NOTES ON BIPOLAR-VALUED MULTI FUZZY SUBGROUPS OF A GROUP

V. K. SANTHI
Department of Mathematics, Srimeenakshi Government Arts College, Madurai - 625002 Tamilnadu, India.

G. SHYAMALA*
Department of Mathematics, Arulmigu Palani Andavar College of Arts \& Culture, Palani - 622001, Tamilnadu, India.

(Received On: 27-02-15; Revised \& Accepted On: 06-05-15)

Abstract

In this paper, we study some of the properties of bipolar-valued multi fuzzy subgroup and prove some results on these.

Key Words: Bipolar-valued fuzzy subset, bipolar-valued multi fuzzy subset, bipolar-valued multi fuzzy subgroup.

INTRODUCTION

In 1965, Zadeh [12] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [5]. Lee [7] introduced the notion of bipolarvalued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar-valued fuzzy subset, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0,1] indicates that elements somewhat satisfy the property and the membership degree $[-1,0$) indicates that elements somewhat satisfy the implicit counter property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [7, 8]. We introduce the concept of bipolar-valued multi fuzzy subgroup and established some results.

1. PRELIMINARIES

1.1 Definition: A bipolar-valued fuzzy set (BVFS) A in X is defined as an object of the form $A=\left\{<x, A^{+}(x), A^{-}(x)\right\rangle /$ $x \in X\}$, where $A^{+}: X \rightarrow[0,1]$ and $A^{-}: X \rightarrow[-1,0]$. The positive membership degree $A^{+}(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set A and the negative membership degree $\mathrm{A}^{-}(\mathrm{x})$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued fuzzy set A. If $\mathrm{A}^{+}(\mathrm{x}) \neq 0$ and $\mathrm{A}^{-}(\mathrm{x})=0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A^{+}(x)=0$ and $A^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A^{+}(x) \neq 0$ and $A^{-}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X .
1.2 Example: $A=\{<a, 0.5,-0.3\rangle,<b, 0.1,-0.7\rangle,<c, 0.5,-0.4\rangle\}$ is a bipolar-valued fuzzy subset of $X=\{a, b, c\}$.
1.3 Definition: A bipolar-valued multi fuzzy set (BVMFS) A in X is defined as an object of the form $A=\left\{<x, A_{i}^{+}(x)\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})>/ \mathrm{x} \in \mathrm{X}\right\}$, where $\mathrm{A}_{\mathrm{i}}^{+}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}_{\mathrm{i}}^{-}: \mathrm{X} \rightarrow[-1,0]$. The positive membership degrees $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ denote the satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set A and the negative membership degrees $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued multi fuzzy set A. If $A_{i}^{+}(x) \neq 0$ and $A_{i}^{-}(x)=0$, it is the situation that x is regarded as having only positive satisfaction for A and if $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}) \neq 0$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X , where $\mathrm{i}=1$ to n .
1.4 Example: $\mathrm{A}=\{\langle\mathrm{a}, 0.5,0,6,0.3,-0.3,-0.6,-0.5\rangle,\langle\mathrm{b}, 0.1,0.4,0.7,-0.7,-0.3,-0.6\rangle,\langle\mathrm{c}, 0.5,0.3,0.8,-0.4$, $-0.5,-0.3>\}$ is a bipolar-valued multi fuzzy subset of $X=\{a, b, c\}$.
1.5 Definition: Let G be a group. A bipolar-valued multi fuzzy subset A of G is said to be a bipolar-valued multi fuzzy subgroup of G (BVMFSG) if the following conditions are satisfied
(i) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$
(ii) $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1}\right) \geq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$
(iii) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{xy}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$
(iv) $A_{i}^{-}\left(x^{-1}\right) \leq A_{i}^{-}(x)$ for all x and y in G.
1.6 Example: Let $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ be a group with respect to the ordinary multiplication. Then $\mathrm{A}=\{<1,0.5,0.6,0.4$, $-0.6,-0.5,-0.3\rangle,\langle-1,0.4,0.5,0.3,-0.5,-0.4,-0.2\rangle,\langle\mathrm{i}, 0.2,0.3,0.2,-0.4,-0.3,-0.1\rangle,\langle-\mathrm{i}, 0.2,0.3,0.2,-0.4$, $-0.3,-0.1>\}$ is a bipolar-valued multi fuzzy subgroup of G.
1.7 Definition: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$and $B=\left\langle B_{i}^{+}, B_{i}^{-}\right\rangle$be any two bipolar-valued multi fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B=\left\{\left\langle(x, y),\left(A_{i} \times B_{i}\right)^{+}(x, y),\left(A_{i} \times B_{i}\right)^{-}(x, y)\right\rangle /\right.$ for all x in G and y in $H\}$ where $\left(A_{i} \times B_{i}\right)^{+}(x, y)=\min \left\{A_{i}^{+}(x), B_{i}^{+}(y)\right\}$ and $\left(A_{i} \times B_{i}\right)^{-}(x, y)=\max \left\{A_{i}^{-}(x), B_{i}^{-}(y)\right\}$ for all x in G and y in H .
1.8 Definition: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subset in a set S, the strongest bipolar-valued multi fuzzy relation on S, that is a bipolar-valued multi fuzzy relation on A is $V=\left\{\left\langle(x, y), V_{i}^{+}(x, y), V_{i}^{-}(x, y)\right\rangle / x\right.$ and y in $\left.S\right\}$ given by $\mathrm{V}_{\mathrm{i}}^{+}(\mathrm{x}, \mathrm{y})=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ and $\mathrm{V}_{\mathrm{i}}^{-}(\mathrm{x}, \mathrm{y})=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all x and y in S .

2. PROPERTIES

2.1 Theorem: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subgroup of G. Then $A_{i}^{+}\left(x^{-1}\right)=A_{i}^{+}(x)$ and $A_{i}^{-}\left(x^{-1}\right)=A_{i}^{-}(x), A_{i}^{+}(x) \leq A_{i}^{+}(e)$ and $A_{i}^{-}(x) \geq A_{i}^{-}(e)$ for all x in G and the identity element e in G.

Proof: Let x be in G. Now $A_{i}^{+}(x)=A_{i}^{+}\left(\left(x^{-1}\right)^{-1}\right) \geq A_{i}^{+}\left(x^{-1}\right) \geq A_{i}^{+}(x)$. Therefore $A_{i}^{+}(x)=A_{i}^{+}\left(x^{-1}\right)$ for all x in G. And $A_{i}^{-}(x)=A_{i}^{-}\left(\left(x^{-1}\right)^{-1}\right) \leq A_{i}^{-}\left(x^{-1}\right) \leq A_{i}^{-}(x)$. Therefore $A_{i}^{-}\left(x^{-1}\right)=A_{i}^{-}(x)$ for all x in G.

Now $A_{i}^{+}(e)=A_{i}^{+}\left(x^{-1}\right) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}\left(x^{-1}\right)\right\}=A_{i}^{+}(x)$. Therefore $A_{i}^{+}(e) \geq A_{i}^{+}(x)$ for all x in G. And $A_{i}^{-}(e)=A_{i}^{-}\left(x^{-1}\right)$ $\leq \max \left\{A_{i}^{-}(x), A_{i}^{-}\left(x^{-1}\right)\right\}=A_{i}^{-}(x)$. Therefore $A_{i}^{-}(e) \leq A_{i}^{-}(x)$ for all x in G.
2.2 Theorem: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subgroup of G. Then
(i) $A_{i}^{+}\left(x y^{-1}\right)=A_{i}^{+}(e)$ implies that $A_{i}^{+}(x)=A_{i}^{+}(y)$ for x and y in G.
(ii) $A_{i}^{-}\left(x y^{-1}\right)=A_{i}^{-}(e)$ implies that $A_{i}^{-}(x)=A_{i}^{-}(y)$ for x and y in G.

Proof: Now $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{yx}^{-1} \mathrm{x}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{yx}^{-1}\right)\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$. Therefore $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})$ for x and y in G . And $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}{ }^{-1} \mathrm{y}\right) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{yx}^{-1} \mathrm{x}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{yx}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=$ $A_{i}^{-}(x)$. Therefore $A_{i}^{-}(x)=A_{i}^{-}(y)$ for x and y in G.
2.3 Theorem: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subgroup of a group G.
(i) If $A_{i}^{+}\left(x y^{-1}\right)=1$, then $A_{i}^{+}(x)=A_{i}^{+}(y)$ for x and y in G.
(ii) If $A_{i}^{-}\left(x y^{-1}\right)=-1$, then $A_{i}^{-}(x)=A_{i}^{-}(y)$ for x and y in G.

Proof: Now $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{1, \mathrm{~A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1} \mathrm{xy}^{-1}\right) \geq \min$ $\left\{\mathrm{A}_{i}^{+}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{i}^{+}\left(\mathrm{xy}^{-1}\right)\right\}=\min \left\{\mathrm{A}_{i}^{+}\left(\mathrm{x}^{-1}\right), 1\right\}=\mathrm{A}_{i}^{+}\left(\mathrm{x}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$. Therefore $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})$ for x and y in G . Hence (i) is proved. Also $A_{i}^{-}(x)=A_{i}^{-}\left(x^{-1} y\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{-1, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}^{-1}\right)=\mathrm{A}^{-}\left(\mathrm{x}^{-1} \mathrm{xy}{ }^{-1}\right) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right),-1\right\}=\mathrm{A}^{-}\left(\mathrm{x}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$. Therefore $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})$ for x and y in G . Hence (ii) is proved.
2.4 Theorem: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subgroup of a group G.
(i) If $A_{i}^{+}\left(x y^{-1}\right)=0$, then either $A_{i}^{+}(x)=0$ or $A_{i}^{+}(y)=0$ for x and y in G.
(ii) If $A_{i}^{-}\left(\mathrm{xy}^{-1}\right)=0$, then either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$ for x and y in G .

Proof: Let x and y in G .
(i) By the definition $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ which implies that $0 \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Therefore either $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0$.

V. K. Santhi, G. Shyamala* / Notes On Bipolar-Valued Multi Fuzzy Subgroups of a Group / IJMA- 6(6), June-2015.

(ii) By the definition $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ which implies that $0 \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Therefore either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$.
2.5 Theorem: If $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subgroup of G, then
(i) $A_{i}^{+}(x y)=A_{i}^{+}(y x)$ if and only if $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$ for x and y in G.
(ii) $A_{i}^{-}(x y)=A_{i}^{-}(y x)$ if and only if $A_{i}^{-}(x)=A_{i}^{-}\left(y^{-1} x y\right)$ for x and y in G.

Proof: Let x and y be in G. Assume that $A_{i}^{+}(x y)=A_{i}^{+}(y x)$. So, $A_{i}^{+}\left(y^{-1} x y\right)=A_{i}^{+}\left(y^{-1} y x\right)=A_{i}^{+}(e x)=A_{i}^{+}(x)$. Therefore $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$ for x and y in G. Conversely assume that $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$. We get $A_{i}^{+}(x y)=A_{i}^{+}\left(x y x x^{-1}\right)=$ $A_{i}^{+}(y x)$. Therefore $A_{i}^{+}(x y)=A_{i}^{+}(x y)$ for x and y in G. Hence $A_{i}^{+}(x y)=A_{i}^{+}(y x)$ if and only if $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$ for x and y in G. Also assume that $A_{i}^{-}(x y)=A_{i}^{-}(y x)$. We get $A_{i}^{-}\left(y^{-1} x y\right)=A_{i}^{-}\left(y^{-1} y x\right)=A_{i}^{-}(e x)=A_{i}^{-}(x)$. Therefore $A_{i}^{-}(x)=$ $A_{i}^{-}\left(y^{-1} x y\right)$ for x and y in G. Conversely assume that $A_{i}^{-}(x)=A_{i}^{-}\left(y^{-1} x y\right)$. So $A_{i}^{-}(x y)=A_{i}^{-}\left(x y x x^{-1}\right)=A_{i}^{-}(y x)$. Therefore $A_{i}^{-}(x y)=A_{i}^{-}(x y)$ for x and y in G. Hence $A_{i}^{-}(x y)=A_{i}^{-}(y x)$ if and only if $A_{i}^{-}(x)=A_{i}^{-}\left(y^{-1} x y\right)$ for x and y in G.
2.6 Theorem: If $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$is a bipolar-valued multi fuzzy subgroup of a group G, then $H=\left\{x \in G \mid A_{i}^{+}(x)=\right.$ $\left.1, A_{i}^{-}(x)=-1\right\}$ is either empty or a subgroup of G.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A_{i}^{+}\left(x y^{-1}\right) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}(y)\right\}=$ $\min \{1,1\}=1$. Therefore $A_{i}^{+}\left(x^{-1}\right)=1$. And $A_{i}^{-}\left(x y y^{-1}\right) \leq \max \left\{A_{i}^{-}(x), A_{i}^{-}(y)\right\}=\max \{-1,-1\}=-1$. Therefore $A_{i}^{-}\left(x y^{-1}\right)=-1$. That is $x y^{-1} \in H$. Hence H is a subgroup of G. Hence H is either empty or a subgroup of G.
2.7 Theorem: If $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$is a bipolar-valued multi fuzzy subgroup of G, then $H=\left\{x \in G \mid A_{i}{ }^{+}(x)=A_{i}^{+}(e)\right.$ and $\left.\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})\right\}$ is a subgroup of G .

Proof: Here $H=\left\{x \in G \mid A_{i}^{+}(x)=A_{i}^{+}(e)\right.$ and $\left.A_{i}^{-}(x)=A_{i}^{-}(e)\right\}$ by Theorem 2.1, $\mathrm{A}_{i}^{+}\left(\mathrm{x}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e})$ and $A_{i}^{-}\left(x^{-1}\right)=A_{i}^{-}(x)=A_{i}^{-}(e)$. Therefore $x^{-1} \in H$. Now $A_{i}^{+}\left(x^{-1}\right) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}(y)\right\}=\min \left\{A_{i}^{+}(e), A_{i}^{+}(e)\right\}=A_{i}^{+}(e)$ and $A_{i}^{+}(e)=A_{i}^{+}\left(\left(x y y^{-1}\right)\left(x y^{-1}\right)^{-1}\right) \geq \min \left\{A_{i}^{+}\left(x y^{-1}\right), A_{i}^{+}\left(x y y^{-1}\right)\right\}=A_{i}^{+}\left(x^{-1}\right)$. Hence $A_{i}^{+}(e)=A_{i}^{+}\left(x y^{-1}\right)$. Also $A_{i}^{-}\left(x y y^{-1}\right) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})=\mathrm{A}_{\mathrm{i}}^{-}\left(\left(\mathrm{xy}^{-1}\right)\left(\mathrm{xy}^{-1}\right)^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy} y^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}{ }^{-1}\right)\right\}=$ $A_{i}^{-}\left(x y^{-1}\right)$. Therefore $A_{i}^{-}(e)=A_{i}^{-}\left(x y^{-1}\right)$. Hence $A_{i}^{+}(e)=A_{i}^{+}\left(x y^{-1}\right)$ and $A_{i}^{-}(e)=A_{i}^{-}\left(x y^{-1}\right)$. Therefore $x y^{-1} \in H$. Hence H is a subgroup of G.
2.8 Theorem: Let G be a group. If $A=\left\langle A_{i}{ }^{+}, A_{i}^{-}\right\rangle$is a bipolar-valued multi fuzzy subgroup of G, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy})=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ and $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy})=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for each x andy in G with $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}) \neq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})$ and $A_{i}^{-}(x) \neq A_{i}^{-}(y)$.

Proof: Assume that $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})>\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})<\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})$. Then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1} \mathrm{xy}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy})\right\}=\min$ $\left\{\mathrm{A}_{i}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})$. Therefore $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{xy})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. And $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1} \mathrm{xy}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{xy})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{xy})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{xy}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})$. Therefore $A_{i}^{-}(x y)=A_{i}^{-}(y)=\max \left\{A_{i}^{-}(x), A_{i}^{-}(y)\right\}$.
2.9 Theorem: If $A=\left\langle\mathrm{A}_{\mathrm{i}}{ }^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$and $\mathrm{B}=\left\langle\mathrm{B}_{\mathrm{i}}{ }^{+}, \mathrm{B}_{\mathrm{i}}^{-}\right\rangle$are two bipolar-valued multi fuzzy subgroups of a group G , then their intersection $A \cap B$ is a bipolar-valued multi fuzzy subgroup of G.

Proof: Let $A=\left\{<x, A_{i}^{+}(x), A_{i}^{-}(x)>/ x \in G\right\}, B=\left\{<x, B_{i}^{+}(x), B_{i}^{-}(x)>/ x \in G\right\}$. Let $C=A \cap B$ and $C=\left\{<x, C_{i}^{+}(x)\right.$, $\left.C_{i}^{-}(x)>/ x \in G\right\}$.Now $C_{i}^{+}\left(x^{-1}\right)=\min \left\{\mathrm{A}_{i}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)\right\} \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right.$, $\left.\min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\} \geq \min$ $\left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\}=\min \left\{\mathrm{C}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Therefore $\mathrm{C}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{C}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Also $\mathrm{C}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{xy}{ }^{-1}\right)\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}, \max \left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right\}\right.$, $\left.\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\}=\max \left\{\mathrm{C}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Therefore $\mathrm{C}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{C}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Hence $\mathrm{A} \cap B$ is a bipolarvalued multi fuzzy subgroup of G.
2.10 Theorem: The intersection of a family of bipolar-valued multi fuzzy subgroups of a group G is a bipolar-valued multi fuzzy subgroup of G.

Proof: The Theorem is true by Theorem 2.9.
2.11 Theorem: If $A=\left\langle\mathrm{A}_{\mathrm{i}}^{+},{\mathrm{A}_{\mathrm{i}}^{-}}^{-}\right\rangle$and $\mathrm{B}=\left\langle\mathrm{B}_{\mathrm{i}}^{+}, \mathrm{B}_{\mathrm{i}}^{-}\right\rangle$are any two bipolar-valued multi fuzzy subgroups of the groups G_{1} and G_{2} respectively, then $A \times B=\left\langle\left(A_{i} \times B_{i}\right)^{+},\left(A_{i} \times B_{i}\right)^{-}\right\rangle$is a bipolar-valued multi fuzzy subgroup of $G_{1} \times G_{2}$.

Proof: Let A and B be two bipolar-valued multi fuzzy subgroups of the groups G_{1} and G_{2} respectively. Let x_{1} and x_{2} be in G_{1}, y_{1} and y_{2} be in G_{2}. Then $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in $G_{1} \times G_{2}$. Now, $\left(A_{i} \times B_{i}\right)^{+}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)^{-1}\right]=\left(A_{i} \times B_{i}\right)^{+}\left(x_{1} x_{2}{ }^{-1}\right.$, $\left.\mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1} \mathrm{x}_{2}{ }^{-1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)\right\} \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right)\right\}\right.$,
$\left.\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore $\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)^{-1}\right] \geq \min$ $\left\{\left(A_{i} \times B_{i}\right)^{+}\left(x_{1}, y_{1}\right),\left(A_{i} \times B_{i}\right)^{+}\left(x_{2}, y_{2}\right)\right\}$. Also $\left(A_{i} \times B_{i}\right)^{-}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)^{-1}\right]=\left(A_{i} \times B_{i}\right)^{-}\left(x_{1} x_{2}{ }^{-1}, y_{1} y_{2}{ }^{-1}\right)=\max \left\{A_{i}^{-}\left(x_{1} x_{2}{ }^{-1}\right)\right.$, $\left.\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1} \mathrm{y}_{2}^{-1}\right)\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2}\right)\right\}, \max \left\{\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}\right), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}\right), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}\right)\right\}, \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2}\right)\right.\right.$, $\left.\left.\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore $\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)^{-1}\right] \leq \max \left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right.$, $\left.\left(A_{i} \times B_{i}\right)^{-}\left(x_{2}, y_{2}\right)\right\}$. Hence $A \times B$ is a bipolar-valued multi fuzzy subgroup of $G_{1} \times G_{2}$.
2.12 Theorem: Let $A=\left\langle\mathrm{A}_{\mathrm{i}}^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$and $\mathrm{B}=\left\langle\mathrm{B}_{\mathrm{i}}^{+}, \mathrm{B}_{\mathrm{i}}^{-}\right\rangle$be any two bipolar-valued multi fuzzy subsets of the groups G and H respectively. Suppose that e and e^{1} are the identity elements of G and H respectively. If $A \times B$ is a bipolar-valued multi fuzzy subgroup of $\mathrm{G} \times \mathrm{H}$, then at least one of the following two statements must hold.
(i) $\mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{e}^{\prime}\right) \geq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all x in G and $\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{e}^{\prime}\right) \leq \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all x in G
(ii) $A_{i}^{+}(e) \geq B_{i}^{+}(y)$ for all y in H and $A_{i}^{-}(e) \leq B_{i}^{-}(y)$ for all y in H.

Proof: Let $A \times B$ is a bipolar-valued multi fuzzy subgroup of $G \times H$. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in G and b in H such that A_{i}^{+}(a) > $\mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{e}^{\prime}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{a})<\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{e}^{\prime}\right)$ and $\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{b})>\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{b})<\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})$. We have $\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}(\mathrm{a}, \mathrm{b})=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{a}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{b})\right\}>\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{e}^{\prime}\right)\right\}=\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$. Also $\left(A_{i} \times B_{i}\right)^{-}(a, b)=\max \left\{A_{i}^{-}(a), B_{i}^{-}(b)\right\}<\max \left\{A_{i}^{-}(e), B_{i}^{-}\left(e^{\prime}\right)\right\}=\left(A_{i} \times B_{i}\right)^{-}\left(e, e^{\prime}\right)$. Thus $A \times B$ is not a bipolar-valued multi fuzzy subgroup of $G \times H$. Hence either $B_{i}^{+}\left(e^{\prime}\right) \geq A_{i}^{+}(x)$ for all x in G and $B_{i}^{-}\left(e^{\prime}\right) \leq A_{i}^{-}(x)$ for all x in G or $A_{i}^{+}(e) \geq B_{i}^{+}(y)$ for all y in H and $A_{i}^{-}(e) \leq B_{i}^{-}(y)$ for all y in H.
2.13 Theorem: Let $\mathrm{A}=\left\langle\mathrm{A}_{\mathrm{i}}{ }^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$and $\mathrm{B}=\left\langle\mathrm{B}_{\mathrm{i}}^{+}, \mathrm{B}_{\mathrm{i}}^{-}\right\rangle$be any two bipolar-valued multi fuzzy subsets of the groups G and H, respectively and $A \times B$ is a bipolar-valued multi fuzzy subgroup of $G \times H$. Then the following are true:
(i) If $A_{i}^{+}(x) \leq B_{i}^{+}\left(e^{\prime}\right)$ for all x in G and $A_{i}^{-}(x) \geq B_{i}^{-}\left(e^{\prime}\right)$ for all x in G, then A is a bipolar-valued multi fuzzy subgroup of G where e^{\prime} is identity element of H.
(ii) If $\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}) \leq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e})$ for all x in H and $\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}) \geq \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e})$ for all x in H , then B is a bipolar-valued multi fuzzy subgroup of H where e is identity element of G .
(iii) either A is a bipolar-valued multi fuzzy subgroup of G or B is a bipolar-valued multi fuzzy subgroup of H where e and e^{\prime} are the identity elements of G and H respectively.

Proof: Let $\mathrm{A} \times \mathrm{B}$ be a bipolar-valued multi fuzzy subgroup of $\mathrm{G} \times \mathrm{H}$ and x and y in G . Then ($\mathrm{x}, \mathrm{e}^{\prime}$) and $\left(\mathrm{y}, \mathrm{e}^{\prime}\right)$ are in $\mathrm{G} \times \mathrm{H}$. Now using the property if $A_{i}^{+}(x) \leq B_{i}^{+}\left(e^{\prime}\right)$ for all x in G and $A_{i}^{-}(x) \geq B_{i}^{-}\left(e^{\prime}\right)$ for all x in G where e^{\prime} is identity element of H we get, $A_{i}^{+}\left(x y^{-1}\right)=\min \left\{A_{i}^{+}\left(x y^{-1}\right), B_{i}^{+}\left(e^{\prime} e^{\prime}\right)\right\}=\left(A_{i} \times B_{i}\right)^{+}\left(\left(x y^{-1}\right),\left(e^{\prime} e^{\prime}\right)\right)=\left(A_{i} \times B_{i}\right)^{+}\left[\left(x, e^{\prime}\right)\left(y^{-1}, e^{\prime}\right)\right] \geq \min \left\{\left(A_{i} \times B_{i}\right)^{+}\left(x, e^{\prime}\right)\right.$, $\left.\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left(\mathrm{y}^{-1}, \mathrm{e}^{\prime}\right)\right\}=\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{e}^{\prime}\right)\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{e}^{\prime}\right)\right\}\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right)\right\} \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Therefore $A_{i}^{+}\left(x y^{-1}\right) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}(y)\right\}$ for all x and y in G. Also $A_{i}^{-}\left(x y^{-1}\right)=\max \left\{A_{i}^{-}\left(x y^{-1}\right), B_{i}^{-}\left(e^{\prime} e^{\prime}\right)\right\}=\left(A_{i} \times B_{i}\right)^{-}$ $\left(\left(x y^{-1}\right),\left(e^{\prime} e^{\prime}\right)\right)=\left(A_{i} \times B_{i}\right)^{-}\left[\left(x, e^{\prime}\right)\left(y^{-1}, e^{\prime}\right)\right] \leq \max \left\{\left(A_{i} \times B_{i}\right)^{-}\left(x, e^{\prime}\right),\left(A_{i} \times B_{i}\right)^{-}\left(y^{-1}, e^{\prime}\right)\right\}=\max \left\{A_{i}^{-}(x), B_{i}^{-}\left(e^{\prime}\right)\right\}, \max \left\{A_{i}^{-}\left(y^{-1}\right)\right.$, $\left.\left.\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{e}^{\prime}\right)\right\}\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}^{-1}\right)\right\} \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Therefore $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all x and y in G. Hence A is a bipolar-valued multi fuzzy subgroup of G. Thus (i) is proved. Now using the property $B_{i}^{+}(x) \leq A_{i}^{+}(e)$ for all x in H and $B_{i}^{-}(x) \geq A_{i}^{-}(e)$ for all x in H we get, $B_{i}^{+}\left(x y^{-1}\right)=\min \left\{B_{i}^{+}\left(x y^{-1}\right), A_{i}^{+}(e . e)\right\}=\left(A_{i} \times B_{i}\right)^{+}\left((e . e),\left(x y^{-1}\right)\right)=$ $\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left[(\mathrm{e}, \mathrm{x})\left(\mathrm{e}, \mathrm{y}^{-1}\right)\right] \geq \min \left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}(\mathrm{e}, \mathrm{x}),\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{+}\left(\mathrm{e}, \mathrm{y}^{-1}\right)\right\}=\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right)\right\}\right\}=\min$ $\left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right)\right\} \geq \min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Therefore $\mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all x and y in H. Also $\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)=$ $\left.\max \left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{xy})^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{ee})\right\}=\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left((\mathrm{ee}),\left(\mathrm{xy}{ }^{-1}\right)\right)=\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left[(\mathrm{e}, \mathrm{x})\left(\mathrm{e}, \mathrm{y}^{-1}\right)\right] \leq \max \left\{\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}(\mathrm{e}, \mathrm{x}),\left(\mathrm{A}_{\mathrm{i}} \times \mathrm{B}_{\mathrm{i}}\right)^{-}\left(\mathrm{e}, \mathrm{y}^{-1}\right)\right\}=\max$ $\left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right\}, \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{e}), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}^{-1}\right)\right\}\right\}=\max \left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{y}^{-1}\right)\right\} \leq \max \left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Therefore $\mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{xy} \mathrm{y}^{-1}\right) \leq \max$ $\left\{B_{i}^{-}(x), B_{i}^{-}(y)\right\}$ for all x and y in H. Hence B is a bipolar-valued multi fuzzy subgroup of H. Thus (ii) is proved. Hence (iii) is clear.
2.14 Theorem: Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar-valued multi fuzzy subset of a group (G, .) and $V=\left\langle V_{i}^{+}, V_{i}^{-}\right\rangle$be the strongest bipolar-valued multi fuzzy relation of G. Then A is a bipolar-valued multi fuzzy subgroup of G if and only if V is a bipolar-valued multi fuzzy subgroup of $\mathrm{G} \times \mathrm{G}$.

Proof: Suppose that A is a bipolar-valued multi fuzzy subgroup of G. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $\mathrm{G} \times \mathrm{G}$. We have $\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)=\mathrm{V}_{\mathrm{i}}^{+}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)^{-1}\right]=\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}{ }^{-1}, \mathrm{x}_{2} \mathrm{y}_{2}{ }^{-1}\right)=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}{ }^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2} \mathrm{y}_{2}{ }^{-1}\right)\right\} \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\right.\right.$ $\left.\left.\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right.$, $\left.\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \left\{\mathrm{V}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Therefore $\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{V}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all x and y in $\mathrm{G} \times \mathrm{G}$. Also we have $V_{i}^{-}\left(x^{-1}\right)=V_{i}^{-}\left[\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)^{-1}\right]=V_{i}^{-}\left(x_{1} y_{1}{ }^{-1}, x_{2} y_{2}{ }^{-1}\right)=\max \left\{A_{i}^{-}\left(x_{1} y_{1}{ }^{-1}\right), A_{i}^{-}\left(x_{2} y_{2}{ }^{-1}\right)\right\} \leq \max \left\{\max \left\{A_{i}{ }^{-}\left(x_{1}\right), A_{i}^{-}\left(y_{1}\right)\right\}\right.$, $\left.\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2}\right)\right\}, \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$ $=\max \left\{\mathrm{V}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Therefore $\mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{V}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all x and y in $\mathrm{G} \times \mathrm{G}$. This proves that V is a bipolar-valued multi fuzzy subgroup of $G \times G$. Conversely, assume that V is a bipolar-valued multi fuzzy subgroup of $G \times G$, then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $G \times G$, we have min $\left\{A_{i}^{+}\left(x_{1} y_{1}{ }^{-1}\right), A_{i}^{+}\left(x_{2} y_{2}{ }^{-1}\right)\right\}=V_{i}^{+}\left(x_{1} y_{1}{ }^{-1}, x_{2} y_{2}{ }^{-1}\right)=$ $\mathrm{V}_{\mathrm{i}}^{+}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)^{-1}\right]=\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{V}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{V}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{2}\right)\right\}\right.$, $\left.\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right), \mathrm{A}_{i}^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}$. If we put $\mathrm{x}_{2}=\mathrm{y}_{2}=\mathrm{e}$, we get, $\mathrm{A}_{i}^{+}\left(\mathrm{x}_{1} \mathrm{y}_{1}^{-1}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}_{1}\right)\right\}$ for all x_{1} and y_{1} in G . Also we have max $\left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2} \mathrm{y}_{2}{ }^{-1}\right)\right\}=\mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1} \mathrm{y}_{1}{ }^{-1}, \mathrm{x}_{2} \mathrm{y}_{2}{ }^{-1}\right)=\mathrm{V}_{\mathrm{i}}^{-}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)^{-1}\right]=\mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{V}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{V}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$

V. K. Santhi, G. Shyamala* / Notes On Bipolar-Valued Multi Fuzzy Subgroups of a Group / IJMA- 6(6), June-2015.

$=\max \left\{\mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{V}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}_{2}\right)\right\}\right.$, $\left.\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}$. If we put $\mathrm{x}_{2}=\mathrm{y}_{2}=\mathrm{e}$, we get $A_{i}^{-}\left(x_{1} y_{1}{ }^{-1}\right) \leq \max \left\{A_{i}^{-}\left(x_{1}\right), A_{i}^{-}\left(y_{1}\right)\right\}$ for all x_{1} and y_{1} in G. Hence A is a bipolar-valued multi fuzzy subgroup of G.

REFERENCES

1. Anthony.J.M. and Sherwood.H (1979), Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130.
2. Arsham Borumand Saeid (2009), Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11): 1404-1411.
3. Azriel Rosenfeld (1971), Fuzzy groups, Journal of mathematical analysis and applications 35, 512-517.
4. Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S., (1988) A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131, 537-553.
5. Gau, W.L. and D.J. Buehrer(1993), Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23: 610614.
6. Kyoung Ja Lee (2009), Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3), 361-373.
7. Lee, K.M. (2000), Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, pp: 307-312.
8. Lee, K.M. (2004), Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets. J. Multi fuzzy Logic Intelligent Systems, 14 (2): 125-129.
9. Mustafa Akgul (1988), some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93 -100.
10. Samit Kumar Majumder (2012), Bipolar Valued fuzzy Sets in Γ-Semigroups, Mathematica Aeterna, Vol. 2, no. 3, 203-213.
11. Young Bae Jun and Seok Zun Song (2008), Subalgebras and closed ideals of BCH-algebras based on bipolarvalued fuzzy sets, Scientiae Mathematicae Japonicae Online, 427-437.
12. Zadeh, L.A. (1965), Fuzzy sets, Inform. And Control, 8: 338-353.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

