 
We introduce the following definition 
 
Definition 5.33: A space (X,𝜏𝜏) is called a p𝑇𝑇𝑐𝑐∗-space if every gs- closed set of (X,𝜏𝜏) is a pg**- closed set. 
 
Theorem 5.34: Every 𝑇𝑇𝑐𝑐 -space is a p𝑇𝑇𝑐𝑐∗-space. 
 
Proof: Let (X,𝜏𝜏) be a 𝑇𝑇𝑐𝑐 - space. Let A be a gs- closed set of (X,𝜏𝜏).Then A isg*-closed since (X,𝜏𝜏) is a 𝑇𝑇𝑐𝑐 -space. But by 
proposition (3.5) A is pg**- closed set. Therefore (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.35: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗space but not a 𝑇𝑇𝑐𝑐 - space since A = {𝑐𝑐} is             
gs - closed but not g*- closed. 
 
Theorem 5.36: Every 𝑇𝑇𝑏𝑏 -space is a p𝑇𝑇𝑐𝑐∗-space. 
 
Proof: Let (X,𝜏𝜏) be a 𝑇𝑇𝑏𝑏 - space. Let A be a gs- closed set of (X,𝜏𝜏).Then A isclosed since (X,𝜏𝜏) is a 𝑇𝑇𝑏𝑏 -space. But by 
proposition (3.2) A is pg**- closed set. Therefore (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.37: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space but not a 𝑇𝑇𝑏𝑏 - space since A = {𝑐𝑐} is          
gs - closed but not aclosed set. 
 
Theorem 5.38: If (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space and a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space, then it is a 𝑇𝑇𝛼𝛼 𝑑𝑑 -space. 
 
Proof: Let (X,𝜏𝜏) be a p𝑇𝑇𝑐𝑐∗-space and a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space. Let A be a 𝛼𝛼g- closed set of (X,𝜏𝜏).Then A is also gs-closed. Since 
(X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space, A is pg**- closed set. Also since (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space, A is a g-closed set. Therefore (X,𝜏𝜏) is a 
𝑇𝑇𝛼𝛼 𝑑𝑑 -space. 

 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.39: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a 𝑇𝑇𝛼𝛼 𝑑𝑑 -space but not a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ - space since A = {𝑐𝑐} is      
pg**- closed but not ag-closed set. 
 
Theorem 5.40: If (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space and a p𝑇𝑇1 2⁄

∗∗  -space, then it is a 𝑇𝑇𝛼𝛼 𝑏𝑏 -space. 
 
Proof: Let (X,𝜏𝜏) be a p𝑇𝑇𝑐𝑐∗-space and a p𝑇𝑇1 2⁄

∗∗  -space. Let A be a 𝛼𝛼g- closed set of (X,𝜏𝜏).Then A is also gs-closed. Since 
(X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space, A is pg**- closed set. But every pg**- closed set is closed since (X,𝜏𝜏) is a p𝑇𝑇1 2⁄

∗∗ -space, A is a 
closed set. Therefore (X,𝜏𝜏) is a 𝑇𝑇𝛼𝛼 𝑏𝑏 -space. 
 
Theorem 5.41: If (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space and a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space, then it is a 𝑇𝑇𝑑𝑑 -space. 
 
Proof: Let (X,𝜏𝜏) be a p𝑇𝑇𝑐𝑐∗-space and a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space. Let A be a 𝑔𝑔𝑔𝑔-closed set of (X,𝜏𝜏). Since (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗-space, A is 
pg**- closed set. Also since (X,𝜏𝜏) is a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space, A is a g-closed set. Therefore (X,𝜏𝜏) is a 𝑇𝑇𝑑𝑑 -space. 
 
The converse of the above theorem need not be true as seen in the following example. 
 
Example 5.42: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}, (X,𝜏𝜏) is a 𝑇𝑇𝑑𝑑 -space but not a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ - space since A = {𝑐𝑐} is         
pg**- closed but not ag-closed set. 
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Theorem 5.43: If (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗- space, then for each 𝑥𝑥 ∈ 𝑋𝑋, {𝑥𝑥} is either semi-closed or pg**-open in (X,𝜏𝜏). 
 
Proof: Suppose (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗- space. Let 𝑥𝑥 ∈ 𝑋𝑋 and let {𝑥𝑥} not be semi-closed. Then 𝑋𝑋 ∖ {𝑥𝑥} is sg-closed. Also 𝑋𝑋 ∖ {𝑥𝑥} 
is gs-closed. Since (X,𝜏𝜏) is a p𝑇𝑇𝑐𝑐∗- space, 𝑋𝑋 ∖ {𝑥𝑥} is pg**-closed set. Therefore {𝑥𝑥} is pg**-open. 
 
Theorem 5.44: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a pg**-continuous map. If (X,𝜏𝜏) is p𝑇𝑇1 2⁄

∗∗ -space then𝑓𝑓 is continuous. 
 
Theorem 5.45: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a pg**-continuous map. If (X,𝜏𝜏) is 𝑇𝑇1 2⁄𝑝𝑝

∗∗ - space then𝑓𝑓 is g*-continuous. 
 
Theorem 5.46: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a pg**-continuous map. If (X,𝜏𝜏) is 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  -space then𝑓𝑓 is g-continuous. 
 
Theorem 5.47: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a gs-continuous map. If (X,𝜏𝜏) is p𝑇𝑇𝑐𝑐∗- spacethen 𝑓𝑓 is pg**-continuous. 
 
Theorem 5.48:  Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be ag*- irresolute map and a pre-closed map. Then 𝑓𝑓(𝐴𝐴) is a pg**-closed set of  
(Y, σ) for every pg**-closed set A of (X, τ). 
 
Proof: Let A be a pg**-closed set of (X, τ) . Let U be a g*-open set of (Y, σ)  such that 𝑓𝑓(𝐴𝐴) ⊆ 𝑈𝑈 . Since 𝑓𝑓  is                
g*- irresolute, 𝑓𝑓−1(U)  is g*-open in (X, τ) . Now 𝑓𝑓−1(U)  is g*-open and A is pg**-closed set of (X, τ) , then         
𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴) ⊆ 𝑓𝑓−1(U) . Then 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)� = 𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)�) . Therefore  𝑝𝑝𝑝𝑝𝑝𝑝[𝑓𝑓(𝐴𝐴)] ⊆ 𝑝𝑝𝑝𝑝𝑝𝑝[𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴))]  = 𝑓𝑓�𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴)� ⊆ 𝑈𝑈 . 
Therefore 𝑓𝑓(𝐴𝐴) is a pg**-closed set of (Y, σ).   
 
Theorem 5.49: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ)  be onto, pg**- irresolute and closed. If (X, τ) is p𝑇𝑇1 2⁄

∗∗  then (Y, σ) is also a        
p𝑇𝑇1 2⁄

∗∗ -space. 
 
Definition 5.50: A function 𝑓𝑓 ∶ (X, τ) → (Y, σ) is called a pg**-closed map if 𝑓𝑓(𝐴𝐴) is a pg**-closed set of  (Y, σ) for 
every pg**-closed set A of (X, τ). 
 
Theorem 5.51: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be onto, pg**- irresolute and pre - g*- closed. If (X, τ) is 𝑇𝑇1 2⁄𝑝𝑝

∗∗ , then (Y, σ) is 
also a 𝑇𝑇1 2⁄𝑝𝑝

∗∗  - space. 
 
Theorem 5.52: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be onto, gs - irresolute and pg**-closed map. If (X, τ) is p𝑇𝑇𝑐𝑐∗, then (Y, σ) is also a 
p𝑇𝑇𝑐𝑐∗ - space. 
 
Theorem 5.53: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be onto, pg** - irresolute and g-closed map. If (X, τ) is 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗ , then (Y, σ) is also 
a 𝑇𝑇𝑝𝑝∗ 1 2⁄

∗  - space. 
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