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ABSTRACT
In this paper, we made an attempt to study the algebraic nature of anti £2-fuzzy subbigroup of a bigroup.
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INTRODUCTION

In 1965, the fuzzy subset was introduced by L.A.Zadeh [10], after that several researchers explored on the
generalization of the concept of fuzzy sets. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld [2] and
Gyu Ihn Chae, Young Sik Park and Chul Hwan Park [3] have introduced and defined a new algebraic structure called
Q-bifuzzy subsemigroup. After that A.Solairaju, R.Nagarajan [7, 8, 9] and K.Arjunan, Selvak Kumaraen [6] extend the
theory to many algebraic structure. N.Palaniappan & K.Arjunan [4] defined a new algebraic structure called anti fuzzy
ideal. In this paper, we introduce the some theorems in anti Q-fuzzy subbigroup of a bigroup.

1. PRELIMINARIES

1.1 Definition: A set (G, +, ) with two binary operations + and e is called a bigroup if there exist two proper subsets
G; and G, of G such that

(l) G= 61UG2

(i) (Gy, +)isagroup

(iii) (G, o) is a group.

1.2 Definition: Let X be a non—empty set. A fuzzy subset A of X is a function A: X— [0, 1].

1.3 Definition: Let G = (G,UG,, +, @) be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if
there exist two fuzzy subsets A; of G; and A, of G, such that

(l) A= A1UA2

(if) Ay is a fuzzy subgroup of (G, +)

(iii) A, is a fuzzy subgroup of (G,, e).

1.4 Definition: Let G = (G,UG,, +, o) be a bigroup and Q be a nonempty set. The fuzzy subset A: GxQ—[0, 1] of G is
said to be a Q-fuzzy subbigroup of G if there exist two fuzzy subsets A;: G;xQ—[0, 1] of G; and A, : G,xQ—[0, 1] of
G, such that

(l) A= A1UA2

(i) Ay is a Q-fuzzy subgroup of (G, +)

(iii) A, is a Q-fuzzy subgroup of (G,, e).
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1.5 Definition: Let G = (G,UG,, +, o) be a bigroup and Q be a nonempty set. The fuzzy subset A: GxQ—[0, 1] of G is
said to be a anti Q-fuzzy subbigroup of G if there exist two fuzzy subsets A;: GixQ—[0, 1] of G; and A, : GoxQ—
[0, 1] of G, such that

(l) A= A1UA2

(if) Aqis an anti Q-fuzzy subgroup of (G, +)

(iii) A is an anti Q-fuzzy subgroup of (G,, e).

2. PROPERTIES

2.1 Theorem: If A = MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then puu(—X, q) = um(x, q),
(X, @) = pwe, 6), un(X ", @) = pn(X, G), pn(X, 6) = pn(e’, g) forall x, einEand x, e'in F and g in Q.

Proof: Let x, e in E and x, ' in F and g in Q. Now pum(X, ) = um( (-(-X)), ) < pm(=X, q) < um(X, q). Therefore
pm(=X, @) = pm(x, q) for all x in E and g in Q. And pu(e, ) = pm( X=X, 9) < max {pm(x, @), pmX, )} = pw(x, 9).
Therefore uw(e, q) < uw(x, ) for all x, e in E and q in Q. Also pn(x, @) = pn( (X)) < pn(X7, ) < pn(X, Q).
Therefore un(x™, ) = pun(x, q) for all x in F and g in Q. And pn(e', q) = pun(xx?, ) < max{un(x, @), (X Q)=
un(X, q). Therefore py(e', q) < un(x, q) for all x, ' in F and g in Q.

2.2 Theorem: If A = MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then
(1) pum(x=y, 9) = uw(e, q) gives pu(x, q) = um(y, ) forall x, yand e in E and g in Q
(i) un(xy™ g) = pn(e', g) gives pn(x, g) = pn(y, g) forall x, yand e’ in Fand q in Q.

Proof:

(i) Letx,yandeinEandqin Q. Then uu(x, q) = pm(x=y+y, q) < max {um(x=y, 6), pum(y: 0)} = max {um(e, q),
MM(y! q)}: HM(y! q) = MM(Y‘X"'X, q) < max {HM(y_X! q)v HM(X! q)}: max {HM(e! q)v HM(X! q)}: uM(Xv q)
Therefore um(X, q) = um(y, q) for all xand y in E and q in Q.

(i) Letx, yande inFand qin Q. Then un(x, a) = un(xy™y, @) < max {un(xy™, @), u(y, 9} = max {un(e’, 9,
an(Ys D= pn(ys @) = pn(yx %, g) < max {un(yx, @), pn(x )= max {un(e’, ), pn( D¥= pax, a).
Therefore un(X, ) = un(y, ) for all x and y in F and q in Q.

2.3 Theorem: If A= MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then
(i) Hi={x/xeE and uw(x, q) = 0} is either empty or a subgroup of E.
(if) Hy={x/xeF and puy(x, q) = 0} is either empty or a subgroup of F.
(iii) K =Hj; U H; is either empty or a subbigroup of G.

Proof: If no element satisfies this condition, then H; and H, are empty. Also K = H;UH, is empty.
(i) Ifxandy in Hy, then py(x=y, q) < max {um(X, q), um(y, q) }< max {0, 0}= 0. Therefore uy(x-y, q) = 0. We
get x—y in H;. Hence Hj; is a subgroup of G;.
(i) If xandy in H,, then uy(xy ™, ) < max {un(X, G), pn(y, @)} = max {0, 0} = 0. Therefore un( xy ™, q) = 0. We
get xy ' in H,. Hence H, is a subgroup of G,.
(iii) From (i) and (ii) we get K = H; U H, is a subbigroup of G.

2.4 Theorem: If A = MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then
(i) Hi={x/xeEand uu(x, q) = (e, )} is a subgroup of E
(if) Hy={x/xeF and pun(x, q) = un(e', q)} is a subgroup of F
(iii) K = HyUH, is a subbigroup of G.

Proof:

(i) Clearly e in Hy so H; is a non empty. Let x and y be in Hy. Then py(X=y, q) < max {um(x, 0), um(y, 9)}
= max {um(e, q), um(e, a)}= pum(e, q). Therefore uw(x-y, q) < um(e, q) for all x and y in H; and g in Q. We get
um( x=y, q) = um(e, q) for all x and y in H; and g in Q. Therefore x-y in H;. Hence H; is a subgroup of E.

(ii) Clearly e' in H, so H, is a non empty. Let x and y be in H,. Then un(xy™, q) < max {un(X, ), un(y, Q)}
= max {un(e, q), un(e’, 9)} = un(e', ). Therefore un(xy ™, q) < pn(e', ) for all x and y in H, and q in Q. We
get pun( Xy ™, q) = pn(e', g) for all x and y in H, and q in Q. Therefore xy™ in H,. Hence H, is a subgroup of F.
(iii) From (i) and (ii) we get K = H; W H, is a subbigroup of G.

2.5 Theorem: Let A= MUN be an anti Q-fuzzy subbigroup of a bigroup G = EUF.

) I um(x=y, q) =0, then um(x, ) = wa(y, q) forall xand y in E and q in Q.
(i) If pn(xy™, ) = 0, then pn(x, q) = pn(y, q) for all xand y in F and q in Q.
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Proof:
() Let x and y belongs to E and g in Q. Then puw(x, q) = pm(x-y+y, @) < max {um(x-y, @), pa(y, 9)}
= max {0! uM(yv q)} = uM(y! q) = MM(_yv q) = HM(_X-I-X_y! q) < max { IJ-M(_X! q)’ MM(X_yv q)}
= max {um(=X, 9), 0} = um(=X, q) = um(x, q). Therefore um(x, q) = wm(y, q) for all x and y in E and g in Q.
(i) Let x and y belongs to F and q in Q. Then pn(x, @) = pn( xyy, @) < max {un(xy™, @), pn(y, )}
= max{0, un(Y 0)}= n(Y: a) = mn(y™, @) = pn(xy™, ) < max{ py(x*, g), p(xy™, @)} = max {un(x*, g), 03
= un(x?, ) = un(x, q). Therefore pn(x, g) = pn(y, ) for all xand y in F and q in Q.

2.6 Theorem: If A= MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then
(i) u0cty, 6) = max{um(x, A), (Y, g) } for each x and y in E and q in Q with p(x, 6) # pw(y, )
(i) un(xy, 9) = max{ un(X, q), un(y, q)} for each x and y in F and q in Q with py(X, @) = un(y, 9)-

Proof:
(i) Let x and y belongs to E and q in Q. Assume that um(X, q) < um(y, 9), then pm(y, Q) = pum(=X+x+y, q)
< max{pm(=X, @), 1m0y, Q)< max{ pm(x, @), pumlx+y, A= uu(x+y, q) < max{pm(x, 9), pm(y, a)}
= pm(y, 9). Therefore pw(x+y, @) = pm(y, ) = max{um(x, @), um(y, 9)} for xand y in E and g in Q.
(i) Let x and y belongs to F and q in Q. Assume that pn(X, @) < pn(Y, @), then un(y, 9) = pn(X*Xxy, Q)
< max{un(x", @), mu(xy, @)} max{un(x, @), un(xy, A} = pn(xy, ) < max{un(X, @), un(Y: 6= un(y, 0)-
Therefore un(xy, ) = un(y, q) = max{un(x, q), un(y, 9)} for xand y in F and g in Q.

2.7 Theorem: If A = MUN and B = OUP are two anti Q-fuzzy subbigroups of a bigroup G = EUF, then their union
AUB is an anti Q-fuzzy subbigroup of G.

Proof: Let A = MUN = {{(X, q), pa(X, q)) / xeG and qeQ} where M = {{(x, q), um(X, q) ) / xeE and qeQ} and
N = {{(X, q), un(X, Q)) / xeF and qeQ } and B = OUP = {{(X, ), us(X, q)) / xeG and qeQ} where O = {{ (X, q),
po(X, qQ))y/xeE and qeQ} and P = {{(x, 9), up(X, Q))/ xeF and qeQ}. Let C = AUB = RUS where C = {{(x, ),
uc(x, Q)) xeG and geQ}, R = MuO = {{(X, q), ur(X, q)) / xeE and qeQ} and S = NUP = {((x, q), us(X, q)) / xeF and
qeQ}. Let x and y belong to E and g in Q. Then pr(X-y, q) = max{um(X=y, q), po(X=y, )< max{max{um(x, q),
um(y, @)} max {uo(x, ), no(y, @)3}< max {max {um(x, 0), o(x, 9)}, max {um(y, 0), po(y, 9)}}= max {ur(X, 9),
ur(Y, @)} Therefore pr(x-y, q) < max{ur(x, q), ur(y, q)} for all xand y in E and ¢ in Q. Let x and y belong to F and g
in Q. Then Hs(xy_l,Q)z max{uN(Xy-l! q)v uP(Xy-l! Q)}S max{maX{HN(X! q)v uN(yv q)}! maX{HP(Xv q)’ HP(yv q)}}

< max{max{un(x, q), pe(x, )}, maxfun(y, @), wpe(y, 9)}= maxfus(x, @), ps(y, q)}. Therefore ups(xy™, q)
<max{us(X, q), us(y, q)} for all xand y in F and g in Q. Hence AUB is an anti Q-fuzzy subbigroup of G.

2.8 Theorem: The union of a family of anti Q-fuzzy subbigroups of a bigroup G is an anti Q-fuzzy subbigroup of G.
Proof: Itis trivial.

2.9 Theorem: If A= MUN is an anti Q-fuzzy subbigroup of a bigroup G = EUF, then
(1) pm(x+y, q) = um(y+x, q) if and only if puy(x, q) = um(=y+x+y, q) for all xand y in E and q in Q
(i) pn(xy, q) = pn(yx, g) if and only if pun(x, ) = pn(y™xy, g) for all x and y in F and q in €.

Proof:

(i) LetxandybeinEandqinQ. Assume that uy(X+y, q) = um(y+X, q), then pupy(=y+x+y, q) = um(=y+y+x, q) =
um(ertx, q) = pum(X, q). Therefore uu(x, q) = uum(=y+x+y, q) for all x and y in E and g in Q. Conversely
assume that um(x, ) = pm(=y+x+y, 0), then um(x+y, 6) = pm(x+y-x+x, ) = um(y+x, 0). Therefore puy(x+y, q)
= um(y+x, g) forall xand y in E and g in Q.

(i) Let x and y be in F and g in Q. Assume that pn(x+y, q) = un(y+x, q), then pn(y™?xy, q) = un(ylyx, q) =
un(€2X, ) = pn(X, q). Therefore pn(x, ) = pn(y™xy, g) for all x and y in F and q in Q. Conversely, assume that
un(%, @) = pn(y'Xxy, g), then pn(xy, 0) = pn(xyxx™, d) = un(yx, g). Therefore un(xy, @) = pn(yx, g) for all x
andyinFandqinQ.
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