International Journal of Mathematical Archive-6(6), 2015, 209-213

 IMA Available online through www.ijma.info ISSN 2229-5046SPLIT GEODETIC NUMBER OF A LICT GRAPH
VENKANAGOUDA M GOUDAR
Department of Mathematics,
Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India.
TEJASWINI K.M*
Research Scholar, Sri Gauthama Research Centre, (Affilated to Kuvempu University), Sri Siddhartha Institute of Technology, Tumkur, karnataka, India.

VENKATESHA
Department of Mathematics, Kuvempu University Shankarghatta, Shimoga, Karnataka, India.

(Received On: 21-05-15; Revised \& Accepted On: 17-06-15)

Abstract

\boldsymbol{A} set $\boldsymbol{S} \subseteq \boldsymbol{V}[\boldsymbol{\eta}(\boldsymbol{G})]$ is a split geodetic set of (\boldsymbol{G}), if S is a geodetic set and $\langle\boldsymbol{V}-\boldsymbol{S}\rangle$ is disconnected. The split geodetic number of a lict $\operatorname{graph} \boldsymbol{\eta}(\boldsymbol{G})$, is denoted by $g_{s}[\boldsymbol{\eta}(\boldsymbol{G})]$, is the minimum cardinality of a split geodetic set of $\boldsymbol{\eta}(\boldsymbol{G})$. In this paper we obtain the split geodetic number of lict graph of any graph. Also obtain many bounds on split geodetic number in terms of elements of G and covering number of G. We investigate the relationship between split geodetic number and geodetic number.

Mathematics Subject Classification: 05C05, 05C12.
Keywords: Cartesian product, Distance, Edge covering number, Lict graph, Split geodetic number, Vertex covering number.

I. INTRODUCTION

In this paper we follow the notations of [3]. As usual $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G respectively. The graphs considered here are undirected and non complete. For any graph $\mathrm{G}=(\mathrm{V}$, E), the lict graph $\eta(G)$ whose vertices correspond to the edges of G and two vertices in $\eta(G)$ are adjacent if and only if the corresponding edges in G are adjacent. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is radius, rad G, and the maximum eccentricity is the diameter, diam G. A $u v$ path of length $d(u, v)$ is called $\mathrm{a} u-\mathrm{v}$ geodesic. We define $\mathrm{I}[\mathrm{u}, \mathrm{v}]$ to the set (interval) of all vertices lying on some $\mathrm{u}-\mathrm{v}$ geodesic of G and for a nonempty subset S of $\mathrm{V}(\mathrm{G}), I[S]=\mathrm{U}_{u, v \in S} I[u, v]$.

A set S of vertices of G is called a geodetic set in G if $I[S]=V(G)$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by $\mathrm{g}(\mathrm{G})$.

A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbours is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the vertex covering number $\alpha_{0}(G)$ of G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the vertices of G . The edge covering number $\alpha_{1}(G)$ of a graph G is the minimum cardinality of an edge cover of G.

Corresponding Author: TEJASWINI K.M*
Research Scholar, Sri Gauthama Research Centre, (Affilated to Kuvempu University), Sri Siddhartha Institute of Technology, Tumkur, karnataka, India.

Split geodetic number of a graph was studied by in [5]. A geodetic set S of a graph $G=(V, E)$ is a split geodetic set if the induced subgraph $\langle V-S\rangle$ is disconnected. The split geodetic number $g_{s}(G)$ of G is the minimum cardinality of a split geodetic set. Geodetic number of a lict graph was studied by in [4]. Geodetic number of a lict graph $\eta(\mathrm{G})$ of G is a set S^{\prime} of vertices of $\eta(\mathrm{G})=\mathrm{H}$ is called the geodetic set in H if $I\left[S^{\prime}\right]=\mathrm{V}(\mathrm{H})$ and a geodetic set of minimum cardinality is the geodetic number of $\eta(\mathrm{G})$ and is denoted by $g[\eta(G)]$. Now we define split geodetic number of a lict graph. A set S^{\prime} of vertices of $\eta(\mathrm{G})=\mathrm{H}$ is called the split geodetic set in H if the induced subgraph $\mathrm{V}(\mathrm{H})-S^{\prime}$ is disconnected and a split geodetic set of minimum cardinality is the split geodetic number of $\eta(\mathrm{G})$ and is denoted by $g_{s}[\eta(G)]$.

For the graph G given in Figure 4.2.1(a), $S=\{A, D, E\}$ is a minimum geodetic set so that $g(G)=3$ and $S_{1}=\{A, D, B, E\}$ is a minimum split geodetic set so that $g_{s}(G)=4$. For the graph $\eta(G)$ given in Figure $1.0(b), S^{\prime}=\{a, b, e\}$ is a minimum geodetic set so that $\mathrm{g}[\eta(\mathrm{G})]=3$ and $S_{2}=\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{h}\}$ is a minimum split geodetic set so that $\mathrm{g}_{s}[\eta(\mathrm{G})]=4$.

II. PRELIMINARY NOTES

We need the following results to prove further results.
Theorem 2.1: [1] Every geodetic set of a graph contains its extreme vertices.
Theorem 2.2: [2] For any path P_{n} of order n, the edge covering number

$$
\alpha_{1}\left(P_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Theorem 2.3: [1] Let G be a connected graph of order at least 3 . If G contains a minimum geodetic set S with a vertex x such that every vertex of G lies on some $x-w$ geodesic in G for some $w \in S$, then $g(G)=g\left(G \times K_{2}\right)$.

Theorem 2.4: [5] For any graph G, $g(G) \leq g_{s}(G)$.

III. MAIN RESULTS

Theorem 3.1: For any tree T of order $\mathrm{n}, g_{s}[\eta(T)]=n+1$.
Proof: Let S be the set of all extreme vertices of a lict graph $\eta(T)$ of a tree T . Let v_{i} be a cut vertex in $\mathrm{V}-\mathrm{S}$ and $S^{\prime}=S \cup\left\{v_{i}\right\}$, by Theorem $2.1 g_{s}[\eta(T)] \geq\left|S^{\prime}\right|$. On the other hand, for an internal vertex v of $\eta(T)$, there exists x , y of $\eta(T)$ such that v lies on the unique-y geodesic in $\quad \eta(T)$. By the definition of lict graph pendant vertices and cut vertices of T are the extreme vertices of $\eta(T)$ and the induced subgraph $\mathrm{V}[\eta(T)]-S^{\prime}$ is a split geodetic set of $\eta(T)$. Thus $g_{s}[\eta(T)] \leq\left|S^{\prime}\right|$. Also, every split geodetic set S_{1} of $\eta(T)$ must contain S^{\prime} which is the unique minimum split geodetic set. Therefore $\left|S^{\prime}\right|=\left|\mathrm{S}_{1}\right|=|\mathrm{S}|+\left|\mathrm{v}_{\mathrm{i}}\right|=\mathrm{n}+1$. Hence $g_{s}[\eta(T)]=n+1$.

Corollary 3.2: For any path $\mathrm{P}_{\mathrm{n}}, n \geq 6, g_{s}\left[\eta\left(P_{n}\right)\right]=n+1$.
Proof: Clearly the set of two pendant vertices of a path P_{n} is its unique geodetic set. From Theorem 3.1 the results follow.

Theorem 3.3: For any graph G of order $\mathrm{n}, g_{s}[\eta(G)] \leq n$.
Proof: Let S be the geodetic set of $\eta(G)$ such that $\langle\mathrm{V}-\mathrm{S}\rangle$ is connected. So S is not a split geodetic set of $\eta(G)$.
Now, we consider a set $S^{\prime}=S \cup\left\{v_{i}\right\}$ where v_{i} be the vertex in $\langle\mathrm{V}-\mathrm{S}\rangle$ and is adjacent to at least one vertex in S . Thus $\left\langle\mathrm{V}-\mathrm{S}^{\prime}\right\rangle$ is a split geodetic set of $\eta(G)$. Therefore $g_{s}[\eta(G)] \leq n$.

Theorem 3.4: For any path $\mathrm{P}_{\mathrm{n}}, n \geq 6, g_{s}\left[\eta\left(P_{n}\right)\right]=d+\Delta$ where Δ be the maximum degree and d be the diameter.
Proof: Since the set of two pendant vertices of a path is its unique geodetic set, the distance between those vertices is the diameter i.e $\mathrm{d}(\mathrm{u}, \mathrm{v}) \equiv 1 \mathrm{n}=\mathrm{d}$ and the maximum degree of vertices in path is $\Delta=2$. Clearly, it follows that $g_{s}\left[\eta\left(P_{n}\right)\right]=n-1+2=d+\Delta$.

Theorem 3.5: For any graph G of order $n, g_{s}[\eta(G)]>m-\alpha_{1}(G)+1$. Where α_{1} is the edge covering number.
Proof: Suppose $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}\right\}$ be the set of all pendant edges in G . Then $S \cup J$ where $J \subseteq E(G)-S$, be the minimal set of edges which covers all the vertices of G such that $|S \cup J|=\alpha_{1}(G)$. Now without loss of generality in $\eta(G)$, let $\mathrm{I}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{p}}\right\} \subseteq V[\eta(G)]$ be the set of vertices in $\eta(G)$ formed by the pendant vertices and cut vertices in G. Suppose $\mathrm{H}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{j}}\right\} \subseteq V[\eta(G)]-\mathrm{I}$. Then $I \cup\left\{u_{j}\right\}$, where $u_{j} \in H$, forms a minimum split geodetic set of $\eta(G)$. Clearly it follows that $\left|I \cup\left\{u_{j}\right\}\right|>|E(G)|-|S \cup J|+1$. Therefore $g_{s}[\eta(G)]>m-\alpha_{1}(G)+1$.

Theorem 3.6: For any graph G of order $\mathrm{n}, g_{s}[\eta(G)] \leq 3 \alpha_{0}(G)+1$.
Proof: Let S be a minimum set of vertices in G. Then S has at least two vertices and every vertex in S adjacent to some vertex in $\langle\mathrm{V}-\mathrm{S}\rangle$. Thus $\langle\mathrm{V}-\mathrm{S}\rangle$ is disconnected. Hence S is a split geodetic set of $\eta(G)$. Hence $g_{s}[\eta(G)] \leq 3 \alpha_{0}(G)+1$.

Theorem 3.7: For any graph G of order $n, g_{s}[\eta(G)]<n_{1}-k[\eta(G)]$, where n_{1} be the number of vertices in $\eta(G)$ and $k[\eta(G)]$ is a vertex connectivity.

Proof: Let $k(G)=\mathrm{k}$. Since $\eta(G)$ is connected and each block is complete, $l \leq k(G) \leq n_{1}-2$. Let $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ be a minimum cutset of $\mathrm{G}, \mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{r}}(r \geq 2)$ be the components of $\mathrm{G}-\mathrm{U}$ and let $\mathrm{W}=\mathrm{V}[\eta(G)]-\mathrm{U}$ then every vertex $\mathrm{u}_{\mathrm{i}}(l \leq i \leq k)$ is adjacent to at least one vertex of G_{j} for every $(i \leq j \leq r)$. Therefore, every vertex u_{i} belongs to a W geodesic path. Thus $g_{s}[\eta(G)]<n_{1}-k[\eta(G)]$.

Theorem 3.8: For any tree G of order n and diameter d then $g_{s}[\eta(G)] \leq n+d-2$.
Proof: Let $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{j}}\right\}$ be the geodetic set of $\eta(G)$ such that $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{i}}$ be the set of vertices in $\eta(G)$ corresponding to the pendant edges of G and also $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{j}} \in \eta(G)$ corresponds to the cut vertices of G . Now, consider a set $S^{\prime}=S U w_{k}$, where $\mathrm{w}_{\mathrm{k}} \in\langle v[\eta(G)]-S\rangle$. Hence $\left\langle v[\eta(G)]-S^{\prime}\right\rangle$ be a split geodetic set of $\eta(G)$. It follows that $\left|S^{\prime}\right|=|S|+1$. Hence $g_{s}[\eta(G)] \leq n+d-2$.

Theorem 3.9: For any graph G of order $\mathrm{n}, g_{s}[\eta(G)] \leq \alpha_{1}[\eta(G)]+4$.
Proof: Let S be the minimum set of edges covers all the vertices in $\eta(G)$. Then S has at least two vertices and every vertex in S is adjacent to some vertex in $\langle\mathrm{V}[\eta(G)]-\mathrm{S}\rangle$. Thus $\langle\mathrm{V}[\eta(G)]-\mathrm{S}\rangle$ is disconnected. Hence S is a split geodetic set of $\eta(G)$. Hence $g_{s}[\eta(G)] \leq \alpha_{1}[\eta(G)]+4$.

Theorem 3.10: For any graph G of order $n, g[\eta(G)]+g_{s}[\eta(G)]>n$.
Proof: Let $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\} \subseteq V[\eta(G)]$ be the minimum split geodetic set of $\eta(G)$. Now without loss of generality in $\eta(G)$, if $\mathrm{F}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{p}\right\}$ be the set of all extreme vertices in $\eta(G)$. Then $F \cup \mathrm{I}$ where $I \subseteq V[\eta(G)]-F$ forms a minimum split geodetic set of $\eta(G)$. Clearly, $|S| \cup|F \cup H|>n$. Therefore, $g[\eta(G)]+g_{s}[\eta(G)]>n$.

IV. ADDING AN PENDANT EDGE

Definition: For an edge $e=\{u, v\}$ of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, we call e an pendant edge and u an pendant-vertex. Let G^{\prime} be the graph obtained by adding an pendant-edge $\{\mathrm{u}, \mathrm{v}\}$ to a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ of order $n \geq 5$, with $u \in G$ and $v \notin G$.

Let G^{\prime} be the graph obtained by adding pendant edge $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right), \mathrm{i}=1,2 \ldots \mathrm{n}, \mathrm{j}=1,2, \ldots, \mathrm{k}$ to each vertex of G of order $n \geq 5$ such that $\mathrm{u}_{\mathrm{i}} \in \mathrm{G}, \mathrm{v}_{\mathrm{j}} \notin \mathrm{G}$.

Theorem 4.1: G^{\prime} be the graph obtained by adding k pendant edges $\left\{\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots,\left(u, v_{k}\right)\right\}$ to a cycle $C_{n}=G$ of order $n \geq 5$, with $u \in G$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\} \notin \mathrm{G}$. Then

$$
\mathrm{g}_{s}\left[\eta\left(G^{\prime}\right)\right]=\left\{\begin{array}{l}
K+4 \text { if } n \text { is even } \\
k+3 \text { if } n \text { is odd }
\end{array}\right.
$$

Proof: Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}, \mathrm{e}_{1}\right\}$ be a cycle with n vertices and let G^{\prime} be the graph obtained from $G=C_{\mathrm{n}}$ by adding pendant edges $\left(u, v_{i}\right), i=1,2, \ldots, k$. Such that $u \in G$ and $v_{i} \notin G$.

Case-1: Consider n is even.
By the definition of lict graph, $\eta\left(G^{\prime}\right)$ as an $\left\langle K_{k+3}\right\rangle$ as an induced subgraph. Also the edges ($\mathrm{u}, \mathrm{v}_{\mathrm{i}}$) $=\mathrm{e}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}$ and the cut vertices u_{i} becomes the vertices of $\eta\left(G^{\prime}\right)$ and these belongs to some geodetic set of $\eta\left(G^{\prime}\right)$. Hence $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{e}_{1}, \mathrm{e}_{\mathrm{m}}, \mathrm{u}_{\mathrm{i}}\right\}$ are the vertices of $\eta\left(G^{\prime}\right)$ where $\mathrm{e}_{\mathrm{l}}, \mathrm{e}_{\mathrm{m}}$ are the edges incident on the antipodal vertex of u in G^{\prime} and these vertices belongs to some geodetic set of $\eta\left(G^{\prime}\right)$, also $\eta\left(G^{\prime}\right)=C_{n} \cup K_{k+3}$. Let $\mathrm{S}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{e}_{1}, \mathrm{e}_{\mathrm{m}}, \mathrm{u}_{\mathrm{i}}\right\}$ be the geodetic set of $\eta\left(G^{\prime}\right)$. Since $V\left[\eta\left(G^{\prime}\right)\right]-\mathrm{S}$ is connected, we consider a set $S^{\prime}=S \cup e_{j}$ where e_{j} be the edge incident on the cut vertex of G^{\prime}. Such that $V\left[\eta\left(G^{\prime}\right)\right]-S^{\prime}$ is disconnected. So S^{\prime} is the minimum split geodetic set of $\eta\left(G^{\prime}\right)$. Therefore $g_{s}\left[\eta\left(G^{\prime}\right)\right]=k+4$.

Case-2: Consider n is odd.
By the definition of lict graph, $\eta\left(G^{\prime}\right)$ has $\left\langle K_{k+3}\right\rangle$ as an induced subgraph, also the edges ($\mathrm{u}, \mathrm{v}_{\mathrm{i}}$) $=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}\right\}$ becomes vertices of $\eta\left(G^{\prime}\right)$. Let $\mathrm{e}_{1}=(\mathrm{a}, \mathrm{b}) \epsilon \mathrm{G}$ such that $\mathrm{d}(\mathrm{u}, \mathrm{a})=\mathrm{d}(\mathrm{u}, \mathrm{b})$ in the graph $\eta\left(G^{\prime}\right)$. Let $\mathrm{S}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{e}_{1}\right\}$ be the geodetic set of $\eta\left(G^{\prime}\right)$.

Now, consider a set $S^{\prime}=S \cup\left\{e_{j}\right\}$ is a split geodetic set of $\eta\left(G^{\prime}\right)$ where e_{j} is the vertex from $\mathrm{V}\left[\eta\left(G^{\prime}\right)\right]-\mathrm{S}$ having deg=2. It is clear that S^{\prime} is the minimum split geodetic set of $\eta\left(G^{\prime}\right)$. Therefore $\mathrm{g}_{\mathrm{s}}\left[\eta\left(G^{\prime}\right)\right]=\mathrm{k}+3$.

Theorem 4.2: Let G^{\prime} be the graph obtained by adding pendant edge $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}, \mathrm{j}=1,2, \ldots$, k to each vertex of $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ of order $n \geq 5$ such that $u_{i} \in G, v_{j} \notin G$. Then, $g_{s}\left[\eta\left(G^{\prime}\right)\right]=n_{1}+2$, where n_{1} be the number of vertices in G^{\prime}.

Proof: Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}, \mathrm{e}_{1}\right\}$ be a cycle with n vertices and $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$. Let G^{\prime} be the graph obtained by adding pendant vertex $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}, \mathrm{j}=1,2, \ldots, \mathrm{k}$ to each vertex of G , such that $u_{i} \in G, v_{j} \notin G$. Clearly k be the number of end vertices of ' . By the definition of lict graph $\eta\left(G^{\prime}\right)$ have n copies of K_{4} as an induced subgraph. The edges $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\mathrm{e}_{\mathrm{j}}$ for all j and u_{i} becomes vertices of $\eta\left(G^{\prime}\right)$ and those lies on geodetic set of $\eta\left(G^{\prime}\right)$. Since they forms the extreme vertices of $\eta\left(G^{\prime}\right)$. By Theorem 2.1 $\mathrm{S}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{i}}\right\}$ forms geodetic set. Now consider any two vertices $\left\{\mathrm{e}_{\mathrm{l}}, \mathrm{e}_{\mathrm{m}}\right\} \in V-S$ which are not adjacent. $S^{\prime}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{i}}, \mathrm{e}_{\mathrm{l}}, \mathrm{e}_{\mathrm{m}}\right\}$ forms a split geodetic set of S^{\prime}. Suppose $\mathrm{P}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{i}}, \mathrm{e}_{1}\right\}$ be the set of vertices of $\eta\left(G^{\prime}\right)$, such that $|\mathrm{P}|<\left|S^{\prime}\right|$, then $\mathrm{V}-\mathrm{P}$ is connected. Hence it is clear that S^{\prime} is the minimum split geodetic set of S^{\prime}. Therefore $g_{s}\left[\eta\left(G^{\prime}\right)\right]=n_{1}+2$.

Theorem 4.3: Let $\mid G^{\prime}$ be the graph obtained by adding k end edges $\left\{\left(\mathrm{u}, \mathrm{v}_{1}\right),\left(\mathrm{u}, \mathrm{v}_{2}\right), \ldots,\left(\mathrm{u}, \mathrm{v}_{\mathrm{k}}\right)\right\}$ to a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ of order $n \geq 5$, with $\mathrm{u} \in \mathrm{G}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\} \notin G$. Then $g_{s}\left[\eta\left(G^{\prime}\right)\right] \leq \alpha_{1}\left[\eta\left(G^{\prime}\right)\right]$, where α_{1} be the edge covering number of G^{\prime}.

Proof: Let S be the minimum set of edges which covers all the vertices in $\eta\left(G^{\prime}\right)$. Then S has at least two vertices and every vertex in S is adjacent to some vertex in $\left\langle V\left[\eta\left(G^{\prime}\right)\right]-S\right\rangle$. Thus $\left\langle V\left[\eta\left(G^{\prime}\right)\right]-S\right\rangle$ is disconnected. Hence S is a split geodetic set of $\eta\left(G^{\prime}\right)$. Hence $g_{s}\left[\eta\left(G^{\prime}\right)\right] \leq \alpha_{1}\left[\eta\left(G^{\prime}\right)\right]$.

Theorem 4.4: Let G^{\prime} be the graph obtained by adding pendant edge $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right), \mathrm{i}=1,2, \ldots, \mathrm{n}, \mathrm{j}=1,2, \ldots, \mathrm{k}$ to each vertex of $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ of order $n \geq 5$, such that $u_{i} \in \mathrm{G}, v_{j} \notin \mathrm{G}$. Then $g_{s}\left[\eta\left(G^{\prime}\right)\right]=\alpha_{1}\left[\eta\left(G^{\prime}\right)\right]+4$, where α_{1} be the edge covering number of $\eta\left(G^{\prime}\right)$.

Proof: Let S be the minimum set of edges which covers all the vertices in $\eta\left(G^{\prime}\right)$. Then S has at least two vertices and every vertex in S is adjacent to some vertex in $\left\langle V\left[\eta\left(G^{\prime}\right)-S\right]\right\rangle$. Thus $\left\langle V\left[\eta\left(G^{\prime}\right)-S\right\rangle\right]$ is disconnected. Hence S is a split geodetic set of $\eta\left(G^{\prime}\right)$. Hence $g_{s}\left[\eta\left(G^{\prime}\right)\right]=\alpha_{1}\left[\eta\left(G^{\prime}\right)\right]+4$.

Theorem 4.5: Let G^{\prime} be the graph obtained by adding k pendant edges $\left\{\left(\mathrm{u}, \mathrm{v}_{1}\right),\left(\mathrm{u}, \mathrm{v}_{2}\right), \ldots,\left(\mathrm{u}, \mathrm{v}_{\mathrm{k}}\right)\right\}$ to a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ of order $n \geq 5$, with $u \in G$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\} \notin G$. Then $g_{s}\left[\eta\left(G^{\prime}\right)\right]<n_{1}-\kappa\left(G^{\prime}\right)$, where $\kappa\left(G^{\prime}\right)$ be the vertex connectivity of G^{\prime}.

Proof: Let $\kappa\left(G^{\prime}\right)=\mathrm{k}$. Since G^{\prime} is connected but not complete. Let u_{k} be a cutset of G^{\prime} and $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{r}}, r \geq 2$ be the components of $\mathrm{G}^{-} \mathrm{u}_{\mathrm{k}}$ and let $P=V\left(G^{\prime}\right)-u_{k}$ then every vertex is adjacent to at least one vertex of $\mathrm{G}_{\mathrm{j}}(1 \leq j \leq r)$. Therefore every vertex u_{i} belongs to some geodetic set. Hence $g_{s}\left[\eta\left(G^{\prime}\right)\right]<n_{1}-\kappa\left(G^{\prime}\right)$.

V. CARTESIAN PRODUCT

The Cartesian product of the graphs H_{1} and H_{2}, written as $\mathrm{H}_{1} \times \mathrm{H}_{2}$, is the graph with vertex set $\mathrm{V}\left(\mathrm{H}_{1}\right) \times \mathrm{V}\left(\mathrm{H}_{2}\right)$, two vertices u_{1}, u_{2} and v_{1}, v_{2} being adjacent in $H_{1} \times H_{2}$ if and only if either $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E\left(H_{2}\right)$, or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in E\left(H_{1}\right)$.

Theorem 5.1: For any path P_{n} of order $\mathrm{n}, g_{s}\left[K_{3} \times \eta\left(P_{n}\right)\right]=n+2$.
Proof: By the definition of lict graph $\eta\left(P_{n}\right)=\mathrm{K}_{3}, \mathrm{~K}_{3}, \ldots$, ($\mathrm{n}-2$) factors $(n \geq 3)$. Consider $\mathrm{G}=\eta\left(P_{n}\right)$, let $\mathrm{K}_{3} \times \mathrm{G}$ be the graph formed from three copies $\mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3} of G and S be a minimum geodetic set of $\mathrm{K}_{3} \times \mathrm{G}$. Now, we define S^{\prime} be the union of those vertices of G belonging to S . Let $v \in V\left(G_{1}\right)$ lies on some $\mathrm{x}-\mathrm{y}$ geodesic for any $\mathrm{x}, \mathrm{y} \in \mathrm{S}$. Since S is a geodetic set by the Theorem 2.1 we have $g\left[\eta\left(P_{n}\right)\right]=\mathrm{n}$ at least one of x and y belongs to V_{1}. If both $\mathrm{x}, \mathrm{y} \in \mathrm{V}_{1}$, then $\mathrm{x}, \mathrm{y} \in S^{\prime}$. Hence we may assume that $\mathrm{x} \in \mathrm{V}_{1}$ and $\mathrm{y} \in \mathrm{V}_{2}$. If corresponds to x then $\mathrm{v}=\mathrm{x} \in S^{\prime}$ where $\mathrm{y} \neq \mathrm{x}$. Since $d(x, y)=d\left(x, y^{\prime}\right)+1$ and the vertex v lies on an $x-y$ geodesic in $K_{3} \times G$. Let S contains a vertex x with the property that every vertex of G_{1} lies on an $x-w$ geodesic in G_{1} for some $w \in S$. Let S^{\prime} consists of x together with those vertices of G_{3} and G_{2} corresponding to those vertices in $\mathrm{S}^{-} \mathrm{x}$. Thus $\left|S^{\prime}\right|=|S| \cup\{a, b\}$ where $\{a, b\}$ be the vertices in G_{3} and G_{2}. Hence, S^{\prime} is a split geodetic set of $K_{3} \times G$.

Therefore $\left|S^{\prime}\right|=\mathrm{g}\left[\eta\left(\mathrm{P}_{\mathrm{n}}\right)\right]+\{a, b\}$
$\Rightarrow g_{s}\left[K_{3} \times G\right]=n+2$
$\Rightarrow g_{s}\left[K_{3} \times\left[\eta\left(P_{n}\right)\right]\right]=n+2$.
Theorem 5.2: For any path P_{n} of order n, then

$$
\mathrm{g}_{s}\left[K_{3} \times\left[\eta\left(P_{n}\right)\right]\right]=\left\{\begin{array}{ll}
2 \alpha_{1}\left(P_{n}\right)+1 & \text { if } n \text { is even } \\
2 \alpha_{1}\left(P_{n}\right)+2 & \text { if } n \text { is odd }
\end{array} \text {, where } \alpha_{1}\right. \text { be the edge covering number. }
$$

Proof: Let $\alpha_{1}\left(\mathrm{P}_{\mathrm{n}}\right)$ be a edge covering of a graph is a minimum cardinality of an edge cover of a path P_{n}. We have the following cases.

Case-1: Suppose n is odd, we have $\alpha_{1}\left(\mathrm{P}_{\mathrm{n}}\right)=\frac{n+1}{2}$
$\Rightarrow 2 \alpha_{1}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}+1$
Since $g_{s}\left[K_{3} \times \eta\left(G^{\prime}\right)\right]=n+2$
$\Rightarrow g_{s}\left[K_{3} \times \eta\left(G^{\prime}\right)\right]=\mathrm{n}+1+1$
$\Rightarrow g_{s}\left[K_{3} \times \eta\left(G^{\prime}\right)\right]=2 \alpha_{1}\left(P_{n}\right)+1$.
Case-2: Suppose n is even, we have $\alpha_{1}\left(\mathrm{P}_{\mathrm{n}}\right)=\frac{n}{2}$
$\Rightarrow 2 \alpha_{1}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}$
Since $g_{s}\left[K_{3} \times \eta\left(G^{\prime}\right)\right]=n+2$
$\Rightarrow g_{s}\left[K_{3} \times \eta\left(G^{\prime}\right)\right]=2 \alpha_{1}\left(P_{n}\right)+2$.
Theorem 5.3: For any path P_{n} of order $\mathrm{n}, g_{s}\left[K_{3} \times\left[\eta\left(P_{n}\right)\right]\right] \leq 3 \alpha_{0}\left(P_{n}\right)+1$, where α_{0} is a vertex covering number.
Proof: Let S be a minimum set of vertices in P_{n}. Then S has at least two vertices and every vertex in S adjacent to some vertex in $\langle V-S\rangle$. Thus $\langle V-S\rangle$ is disconnected. Hence S is a split geodetic set of $\mathrm{K}_{3} \times \eta\left(\mathrm{P}_{\mathrm{n}}\right)$.

Hence $g_{s}\left[K_{3} \times\left[\eta\left(P_{n}\right)\right]\right] \leq 3 \alpha_{0}\left(P_{n}\right)+1$.
Corollary 5.4: For any path P_{n} of order $\mathrm{n}, g_{s}\left[K_{3} \times \eta\left(P_{n}\right)\right]>g_{n s}\left[K_{3} \times \eta\left(P_{n}\right)\right]$.
Proof: Proof follows from the above Theorem.

REFERENCES

1. G. Chartrand, F. Harary, and P.Zhang, On the geodetic number of a graph.Networks.39, 1-6 (2002).
2. G. Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw Hill Pub.Co.Ltd. (2006).
3. F.Harary, Graph Theory, Addison-Wesely, Reading, MA, (1969).
4. Tejaswini K.M, Venkanagouda M.Goudar, Venkatesha, M.H.Muddebihal, On the Lict Geodetic Number of a Graph, Int.J.Math.and Computer Application Research,vol.2,no.3,65-69 (2012).
5. Venkanagouda M.Goudar, K.S.Ashalatha, Venkatesha, Split Geodetic Number of a Graph, Advances and Applications in Discrete Mathematics, vol.13, no.1, 9-22 (2014).

Source of support: Nil, Conflict of interest: None Declared

