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ABSTRACT 
A set 𝑺𝑺 ⊆ 𝑽𝑽[𝜼𝜼(𝑮𝑮)]is a split geodetic set of (𝑮𝑮) , if S is a geodetic set and 〈𝑽𝑽 − 𝑺𝑺〉 is disconnected. The split geodetic 
number of a lict graph𝜼𝜼(𝑮𝑮), is denoted by gs[𝜼𝜼(𝑮𝑮)], is the minimum cardinality of a split geodetic set of 𝜼𝜼(𝑮𝑮). In this 
paper we obtain the split geodetic number of lict graph of any graph. Also obtain many bounds on split geodetic 
number in terms of elements of G and covering number of G. We investigate the relationship between split geodetic 
number and geodetic number. 
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I. INTRODUCTION 

 
In this paper we follow the notations of [3]. As usual n = |V | and m = |E| denote the number of vertices and edges of a 
graph G respectively. The graphs considered here are undirected and non complete. For any graph G= (V, E), the lict 
graph η(G) whose vertices correspond to the edges of G and two vertices in η(G) are adjacent if and only if the 
corresponding edges in G are adjacent. The distance d(u, v) between two vertices u and v in a connected graph G is the 
length of a shortest u − v path in G. It is well known that this distance is a metric on the vertex set V (G). For a vertex v 
of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the 
vertices of G is radius, rad G, and the maximum eccentricity is the diameter, diam G. A u − v path of length d(u, v ) is 
called a u − v geodesic. We define I[u, v] to the set (interval) of all vertices lying on some u − v geodesic of G and for a 
nonempty subset S of V (G), 𝐼𝐼[𝑆𝑆] =∪𝑢𝑢,𝑣𝑣∈𝑆𝑆 𝐼𝐼[𝑢𝑢, 𝑣𝑣]. 
 
A set S of vertices of G is called a geodetic set in G if I[S] = V (G), and a geodetic set of minimum cardinality is a 
minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we 
denote it by g(G). 
 
A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbours is complete. A vertex cover in a 
graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the 
vertex covering number 𝛼𝛼0(𝐺𝐺) of G. An edge cover of a graph G without isolated vertices is a set of edges of G that 
covers all the vertices of G. The edge covering number 𝛼𝛼1(𝐺𝐺) of a graph G is the minimum cardinality of an edge cover 
of G. 
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Split geodetic number of a graph was studied by in [5]. A geodetic set S of a graph G = (V, E) is a split geodetic set if 
the induced subgraph 〈V − S〉 is disconnected. The split geodetic number gs(G) of G is the minimum cardinality of a 
split geodetic set. Geodetic number of a lict graph was studied by in [4]. Geodetic number of a lict graph η(G) of G is a 
set 𝑆𝑆′ of vertices of η(G)= H is called the geodetic set in H if 𝐼𝐼[𝑆𝑆′]= V (H) and a geodetic set of minimum cardinality is 
the geodetic number of η(G) and is denoted by𝑔𝑔[𝜂𝜂(𝐺𝐺)]. Now we define split geodetic number of a lict graph. A set 𝑆𝑆′ 
of vertices of η(G)= H is called the split geodetic set in H if the induced subgraph V (H) – 𝑆𝑆′ is disconnected and a split 
geodetic set of minimum cardinality is the split geodetic number of η(G)and is denoted by 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)]. 
 

 
For the graph G given in Figure 4.2.1(a), S = {A, D, E} is a minimum geodetic set so that g(G) = 3 and S1 = {A,D,B,E} 
is a minimum split geodetic set so that gs(G) = 4. For the graph η (G) given in Figure 1.0(b), S′ = {a, b, e} is a minimum 
geodetic set so that g[η (G)] = 3 and 𝑆𝑆2  = {a, b, e, h} is a minimum split geodetic set so that gs[η (G)] = 4. 
 
II. PRELIMINARY NOTES 

 
We need the following results to prove further results. 
 
Theorem 2.1: [1] Every geodetic set of a graph contains its extreme vertices. 
 
Theorem 2.2: [2] For any path Pn of order n, the edge covering number 

𝛼𝛼1(𝑃𝑃𝑛𝑛) = �

𝑛𝑛
2

         𝑖𝑖𝑖𝑖  𝑛𝑛  𝑖𝑖𝑠𝑠  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛 + 1

2
  𝑖𝑖𝑖𝑖  𝑛𝑛  𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜

� 

 
Theorem 2.3: [1] Let G be a connected graph of order at least 3. If G contains a minimum geodetic set S with a vertex 
x such that every vertex of G lies on some x − w geodesic in G for some 𝑤𝑤𝑤𝑤𝑤𝑤, then g(G) = g(G ×K2). 
 
Theorem 2.4: [5] For any graph G, 𝑔𝑔(𝐺𝐺) ≤ 𝑔𝑔𝑠𝑠(𝐺𝐺). 
 
III. MAIN RESULTS 

 
Theorem 3.1: For any tree T of order n, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝑇𝑇)] = 𝑛𝑛 + 1. 
 
Proof: Let S be the set of all extreme vertices of a lict graph 𝜂𝜂(𝑇𝑇) of a tree T. Let vi be a cut vertex in V − S and    
 𝑆𝑆′ = 𝑆𝑆⋃{𝑣𝑣𝑖𝑖}, by Theorem 2.1 𝑔𝑔𝑠𝑠[𝜂𝜂(𝑇𝑇)] ≥ |𝑆𝑆′|. On the other hand, for an internal vertex v of 𝜂𝜂(𝑇𝑇), there exists x, y of 
 𝜂𝜂(𝑇𝑇) such that v lies on the unique x−y geodesic in   𝜂𝜂(𝑇𝑇). By the definition of lict graph pendant vertices and cut 
vertices of T are the extreme vertices of 𝜂𝜂(𝑇𝑇) and the induced subgraph V [𝜂𝜂(𝑇𝑇)] – 𝑆𝑆′ is a split geodetic set of  𝜂𝜂(𝑇𝑇). 
Thus  𝑔𝑔𝑠𝑠[𝜂𝜂(𝑇𝑇)] ≤ |𝑆𝑆′|. Also, every split geodetic set S1 of  𝜂𝜂(𝑇𝑇) must contain 𝑆𝑆′ which is the unique minimum split 
geodetic set. Therefore | 𝑆𝑆′ | = |S1| = |S| + |vi| = n + 1. Hence 𝑔𝑔𝑠𝑠[𝜂𝜂(𝑇𝑇)] = 𝑛𝑛 + 1. 
 
Corollary 3.2: For any path Pn, 𝑛𝑛 ≥ 6, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝑃𝑃𝑛𝑛)] = 𝑛𝑛 + 1. 
 
Proof: Clearly the set of two pendant vertices of a path Pn is its unique geodetic set. From Theorem 3.1 the results 
follow. 
 
Theorem 3.3: For any graph G of order n, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝑛𝑛. 
 
Proof: Let S be the geodetic set of 𝜂𝜂(𝐺𝐺) such that 〈V − S〉 is connected. So S is not a split geodetic set of  𝜂𝜂(𝐺𝐺).  
Now, we consider a set  𝑆𝑆′ = 𝑆𝑆⋃{𝑣𝑣𝑖𝑖} where vi be the vertex in 〈V − S〉  and is adjacent to at least one vertex in S. Thus 
〈V − S′〉  is a split geodetic set of  𝜂𝜂(𝐺𝐺). Therefore 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝑛𝑛.  



Venkanagouda M Goudar, Tejaswini K.M*, Venkatesha / Split Geodetic Number of a Lict Graph / IJMA- 6(6), June-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                    211   

 
Theorem 3.4: For any path Pn, 𝑛𝑛 ≥ 6, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝑃𝑃𝑛𝑛)] = 𝑑𝑑 +△ where △ be the maximum degree and d be the diameter. 
 
Proof: Since the set of two pendant vertices of a path is its unique geodetic set, the distance between those vertices is 
the diameter i.e d(u, v) = n−1 = d and the maximum degree of vertices in path is △ = 2. Clearly, it follows 
that  𝑔𝑔𝑠𝑠[𝜂𝜂(𝑃𝑃𝑛𝑛)] = 𝑛𝑛 − 1 + 2 = 𝑑𝑑 +△. 
 
Theorem 3.5: For any graph G of order n, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] > 𝑚𝑚 − 𝛼𝛼1(𝐺𝐺) + 1. Where 𝛼𝛼1 is the edge covering number. 
 
Proof: Suppose S = {e1, e2, ..., ek} be the set of all pendant edges in G. Then 𝑆𝑆 ∪ 𝐽𝐽 where 𝐽𝐽 ⊆ 𝐸𝐸(𝐺𝐺) − 𝑆𝑆, be the minimal 
set of edges which covers all the vertices of G such that |𝑆𝑆 ∪ 𝐽𝐽| = 𝛼𝛼1(𝐺𝐺). Now without loss of generality in  𝜂𝜂(𝐺𝐺), let    
I = {u1, u2, ..., up} ⊆ 𝑉𝑉[𝜂𝜂(𝐺𝐺)] be the set of vertices in  𝜂𝜂(𝐺𝐺) formed by the pendant vertices and cut vertices in G. 
Suppose H = {u1, u2, ..., uj} ⊆ 𝑉𝑉[𝜂𝜂(𝐺𝐺)] − I. Then 𝐼𝐼 ∪ �𝑢𝑢𝑗𝑗 �, where 𝑢𝑢𝑗𝑗 ∈ 𝐻𝐻, forms a minimum split geodetic set of 𝜂𝜂(𝐺𝐺). 
Clearly it follows that �𝐼𝐼 ∪ �𝑢𝑢𝑗𝑗 �� > |𝐸𝐸(𝐺𝐺)| − |𝑆𝑆 ∪ 𝐽𝐽| + 1. Therefore 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] > 𝑚𝑚 − 𝛼𝛼1(𝐺𝐺) + 1. 
 
Theorem 3.6: For any graph G of order n,  𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 3𝛼𝛼0(𝐺𝐺) + 1. 
 
Proof: Let S be a minimum set of vertices in G. Then S has at least two vertices and every vertex in S adjacent to some 
vertex in 〈V − S〉. Thus 〈V − S〉 is disconnected. Hence S is a split geodetic set of 𝜂𝜂(𝐺𝐺). Hence 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 3𝛼𝛼0(𝐺𝐺) + 1. 
 
Theorem 3.7: For any graph G of order n, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] < 𝑛𝑛1 − 𝑘𝑘[𝜂𝜂(𝐺𝐺)], where n1 be the number of vertices in 𝜂𝜂(𝐺𝐺) and 
𝑘𝑘[𝜂𝜂(𝐺𝐺)] is a vertex connectivity. 
 
Proof: Let 𝑘𝑘(𝐺𝐺) = k. Since 𝜂𝜂(𝐺𝐺)is connected and each block is complete, 𝑙𝑙 ≤ 𝑘𝑘(𝐺𝐺) ≤ 𝑛𝑛1 − 2. Let U = {u1, u2, ..., uk} 
be a minimum cutset of G, G1, G2, ...,Gr (𝑟𝑟 ≥ 2) be the components of G − U and let W = V [ 𝜂𝜂(𝐺𝐺)] – U then every 
vertex ui (𝑙𝑙 ≤ 𝑖𝑖 ≤ 𝑘𝑘) is adjacent to at least one vertex of Gj for every (𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑟𝑟). Therefore, every vertex ui belongs to 
a W geodesic path. Thus 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] < 𝑛𝑛1 − 𝑘𝑘[𝜂𝜂(𝐺𝐺)]. 
 
Theorem 3.8: For any tree G of order n and diameter d then𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝑛𝑛 + 𝑑𝑑 − 2. 
 
Proof: Let S = {v1, v2, ..., vi, u1, u2, ..., uj} be the geodetic set of 𝜂𝜂(𝐺𝐺) such that v1, v2, ..., vi be the set of vertices in 
𝜂𝜂(𝐺𝐺) corresponding to the pendant edges of G and also u1, u2, ..., uj ∈ 𝜂𝜂(𝐺𝐺) corresponds to the cut vertices of G. Now, 
consider a set  𝑆𝑆′ = 𝑆𝑆⋃𝑤𝑤𝑘𝑘 ,  where wk ∈ 〈𝑣𝑣[𝜂𝜂(𝐺𝐺)] − 𝑆𝑆〉 . Hence 〈𝑣𝑣[𝜂𝜂(𝐺𝐺)] − 𝑆𝑆′〉  be a split geodetic set of  𝜂𝜂(𝐺𝐺) . It 
follows that |𝑆𝑆′| = |𝑆𝑆| + 1. Hence  𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝑛𝑛 + 𝑑𝑑 − 2. 
 
Theorem 3.9: For any graph G of order n, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝛼𝛼1[𝜂𝜂(𝐺𝐺)] + 4. 
 
Proof: Let S be the minimum set of edges covers all the vertices in  𝜂𝜂(𝐺𝐺). Then S has at least two vertices and every 
vertex in S is adjacent to some vertex in 〈V[𝜂𝜂(𝐺𝐺)] − S〉. Thus 〈V[𝜂𝜂(𝐺𝐺)] − S〉 is disconnected. Hence S is a split geodetic 
set of  𝜂𝜂(𝐺𝐺). Hence 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] ≤ 𝛼𝛼1[𝜂𝜂(𝐺𝐺)] + 4. 
 
Theorem 3.10: For any graph G of order n, g[𝜂𝜂(𝐺𝐺)] + 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] > 𝑛𝑛. 
. 
Proof: Let S = {v1, v2, ..., vn} ⊆ 𝑉𝑉[𝜂𝜂(𝐺𝐺)] be the minimum split geodetic set of  𝜂𝜂(𝐺𝐺). Now without loss of generality in 
𝜂𝜂(𝐺𝐺), if  F = {u1, u2, ..., up} be the set of all extreme vertices in 𝜂𝜂(𝐺𝐺). Then 𝐹𝐹 ⋃ I 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼 ⊆ 𝑉𝑉[𝜂𝜂(𝐺𝐺)] − 𝐹𝐹 forms a 
minimum split geodetic set of 𝜂𝜂(𝐺𝐺). Clearly, |𝑆𝑆|⋃|𝐹𝐹⋃𝐻𝐻| > 𝑛𝑛. Therefore, 𝑔𝑔[𝜂𝜂(𝐺𝐺)] + 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺)] > 𝑛𝑛. 
 
IV. ADDING AN PENDANT EDGE 
 
Definition: For an edge e = {u, v} of a graph G with deg(u) = 1 and deg(v) > 1, we call e an pendant edge and u an 
pendant-vertex. Let 𝐺𝐺′ be the graph obtained by adding an pendant-edge {u, v} to a cycle Cn = G of order  𝑛𝑛 ≥ 5, with 
u ∈  G and v ∉ G. 
 
Let 𝐺𝐺′  be the graph obtained by adding pendant edge (ui, vj), i = 1, 2... n, j = 1, 2, ..., k to each vertex of G of order 
𝑛𝑛 ≥ 5 such that ui ∈ G, vj ∉ G. 
 
Theorem 4.1:  𝐺𝐺′ be the graph obtained by adding k pendant edges {(u, v1), (u, v2), ..., (u, vk)} to a cycle Cn = G of 
order 𝑛𝑛 ≥ 5, with u ∈ G and {v1, v2, ..., vk} ∉ G. Then  

gs[𝜂𝜂(𝐺𝐺′)]= �𝐾𝐾 + 4 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘 + 3  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

� 

 
Proof: Let {e1, e2, ..., en, e1} be a cycle with n vertices and let 𝐺𝐺′ be the graph obtained from G = Cn by adding pendant 
edges   (u, vi), i = 1, 2, ..., k. Such that u ∈ G and vi ∉ G. 
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Case-1: Consider n is even. 
 
By the definition of lict graph, 𝜂𝜂(𝐺𝐺′)as an 〈𝐾𝐾𝑘𝑘+3〉 as an induced subgraph. Also the edges (u, vi) = ei, i = 1, 2, ..., k and 
the cut vertices ui becomes the vertices of 𝜂𝜂(𝐺𝐺′)  and these belongs to some geodetic set of 𝜂𝜂(𝐺𝐺′) . Hence                     
{e1, e2, ..., ek, el, em, ui} are the vertices of  𝜂𝜂(𝐺𝐺′) where el, em are the edges incident on the antipodal vertex of u in 𝐺𝐺′ 
and these vertices belongs to some geodetic set of  𝜂𝜂(𝐺𝐺′), also 𝜂𝜂(𝐺𝐺′)= 𝐶𝐶𝑛𝑛 ∪ 𝐾𝐾𝑘𝑘+3. Let S = {e1, e2, ..., ek, el, em, ui} be the 
geodetic set of  𝜂𝜂(𝐺𝐺′).  Since 𝑉𝑉[𝜂𝜂(𝐺𝐺′ )] −S is connected, we consider a set  𝑆𝑆′ = 𝑆𝑆 ∪ 𝑒𝑒𝑗𝑗   where ej be the edge incident on 
the cut vertex of 𝐺𝐺′ . Such that  𝑉𝑉[𝜂𝜂(𝐺𝐺′)] − 𝑆𝑆′  is disconnected. So 𝑆𝑆′  is the minimum split geodetic set of 𝜂𝜂(𝐺𝐺′) . 
Therefore 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] = 𝑘𝑘 + 4. 
 
Case-2: Consider n is odd. 
 
By the definition of lict graph, 𝜂𝜂(𝐺𝐺′) has 〈𝐾𝐾𝑘𝑘+3〉 as an induced subgraph, also the edges (u, vi) = {e1, e2, ..., ek} becomes 
vertices of  𝜂𝜂 (𝐺𝐺′ ).  Let el = (a, b) 𝜖𝜖 G such that d(u, a) = d(u, b) in the graph 𝜂𝜂(𝐺𝐺′). Let S = {e1, e2, ..., ek, el} be the 
geodetic set of 𝜂𝜂(𝐺𝐺′).  
 
Now, consider a set 𝑆𝑆′ = 𝑆𝑆⋃�𝑒𝑒𝑗𝑗 � is a split geodetic set of 𝜂𝜂(𝐺𝐺′) where ej is the vertex from V [𝜂𝜂(𝐺𝐺′)] − S having       
deg= 2. It is clear that 𝑆𝑆′ is the minimum split geodetic set of  𝜂𝜂(𝐺𝐺′). Therefore gs [𝜂𝜂(𝐺𝐺′)] = k+3. 
 
Theorem 4.2: Let 𝐺𝐺′ be the graph obtained by adding pendant edge (ui, vj), i = 1, 2, ..., n, j = 1, 2, ..., k to each vertex of 
G = Cn of order 𝑛𝑛 ≥ 5 such that 𝑢𝑢𝑖𝑖 ∈ 𝐺𝐺, 𝑣𝑣𝑗𝑗 ∉ 𝐺𝐺. Then, 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] = 𝑛𝑛1 + 2 , where n1 be the number of vertices in  𝐺𝐺′. 
 
Proof: Let {e1, e2, ..., en, e1} be a cycle with n vertices and G = Cn. Let 𝐺𝐺′ be the graph obtained by adding pendant 
vertex (ui, vj), i = 1, 2, ..., n, j = 1, 2, ..., k to each vertex of G, such that 𝑢𝑢𝑖𝑖 ∈ 𝐺𝐺, 𝑣𝑣𝑗𝑗 ∉ 𝐺𝐺.  Clearly k be the number of end 
vertices of ′ . By the definition of lict graph 𝜂𝜂(𝐺𝐺′) have n copies of K4 as an induced subgraph. The edges (ui, vj) = ej for 
all j and ui becomes vertices of  𝜂𝜂(𝐺𝐺′) and those lies on geodetic set of  𝜂𝜂(𝐺𝐺′). Since they forms the extreme vertices of 
 𝜂𝜂(𝐺𝐺′). By Theorem 2.1 S = {e1, e2, ..., ek, u1, u2, ..., ui} forms geodetic set . Now consider any two vertices                  
{el, em} ∈ 𝑉𝑉 − 𝑆𝑆 which are not adjacent.  𝑆𝑆′ = {e1, e2, ..., ek, u1, u2, ..., ui, el, em} forms a split geodetic set of  𝑆𝑆′. 
Suppose P = {e1, e2, ..., ek, u1, u2, ..., ui, el} be the set of vertices of 𝜂𝜂(𝐺𝐺′), such that |P| < | 𝑆𝑆′ |, then V −P is connected. 
Hence it is clear that 𝑆𝑆′ is the minimum split geodetic set of 𝑆𝑆′ . Therefore  𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] = 𝑛𝑛1 + 2. 
 
Theorem 4.3: Let |𝐺𝐺′  be the graph obtained by adding k end edges {(u, v1), (u, v2), ..., (u, vk)} to a cycle Cn = G of 
order 𝑛𝑛 ≥ 5, with u ∈ G and {v1, v2, ..., vk} ∉ 𝐺𝐺 . Then𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] ≤ 𝛼𝛼1[𝜂𝜂(𝐺𝐺′)], where 𝛼𝛼1 be the edge covering number 
of 𝐺𝐺′. 
 
Proof: Let S be the minimum set of edges which covers all the vertices in 𝜂𝜂(𝐺𝐺′). Then S has at least two vertices and 
every vertex in S is adjacent to some vertex in 〈𝑉𝑉[𝜂𝜂(𝐺𝐺′)] − 𝑆𝑆〉. Thus 〈𝑉𝑉[𝜂𝜂(𝐺𝐺′)] − 𝑆𝑆〉 is disconnected. Hence S is a split 
geodetic set of 𝜂𝜂(𝐺𝐺′). Hence  𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] ≤ 𝛼𝛼1[𝜂𝜂(𝐺𝐺′)]. 
 
Theorem 4.4:  Let 𝐺𝐺′ be the graph obtained by adding pendant edge (ui, vj), i = 1, 2, ..., n, j = 1, 2, ..., k to each vertex 
of G = Cn of order 𝑛𝑛 ≥ 5,such that  𝑢𝑢𝑖𝑖 ∈ G, 𝑣𝑣𝑗𝑗 ∉ G. Then  𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] = 𝛼𝛼1[𝜂𝜂(𝐺𝐺′)] + 4, where 𝛼𝛼1 be the edge covering 
number of 𝜂𝜂(𝐺𝐺′). 
 
Proof: Let S be the minimum set of edges which covers all the vertices in 𝜂𝜂(𝐺𝐺′). Then S has at least two vertices and 
every vertex in S is adjacent to some vertex in 〈𝑉𝑉[𝜂𝜂(𝐺𝐺′) − 𝑆𝑆]〉. Thus 〈𝑉𝑉[𝜂𝜂(𝐺𝐺′) − 𝑆𝑆〉] is disconnected. Hence S is a split 
geodetic set of 𝜂𝜂(𝐺𝐺′). Hence 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] = 𝛼𝛼1[𝜂𝜂(𝐺𝐺′)] + 4. 
 
Theorem 4.5: Let 𝐺𝐺′ be the graph obtained by adding k pendant edges {(u, v1), (u, v2), ..., (u, vk)} to a cycle Cn = G of 
order 𝑛𝑛 ≥ 5, with 𝑢𝑢 ∈ 𝐺𝐺and {v1, v2, ..., vk} ∉ 𝐺𝐺. Then 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] < 𝑛𝑛1 − 𝜅𝜅(𝐺𝐺′), where 𝜅𝜅(𝐺𝐺′) be the vertex connectivity 
of 𝐺𝐺′. 
 
Proof: Let 𝜅𝜅(𝐺𝐺′)= k. Since 𝐺𝐺′  is connected but not complete. Let uk be a cutset of 𝐺𝐺′  and G1, G2, ...,Gr, 𝑟𝑟 ≥ 2 be the 
components of G − u k and let 𝑃𝑃 = 𝑉𝑉(𝐺𝐺′) − 𝑢𝑢𝑘𝑘  then every vertex is adjacent to at least one vertex of Gj (1 ≤ 𝑗𝑗 ≤ 𝑟𝑟). 
Therefore every vertex ui belongs to some geodetic set. Hence 𝑔𝑔𝑠𝑠[𝜂𝜂(𝐺𝐺′)] < 𝑛𝑛1 − 𝜅𝜅(𝐺𝐺′). 
 
V. CARTESIAN PRODUCT 

 
The Cartesian product of the graphs H1 and H2, written as H1×H2, is the graph with vertex set V(H1)×V(H2), two 
vertices u1, u2 and v1, v2 being adjacent in H1× H2 if and only if either u1 = v1 and (u2, v2) ∈ E(H2), or u2 = v2 and        
(u1, v1) ∈ E(H1). 
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Theorem 5.1: For any path Pn of order n, 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝑃𝑃𝑛𝑛)] = 𝑛𝑛 + 2. 
 
Proof: By the definition of lict graph 𝜂𝜂(𝑃𝑃𝑛𝑛) = K3, K3, ..., (n − 2) factors (𝑛𝑛 ≥ 3). Consider G = 𝜂𝜂(𝑃𝑃𝑛𝑛), let K3 ×G be the 
graph formed from three copies G1, G2 and G3 of G and S be a minimum geodetic set of K3×G. Now, we define 𝑆𝑆′ be 
the union of those vertices of G belonging to S. Let 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺1)lies on some x − y geodesic for any x, y ∈ S. Since S is a 
geodetic set by the Theorem 2.1 we have g[𝜂𝜂(𝑃𝑃𝑛𝑛)] = n at least one of x and y belongs to V1. If both x, y ∈ V1, then        
x, y ∈ 𝑆𝑆′. Hence we may assume that x ∈ V1 and y ∈V2. If corresponds to x then v = x ∈ 𝑆𝑆′ where y ≠ x. Since           
d(x, y) = d(x, y′) + 1 and the vertex v lies on an x−y geodesic in K3×G. Let S contains a vertex x with the property that 
every vertex of G1 lies on an x−w geodesic in G 1 for some w ∈ S. Let S′ consists of x together with those vertices of   
G3 and G2   corresponding to those vertices in S − x. Thus  |𝑆𝑆′| = |𝑆𝑆| ∪ {𝑎𝑎, 𝑏𝑏} where {𝑎𝑎, 𝑏𝑏} be the vertices in G3 and G2 . 
Hence,  𝑆𝑆′ is a split geodetic set of K3 × G. 
 
Therefore | 𝑆𝑆′| = g[𝜂𝜂 (Pn)] + {𝑎𝑎, 𝑏𝑏} 
⇒ 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝐺𝐺] = 𝑛𝑛 + 2 
⇒ 𝑔𝑔𝑠𝑠�𝐾𝐾3 × [𝜂𝜂(𝑃𝑃𝑛𝑛)]� = 𝑛𝑛 + 2. 
 
Theorem 5.2: For any path Pn of order n, then 

gs�𝐾𝐾3 × [𝜂𝜂(𝑃𝑃𝑛𝑛)]�= �2𝛼𝛼1(𝑃𝑃𝑛𝑛) + 1     𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2𝛼𝛼1(𝑃𝑃𝑛𝑛) + 2   𝑖𝑖𝑖𝑖 𝑛𝑛   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

�, where 𝛼𝛼1 be the edge covering number. 

 
Proof: Let 𝛼𝛼1 (Pn) be a edge covering of a graph is a minimum cardinality of an edge cover of a path Pn. We have the 
following cases.  
 
Case-1: Suppose n is odd, we have 𝛼𝛼1 (Pn) = 𝑛𝑛+1

2
 

 
 ⇒ 2𝛼𝛼1 (Pn) =  n+1 
 
Since  𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝐺𝐺′)] = 𝑛𝑛 + 2 
⇒ 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝐺𝐺′)]  = n+1 + 1 
 
⇒ 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝐺𝐺′)] = 2𝛼𝛼1(𝑃𝑃𝑛𝑛) + 1. 
 
Case-2:  Suppose n is even, we have 𝛼𝛼1 (Pn) = 𝑛𝑛

2
 

 
 ⇒ 2𝛼𝛼1 (Pn) = n 
 
Since  𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝐺𝐺′)] = 𝑛𝑛 + 2 
⇒ 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝐺𝐺′)] = 2𝛼𝛼1(𝑃𝑃𝑛𝑛) + 2.  
 
Theorem 5.3: For any path Pn of order n, 𝑔𝑔𝑠𝑠�𝐾𝐾3 × [𝜂𝜂(𝑃𝑃𝑛𝑛)]� ≤ 3𝛼𝛼0(𝑃𝑃𝑛𝑛) + 1, where 𝛼𝛼0 is a vertex covering number. 
 
Proof: Let S be a minimum set of vertices in Pn. Then S has at least two vertices and every vertex in S adjacent to some 
vertex in 〈𝑉𝑉 − 𝑆𝑆〉. Thus 〈𝑉𝑉 − 𝑆𝑆〉 is disconnected. Hence S is a split geodetic set of K3 × 𝜂𝜂 (Pn).   
 
Hence 𝑔𝑔𝑠𝑠�𝐾𝐾3 × [𝜂𝜂(𝑃𝑃𝑛𝑛)]� ≤ 3𝛼𝛼0(𝑃𝑃𝑛𝑛) + 1. 
 
Corollary 5.4: For any path Pn of order n, 𝑔𝑔𝑠𝑠[𝐾𝐾3 × 𝜂𝜂(𝑃𝑃𝑛𝑛)] >  𝑔𝑔𝑛𝑛𝑛𝑛 [𝐾𝐾3 × 𝜂𝜂(𝑃𝑃𝑛𝑛)].  
 
Proof: Proof follows from the above Theorem. 
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