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ABSTRACT 
In this paper, we define a new class of closed sets namely weakly closed sets in ideal topological spaces. Also, we 
study some characterizations and properties of weakly closed sets with respect to an ideal topological space. 
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1. INTRODUCTION 
 
One of the important tools in General Topology is the ideals. Newcomb (1967) [9], Rancin(1972), Samuals(1975), 
Hamlet and JanKovic [4] (1990,1992,1990) motivated the research in general topology. A generalized closed set in 
topological space was introduced by Levine [7] (1967) in 1970. The notion of ideal topological space was studied by 
Kurotowski [6] (1933) and Vaidyanathaswamy [11] (1945). Jafari and Rajesh introduced Ig-closed set with respect to 
an ideal. In this paper, we introduced and study a new class of closed sets in ideal topological spaces called wIg�  and 
wI∗g  closed sets with respect to an ideal which is the weaker form of Ig�  and I∗g  closed sets in ideal topological spaces. 
 
2. PRELIMINARIES 
 
Throughout the present paper (X, τ) always means a topological space. Let A be a subset of topological space (X, τ). 
The closure (resp. interior) of A are denoted by cl(A) (resp. Int(A)). An ideal (Kuratowski, 1933) [6] on a set X is a 
nonempty collection of subsets of X with heredity property and finite additivity property that is it satisfies the following 
two conditions: 

1. A ∈I and B ⊆A then B ∈I (heredity) 
2. A ∈I and B ∈I implies A∪B ∈I (finite additivity) 

 
Definition 2.1 [4]: A topological space (X,τ) with an ideal I on X and if ℘(X) is the set of all subsets of X, a set 
operator (.)*: ℘ (X) → ℘ (X), called a local functionof A with respect to τ and I is defined as follows: for A ⊆ X,     
A*(I, τ) = {x ∈X | U ∩ A ∉ I for every U ∈ τ(x)}, where τ(x) = {U  ∈ τ | x ∈ U}. 
 
Definition 2.2 [5]: A subset A of an ideal space (X, τ, I) is said to be∗ - closedif A* ⊆ A . 
 
Definition 2.3 [1]: A subset A of a space (X, τ) is said to be g�-closed if cl(A) ⊆ U whenever A ⊆ U and U is semi-
open. 
 
Definition 2.4: A subset A of a space (X, τ) is said to be g�-open if its complement is g�-closed. 
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Definition 2.5 [1]: A subset A of an ideal space (X, τ, I) is said to be Ig� -closed if A*⊆U whenever A⊆U and U is semi-
open. 
 
Definition 2.6 [10]: A subset A of a space (X, τ) is said to be *g-closed if A*⊆U whenever A ⊆ U and U is g�-open. 
 
3. Weakly 𝐈𝐈𝐠𝐠� closed sets and weakly 𝐈𝐈∗𝐠𝐠 -closed sets with respect to an Ideal   
 
Definition 3.1: A subset A of an ideal space (X, τ, I) is said to be wIg� -closed if int(A*) ⊆U whenever A ⊆U and U is 
semi-open. 
 
Definition 3.2: A subset A of an ideal space (X, τ, I)  is said to be wIg� -open if X – A is wIg� -closed. 
 
Theorem 3.3: If (X, τ, I) is an ideal space, then every Ig� -closed set is wIg� -closed but not conversely. 
 
Proof: Let A be an Ig� -closed set. Let A ⊆ U and U is semi-open. Since A is Ig�-closed, A* ⊆ U whenever A  ⊆ U and U 
is semi-open. We have int(A*) ⊆ A* ⊆U whenever A ⊆U and U is semi-open. Therefore, A is wIg� -closed. 
 
Example 3.4: Let X = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I = {φ, {c}}. It is clear that {a} is wIg�-closed but it is 
not Ig� -closed. 
 
Theorem 3.5: Every ∗-closed set is wIg� -closed but not conversely. 
 
Proof: Let A be a ∗-closed, then A* ⊆ A. Let A ⊆ U where U is semi-open. Hence int(A*) ⊆ A* ⊆ U whenever A ⊆U 
and U is semi-open. Therefore, A is wIg� -closed. 
 
Example 3.6: Let X = {a, b, c}, τ = {φ, X, {b}, {c}, {b, c}} and I = {φ, {a}}. It is clear that {c} is wIg�-closed but not 
*-closed. 
 
Theorem 3.7: Let (X, τ, I) be an ideal space. For every A ∈ I, A is wIg� -closed. 
 
Proof: Let A ⊆ U where U is semi-open set. Since A* = φ for every A ∈ I, then cl*(A) = A ∪ A* = A, since A* = φ. 
int(A*) ⊆ cl*(A) = A ⊆U. Therefore, A is wIg� -closed. 
 
Theorem 3.8: If (X, τ, I) is an ideal space, then A* is always wIg� -closed for every subset A of X. 
 
Proof: Let A* ⊆ U where U is semi-open. Since int(A*)* ⊆ (A*)* ⊆ A*, we have (A*)* ⊆ U whenever A* ⊆ U and U 
is semi-open. Hence A* is -closed. 
 
Theorem 3.9: Let (X, τ, I) be an ideal space. Then every g�-closed set is wIg� -closed set but not conversely. 
 
Proof: Let A be a g�-closed set. Then cl(A) ⊆ U whenever A ⊆ U and U is semi-open. We have  
int(A*) ⊆ cl*(A) ⊆ cl(A) ⊆ U whenever A ⊆ U and U is semi-open. Hence A is wIg� -closed. 
 
Example 3.10: Let X = {a, b, c}, τ = {φ, X, {b}, {c}, {b, c}} and I = {φ, {b}}. It is clear that {c} is wIg� -closed set but 
not g�-closed set. 
 
Theorem 3.11: Let (X, τ, I) be an ideal space and A  ⊆ X. If A  ⊆ B ⊆ int(A*), then A* = B* and B is ∗-dense in itself. 
 
Proof: Since A ⊆ B, then A* ⊆ B* and since B ⊆int(A*), then B* ⊆ int(A*) ⊆ (A*)* ⊆ A*. Since A* ⊆ B* and        
B* ⊆ A*, A* = B*. Since B ⊆int(A*) ⊆ A* = B* . Therefore, B ⊆ B*. Hence B is ∗-dense in itself.  Hence proved. 
 
Theorem 3.12: Let (X, τ, I) be an ideal space. If every semi-open set is ∗-closed, then every subset of X is wIg� -closed. 
 
Proof: Let U be a semi-open set. Let A⊆ X be a subset of X. Let A ⊆ U where U is semi-open. If U is semi-open set 
such that A ⊆ U ⊆ X, then A* ⊆ U* ⊆ U. Therefore, int(A*) ⊆ A* ⊆ U whenever A ⊆ U and U is semi-open. Hence 
A is wIg� -closed. 
 
Theorem 3.13: Let (X, τ, I) be an ideal space. Then every Ig-closed, open set is wIg� -closed. 
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Proof: Let A be an Ig� -closed, open set.  Let A⊆ A where A is open. Since A is open and Ig� -closed, A* ⊆ A. Let A ⊆ U 
where U is semi-open. Since A* ⊆ A, int(A*) ⊆ A* ⊆ A ⊆ U which implies int(A*) ⊆ U whenever U is semi-open. 
Hence A is wIg� -closed. 
 
Theorem 3.14: Let (X, τ, I) be an ideal space. Then every g-closed set is wIg� -closed but not conversely. 
 
Proof: Let A ⊆ A where A is open. Since A is g-closed, cl(A) ⊆ A. We have A ⊆ cl(A) which implies cl(A) = A. Let   
A ⊆ U and U is semi-open.Therefore, int(A*) ⊆ cl*(A) ⊆ cl(A) ⊆ A ⊆ U. Hence A iswIg� -closed. 
 
Example 3.15: Let X = {a, b, c}, τ = {φ, X, {b}, {c}, {b, c}} and I = {φ, {b}}. It is clear that {c} is wIg� -closed set but 
not g-closed set. 
 
Definition 3.16: A subset A of an ideal space (X, τ, I) is said to be wI∗g-closed if int(A*) ⊆U whenever A ⊆U and U is 
g�-open. 
 
Definition 3.17: A subset A of an ideal space (X, τ, I)  is said to be wI∗g-open if X – A is wI∗g-closed. 
 
Theorem 3.18: If (X, τ, I) is an ideal space, then everyI∗g-closed set is wI∗g-closed but not conversely. 
 
Proof: Let A ⊆ U and U is g�-open. Since A is I∗g-closed, A* ⊆ U whenever A ⊆ U and U is g�-open. We have       
int(A*) ⊆ A* ⊆U whenever A ⊆U and U is g�-open. Therefore, A is wI∗g-closed. 
 
Example 3.19: Let X = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I = {φ, {c}}. It is clear that {a} is wI∗g-closed but it 
is not I∗g-closed. 
 
Theorem 3.20: Every ∗-closed set is wI∗g-closed but not conversely. 
 
Proof: Let A be a ∗-closed, then A* ⊆ A. Let A ⊆ U where U is 𝑔𝑔�-open. Therefore, int(A*) ⊆ A* ⊆ U. Hence     
int(A*) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open. Therefore, A is w𝐼𝐼∗𝑔𝑔-closed. 
 
Example 3.21: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑, X, {a}, {b}, {a, b}} and I = {𝜑𝜑, {c}}. It is clear that {b} is w𝐼𝐼∗𝑔𝑔-closed but 
not *-closed. 
 
Theorem 3.22: Let (X, 𝜏𝜏 , I) be an ideal space. For every A ∈ I, A is w𝐼𝐼∗𝑔𝑔-closed. 
 
Proof: Let A ⊆ U where U is 𝑔𝑔�-open set. Since A* = 𝜑𝜑 for every A ∈ I, then cl*(A) = A ∪ A* = A, since A* = 𝜑𝜑. 
Therefore, int(A*) ⊆ cl*(A) = A ⊆ U. Hence int(A*) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open. Therefore, A is          
w𝐼𝐼∗𝑔𝑔-closed. 
 
Theorem 3.23: If (X, 𝜏𝜏, I) is an ideal space, then A* is always w𝐼𝐼∗𝑔𝑔-closed for every subset A of X. 
 
Proof: Let A* ⊆ U where U is 𝑔𝑔�-open. Since int(A*)* ⊆ (A*)* ⊆ A*, we have (A*)* ⊆ U whenever A* ⊆ U and U is 
𝑔𝑔�-open. Hence A* is w𝐼𝐼∗𝑔𝑔-closed. 
 
Remark 3.24: Every w𝐼𝐼∗𝑔𝑔-closed set is need not be a 𝑔𝑔�-closed set. This can be shown from the following example. 
 
Example 3.25: Let X = {a, b, c}, 𝜏𝜏 = {𝜑𝜑, X, {a}, {b}, {a, b}} and I = {𝜑𝜑, {c}}. It is clear that {b} is w𝐼𝐼∗𝑔𝑔-closed set 
but not 𝑔𝑔�-closed set. 
 
Theorem 3.26: Let (X, 𝜏𝜏, I) be an ideal space and A  ⊆ X. If A  ⊆ B ⊆int(A*), then A* = B* and B is ∗-dense in itself. 
 
Proof: Since A ⊆ B, then A* ⊆ B* and since B ⊆int(A*), then B* ⊆ int(A*) ⊆ (A*)* ⊆ A*. Since A* ⊆ B* and        
B* ⊆ A*, A* = B*. Since B ⊆int(A*) ⊆ A* = B*. Therefore, B ⊆ B*.Hence B is ∗-dense in itself.  Hence proved. 
 
Theorem 3.27: Let (X, 𝜏𝜏, I) be an ideal space. If every 𝑔𝑔�-open set is ∗-closed, then every subset of X is w𝐼𝐼∗𝑔𝑔-closed. 
 
Proof: Let U be a 𝑔𝑔�-open set. Let A⊆ X be a subset of X. Let A ⊆ U where U is 𝑔𝑔�-open. If U is 𝑔𝑔�-open set such that   
A ⊆ U ⊆ X, then A* ⊆ U* ⊆ U. Therefore, int(A*) ⊆ A* ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open. Hence A is          
w𝐼𝐼∗𝑔𝑔-closed. 
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Theorem 3.28: Let (X, 𝜏𝜏, I) be an ideal space. Then every 𝐼𝐼𝑔𝑔-closed, 𝑔𝑔�-open set is w𝐼𝐼∗𝑔𝑔-closed. 
 
Proof: Let A be an 𝐼𝐼𝑔𝑔-closed, open set.  Let A⊆ A where A is open. Since A is open and Ig-closed, A* ⊆ A. Let A ⊆ U 
where U is g�-open. Since A* ⊆ A, int(A*) ⊆ A* ⊆ A ⊆ U which implies int(A*) ⊆ U whenever U is g�-open. Hence A 
is wI∗g-closed. 
 
Theorem 3.29: Let (X, τ, I) be an ideal space. Then every g-closed set is wI∗g-closed but not conversely. 
 
Proof: Let A ⊆ A where A is open. Since A is g-closed, cl(A) ⊆ A. We have A ⊆ cl(A) which implies cl(A) = A.      
Let A ⊆ U and U is g�-open.Therefore, int(A*) ⊆ cl*(A) ⊆ cl(A) ⊆ A ⊆ U. Hence A is wI∗g-closed. 
 
Example 3.30: Let X = {a, b, c}, τ = { φ, X, {a}, {b}, {a, b}} and I = { φ, {c}}. It is clear that {a} is wI∗g-closed set 
but not g-closed set.  
 
Theorem 3.31: Let (X, τ, I) be an ideal space. Then every *g-closed set is wI∗g-closed set but not conversely. 
 
Proof: Let A be a *g-closed set. Then cl(A) ⊆ U whenever A ⊆ U and U is g�-open. We have  
int(A*) ⊆ cl*(A) ⊆ cl(A) ⊆ U whenever A ⊆ U and U is g�-open. Hence A is wI∗g-closed. 
 
Example 3.32: Let X = {a, b, c}, τ = { φ, X, {a}, {b}, {a, b}} and I = { φ, {c}}. It is clear that {b} is wI∗g-closed set 
but not *g-closed set. 
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