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ABSTRACT 
In this paper, we introduce a hybrid approach based on modified fuzzy neural network and optimization teqnique to 
solve fuzzy differential equations. Using modified fuzzy neural network makes that training points should be selected 
over an open interval without training the network in the range of first and end points. Therefore, the calculating 
volume involving computational error is reduced. In fact, the training points depending on the distance selected for 
training neural network are converted to similar points in the open interval by using a new approach, then the network 
is trained in these similar areas. In comparison with existing similar neural networks proposed model provides 
solutions with high accuracy. The proposed method is illustrated by four numerical examples.  
 
Keywords: Fuzzy differential equation, Modified fuzzy neural network, Feedforward neural network, BFGS method, 
Hyperbolic tangent function. 
 
 
1. INTRODUCTION 
 
Nowadays, fuzzy differential equations are a popular topic studied by many researchers since it is utilized widely for 
the purpose of modeling problems in science and engineering. Most of the practical problems require the solution of a 
fuzzy differential equation which satisfies fuzzy initial or boundary conditions. The theory of fuzzy differential 
equations was treated by Buckley and Feuring [9], Kaleva [16,17], Nieto [28], Ouyang and Wu [32], Seikkala  also 
recently there appeared the papers of Bede, Bede and Gal [8], Diamond [10,11], Georgion et al., [14] Nieto and 
Rodriguez-Lopez [29]. In the following, we have mentioned some numerical solutions which have proposed by other 
scientists. Abbasbandy and Allahviranloo have solved fuzzy differential equations by Runge-Kuta and Taylor methods 
[1, 2]. Also, Allahviranloo et al. solved differential equations by predictor- corrector and transformation methods        
[3, 4, 5]. Ghazanfari and Shakerami developed Runge-Kuta like formula of order 4 for solving fuzzy differential 
equations [13]. Nystrom method has been introduced for solving fuzzy differential equations [18]. 
 
In 1990 Lee and Kang [19] used parallel processor computers to solve a first order differential equations with Hopfield 
neural network models. Meade, Fernandes and Malek [22, 27] solved linear and nonlinear ordinary differential 
equations using feed-forward neural network architecture and 𝐵𝐵1-splines. Recently, fuzzy neural networks have been 
successfully used for solving fuzzy polynomial equations and systems of fuzzy polynomial equations [6, 7], 
approximate fuzzy coefficients of fuzzy regression models [21, 25, 26], approximate solution of fuzzy linear system 
and fully fuzzy linear systems [31]. In Year 2012 Mosleh and Otadi [23] used fuzzy neural network to solve a first 
order fuzzy neural network, system of fuzzy differential equations [20] and second order fuzzy differential equation 
[24]. 
 
In this work we propose a new solution method for the approximated solution of FDEs, this hybrid method can result in 
improved numerical methods for solving fuzzy differential equations. In this proposed method, fuzzy neural network 
model (FNNM)is applied as universal approximator. We use fuzzy trial function; this fuzzy trial function is a 
combination of two terms. A first term is responsible for the fuzzy condition while the second term contains the fuzzy 
neural network adjustable parameters to be calculated. The main aim of this paper is to illustrate how fuzzy connection 
weights are adjusted in the learning of fuzzy neural networks. Our fuzzy neural network in this paper is a three-Layer 
feed- forward neural network where connection weights and biases are fuzzy numbers. 
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2. PRELIMINARIES   
                                                                                                        
In this section the basic notations used in fuzzy calculus are introduced. 
 
Definition 𝟐𝟐.𝟏𝟏: [𝟐𝟐𝟐𝟐] A fuzzy number u is completely determined by any pair u= �u, u�� of functions u (r), u� (r) : R ⟶ 
[0,1] satisfying the conditions: 

(1)  u (r) is a bounded, monotonic, increasing (non – decreasing) left continuous function for all r ∈ ( �0,1] and 
right continuous  for  r=0.         

(2)  u� (r) is a bounded,  monotonic, decreasing (non – increasing) left continuous function for all r ∈ (�0,1] and 
right continuous  for   r=0.                 

(3) For all r ∈ ( �0,1] we have u (r) ≤ u� (r).  
 
For every u =�u , u�� , v = �v , v� and 𝑘𝑘 > 0 we define addition and multiplication as follows:                                                                                    

1. (u +  v)  (r) = u (r) + v (r)                                                                                                                               (1) 

2. (u +  v) (r) = u� (r) + v (r)                                                                                                                                (2) 
3. (k u)  (r) = K u (r), (k u) (r) = K u� (r)                                                                                                            (3) 

 
The collection of all fuzzy numbers with addition and multiplication as defined by 𝐸𝐸𝐸𝐸𝐸𝐸. (1) ⟶ (3) is denoted by E1.  
 
For r ∈ (�0,1], we define the r - cuts of fuzzy number u with [u]𝑟𝑟  ={x ∈ R|u (x) ≥ r}  and for r =0, the support of u is 
defined as [u]0  ={x ∈ R|u (x)  > 0}                 
 
Definition 𝟐𝟐.𝟐𝟐 [𝟐𝟐𝟐𝟐]: The function f: R ⟶ E1 is called a fuzzy function. Now if, for an arbitrary fixed t1 ∈ R and 𝜖𝜖 > 0 
there exist a 𝛿𝛿 > 0 such that:  �t - t1� < 𝛿𝛿 ⟹ d [f(t) , f(t1)] < 𝜖𝜖                                          
 
Then f is said to be continuous function.  
 
Definition 𝟐𝟐.𝟑𝟑 [𝟏𝟏𝟏𝟏]: letu, v ∈ E1. If there exist w ∈ E1 such that u = v+w then w is called the H-difference (Hukuhara-
difference) of u, v and it is denoted by w=  u Θ v.  
 
In this paper the Θ sign stands always for H-difference, and let us remark that  u Θ v ≠ u + (-1) v. 
 
Definition 𝟐𝟐.𝟒𝟒 [𝟏𝟏𝟏𝟏]:  Let f : [a, b] →  𝐸𝐸1   and  𝑡𝑡0  ∈  [a,b].We  say  that  f is H-differential (Hukuhara-differential) at 
𝑡𝑡0, if there exists an element  f́ (𝑡𝑡0) ∈ 𝐸𝐸1 such that for all  h> 0  sufficiently small, ∃ f(𝑡𝑡0 +h) Θ f(𝑡𝑡0), f(𝑡𝑡0) Θ f(𝑡𝑡0 - h) 
and the limits  
limℎ→0

f(𝑡𝑡0 +h)Θ  f(𝑡𝑡0)
ℎ

 = limℎ→0
f(𝑡𝑡0) Θ f(𝑡𝑡0 − h)

ℎ
 = fˊ(𝑡𝑡0).                                                 (4) 

 
3. FUZZY NEURAL NETWORK 
                                                                                                                                      
A fuzzy neural network or neuro -fuzzy system is a learning machine that finds the parameters of a fuzzy system        
(i.e.  fuzzy sets, fuzzy  rules) by exploiting  approximation from neural  network  [23]. Combining fuzzy system with 
neural network. Both neural network and fuzzy system have some things in common. Artificial neural networks are an 
exciting form of the artificial intelligence which mimic the learning process of the human brain in order to extract 
patterns from historical data. Simple perceptrons need a teacher to tell the network what the desired output should by. 
These are supervised networks. In an unsupervised net, the network adapts purely in response to its input.  
 
Such network can learn to pick out structure in their input. Fig.1 shows typical three-layered perceptron. multi-layered 
perceptrons with more than three layers, use more hidden layers. Multi-layered perceptrons correspond the input units 
to the output units by a specific nonlinear function. From kolmogorov existence theorem we know that a three-layered 
perceptron with n(2n+1) nodes can compute any continuous function of n variables [15] . 
 
𝟒𝟒. OPERATION OF FUZZY NUMBERS AND ACTIVATION FUNCTION 
 
we briefly on mention fuzzy numbers operation defined by the extension principle. since input vector of feed-forward 
neural network is fuzzy in this paper, the following addition, multiplication and nonlinear mapping of fuzzy number are 
necessary for defining our fuzzy neural network [23]: 

1. ϻA+B (z) = Max {ϻA (x) ᴧ ϻB (y) │z = x + y}                                                                                                      (5) 
2. ϻAB (z) = Max {ϻA(x) ᴧ ϻB (y) │z = x y}                                                                                                           (6) 
3. ϻf(net) (z) = Max{ ϻnet (x) │z = 𝑓𝑓(x)}                                                                                                                  (7)  
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Where A, B and net are fuzzy number, ϻ (∗) denotes the membership function of each fuzzy number, ᴧ is the Minimum 
operator an𝑑𝑑 𝑓𝑓(.) is a continuous activation function (such as Hyperbolic tangent function) inside the hidden neurons. 
the above operations of fuzzy numbers are numerically performed on level sets (i.e. r-cuts). 

 
 
The r-level set of a fuzzy number A is defined as: 
[A]r  = { x ϵ R │ ϻA (x) ≥ r}, 0 < r ≤ 1                                                                                                                            (8) 
 
Since level sets of fuzzy numbers become closed intervals we denote  [A]r   as: [A]r   = � [A]L

r , [A]U
r   � 

Where [A]L
r and [A]U

r  are the lower limit and the upper limit of the r-level set [A]r  respectively [30], from interval 
arithmetic, the above operations of fuzzy number are written for r-level set as follows:  

[A]r  +[B]r  =  �[A]L
r  +  [B]L

r , [A]U
r +  [B]U

r   �                                                                                                                (9)                               

[A]r  [B]r  = �
Min �[A]L

r. [B]L
r , [A]L

r . [B]U
r  , [A]U

r  . [B]L
r , [A]U

r  . [B]U
r�  ,

Max �[A]L
r. [B]L

r , [A]L
r. [B]U

r  , [A]U
r . [B]L

r , [A]U
r  . [B]U

r  �
�                                                                         (10) 

𝑓𝑓([net]r  ) = 𝑓𝑓 ��[net]L
r , [net]U

r ��= �𝑓𝑓 �[net]L
r�  , 𝑓𝑓 �[net]U

r��                                                                                     (11)                 

 
Remark 𝟒𝟒.𝟏𝟏: In the case of 0 ≤ [B]L

r ≤ [B]U
r  

Eq(10)can be simplified as:  [A]r  [B]r  =�
Min �[A]L

r . [B]L
r , [A]L

r . [B]U
r  � ,

Max �[A]U
r  . [B]L

r , [A]U
r  . [B]U

r�
� 

 
5. NUMERICAL SOLUTION OF FUZZY DIFFERENTIAL EQUATIONS BASED ON THE POLYNOMIAL  
𝑯𝑯(𝒙𝒙) = 𝝐𝝐(𝒙𝒙𝟐𝟐 + 𝒙𝒙 + 𝟏𝟏)   BY USING FUZZY NEURAL NETWORK 
 
In this section we will discuss how we can use the fuzzy neural networks based on the polynomial                       
𝐻𝐻(𝑥𝑥) = 𝜖𝜖(𝑥𝑥2 + 𝑥𝑥 + 1), 𝜖𝜖 ∈ (0,1), to solve the fuzzy differential equations. Our fuzzy neural network is a three-layered 
feed forward neural network where the connections weights, biases and targets are given as fuzzy numbers and inputs 
are given as real numbers. for convenience in this discussion, FNNM with an input layer, a single hidden layer, and an 
output Layer is represented as a basic structural architecture. Here the dimension of FNNM is denoted by the number of 
neurons in each layer, that is n × m × s, where  n, m and s are the number of the neurons in the input layer, the hidden 
layer and the output layer, respectively(see Fig.(1)) The architecture of the model shows how FNNM transform the n 
inputs (𝑥𝑥1, 𝑥𝑥2  , … , 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1  , … ,𝑥𝑥𝑛𝑛) into the s outputs (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑘𝑘 , 𝑦𝑦𝑘𝑘+1, … ,𝑦𝑦𝑠𝑠)  throughout the m hidden neurons 
(𝑍𝑍1, 𝑍𝑍2, … , 𝑍𝑍𝑗𝑗 , 𝑍𝑍𝑗𝑗+1, … ,𝑍𝑍𝑚𝑚 ) where the cycles represent the neurons in each Layer. Let 𝐵𝐵𝑗𝑗  be the bias for the neurons 
𝑍𝑍𝑗𝑗 , and let the 𝐶𝐶𝑘𝑘   be the bias for the neurons 𝑦𝑦𝑘𝑘 , and let 𝑊𝑊𝑗𝑗𝑗𝑗  be the Weights connecting the neurons  𝑥𝑥𝑖𝑖   to the neurons  
and let  𝑊𝑊𝑘𝑘𝑘𝑘   be the weights connecting the neurons 𝑍𝑍𝑗𝑗    to the neurons 𝑦𝑦𝑘𝑘 . When an n-dimensional input vector(𝑥𝑥1, 𝑥𝑥2, 
… , 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … ,𝑥𝑥𝑛𝑛)  is presented to our fuzzy neural network, its Input-output relations  can be written as: 
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Input Units: 
𝑜𝑜𝑖𝑖 = H(𝑥𝑥𝑖𝑖) = 𝜖𝜖 (𝑥𝑥𝑖𝑖2 +  𝑥𝑥𝑖𝑖 + 1), 𝑖𝑖 = 1, … ,𝑛𝑛, ϵ ∈ (0,1)                                                                                                    (12) 
 
Hidden units: 
𝑍𝑍𝑗𝑗  = 𝑓𝑓(𝑛𝑛𝑒𝑒𝑒𝑒𝑗𝑗 ), 𝑗 = 1,2,…, m                                                                                                                                             (13) 
 
𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = ∑ 𝑜𝑜𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑊𝑊𝑗𝑗𝑗𝑗 + 𝐵𝐵𝑗𝑗                                                                                                                                                    (14)                                               
 
Output units:  
𝑦𝑦𝑘𝑘  = 𝑓𝑓 ( 𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘), k = 1,2,… , s                                                                                                                                           (15) 
 
 𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘  = ∑  m

𝑗𝑗=1 𝑊𝑊𝑘𝑘𝑘𝑘 . 𝑍𝑍𝑗𝑗  + 𝐶𝐶𝑘𝑘                                                                                                                                              (16)      
              
Where connection weights, biases and target are fuzzy numbers and the inputs are real numbers. The input- output 
relations in Eqs (12) - (16) is defined by the extension principle. The fuzzy output from each unit in Eqs (12) - (16) 
is numerically calculated for real inputs and level sets of fuzzy weights and fuzzy biases. The input-output relations of 
our fuzzy neural network can be written for r-level sets: 
 
Input Units: 
𝑜𝑜𝑖𝑖 = H(𝑥𝑥𝑖𝑖) = 𝜖𝜖 (𝑥𝑥𝑖𝑖2 +  𝑥𝑥𝑖𝑖 + 1), 𝑖𝑖 = 1, … ,𝑛𝑛, ϵ ∈ (0,1)                                                                                                    (17)          
 
Hidden Unit: 
[𝑍𝑍𝑗𝑗 ]𝑟𝑟  = 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟), 𝑗 = 1,2,… , m                                                                                                                                   (18) 
 
[𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟= ∑  n

𝑖𝑖=1 𝑜𝑜𝑖𝑖  [𝑊𝑊𝑗𝑗𝑗𝑗 ]𝑟𝑟   + [𝐵𝐵𝑗𝑗 ]𝑟𝑟                                                                                                                                     (19) 
 
Output Units:  
[𝑦𝑦𝑘𝑘 ]𝑟𝑟= 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘]𝑟𝑟  ), k =1,2,… , 𝑠𝑠                                                                                                                                   (20) 
 
[𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘]𝑟𝑟  = ∑  m

𝑗𝑗=1 [𝑊𝑊𝑘𝑘𝑘𝑘 ]𝑟𝑟  [𝑍𝑍𝑗𝑗 ]𝑟𝑟  +[𝐶𝐶𝑘𝑘]𝑟𝑟                                                                                                                               (21) 
  
From Eqs (17) - (21), we can see that the r-level sets of the fuzzy outputs 𝑦𝑦𝑘𝑘 ´s are calculated from those of the fuzzy 
weights, fuzzy biases and crisp inputs. From the operations of fuzzy numbers, the above relations are rewritten as 
follows when the inputs 𝑥𝑥𝑖𝑖´s are non – negative, i.e., 𝑥𝑥𝑖𝑖  ≥ 0:  
 
Input Units: 
𝑜𝑜𝑖𝑖 = H(𝑥𝑥𝑖𝑖) = 𝜖𝜖 (𝑥𝑥𝑖𝑖2 +  𝑥𝑥𝑖𝑖 + 1), 𝑖𝑖 = 1, … ,𝑛𝑛, ϵ ∈ (0,1)                                                                                                    (22) 
 
Hidden Unit: 
[𝑍𝑍𝑗𝑗 ]𝑟𝑟 = [[𝑍𝑍𝑗𝑗 ]𝑟𝑟𝐿𝐿 , [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝑈𝑈]= [ 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟𝐿𝐿  ), 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟𝑈𝑈  ) ]                                                                                                      (23)                             
[𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟𝐿𝐿  = ∑  n

𝑖𝑖=1  𝑜𝑜𝑖𝑖  [𝑊𝑊𝑗𝑗𝑗𝑗 ]𝑟𝑟𝐿𝐿  +[𝐵𝐵𝑗𝑗 ]𝑟𝑟𝐿𝐿                                                                           (24) 
[𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 ]𝑟𝑟𝑈𝑈   = ∑  n

𝑖𝑖=1  𝑜𝑜𝑖𝑖  [𝑊𝑊𝑗𝑗𝑗𝑗 ]𝑟𝑟𝑈𝑈   +[𝐵𝐵𝑗𝑗 ]𝑟𝑟𝑈𝑈                                                                            (25) 
 
Output Units: 
 [𝑦𝑦𝑘𝑘 ]𝑟𝑟 = [[𝑦𝑦𝑘𝑘 ]𝑟𝑟𝐿𝐿 , [𝑦𝑦𝑘𝑘 ]𝑟𝑟𝑈𝑈]=[ 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘 ]𝑟𝑟𝐿𝐿 ), 𝑓𝑓([𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘]𝑟𝑟𝑈𝑈  ) ]                                                                                                   (26)             
[𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘]𝑟𝑟𝐿𝐿  =∑  [𝑊𝑊𝑘𝑘𝑘𝑘 ]𝑟𝑟𝐿𝐿    [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝐿𝐿     𝑗𝑗 ∈𝑎𝑎 + ∑  [𝑊𝑊𝑘𝑘𝑘𝑘 ]𝑟𝑟𝐿𝐿  [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝑈𝑈  + [𝐶𝐶𝑘𝑘]𝑟𝑟𝐿𝐿  𝑗𝑗∈𝑏𝑏                                                                                      (27) 
[𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘]𝑟𝑟𝑈𝑈   =∑  [𝑊𝑊𝑘𝑘𝑘𝑘 ]𝑟𝑟𝑈𝑈  [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝑈𝑈  𝑗𝑗 ∈𝑐𝑐 + ∑   [𝑊𝑊𝑘𝑘𝑘𝑘 ]𝑟𝑟𝑈𝑈  [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝐿𝐿  + 𝑗𝑗∈𝑑𝑑 [𝐶𝐶𝑘𝑘]𝑟𝑟𝑈𝑈                                                                                        (28)  
 
For   [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝑈𝑈 ≥ [𝑍𝑍𝑗𝑗 ]𝑟𝑟𝐿𝐿 ≥ 0, where  𝑎𝑎 = { j : [Wkj ]r

L  ≥ 0}, b = { j : [Wkj ]r
L  < 0}, 

c ={ j : [Wkj ]r
U  ≥ 0}, d={ j : [Wkj ]r

U  < 0}, 𝑎𝑎 ∪ 𝑏𝑏 = {1, … ,𝑚𝑚} and   c ∪ 𝑑𝑑 = {1, … ,𝑚𝑚}.  
 
One drawback of the fully fuzzy neural network with fuzzy connection Weights is long Computation time. Another 
drawback is that the learning algorithm is complicated. For reducing the complexity of the learning algorithm, we 
propose a partially fuzzy neural network (PFNN) architecture, where connection weights to output units are fuzzy 
numbers while connection weights and biases to hidden units are real numbers [20,23,24].In this paper, the (PFNN) is 
of dimension (1 × m × 1) (see Fig.(2)). 
 
For every entry 𝑥𝑥, the input to the hidden neurons is  
𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗= ϵ (𝑥𝑥2 + 𝑥𝑥 + 1) 𝑊𝑊𝑗𝑗+ 𝐵𝐵𝑗𝑗 , 𝑗 = 1,2,……, m, 𝜖𝜖 ∈ (0,1)                                                                                                 (29) 
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where 𝑊𝑊𝑗𝑗  is a weight parameter from input layer to the 𝑗 th unit in the hidden layer, 𝐵𝐵𝑗𝑗  is an 𝑗 th bias for the unit in the 
hidden layer. The output, in the hidden neurons is  
 
𝑍𝑍𝑗𝑗  = s�𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 �, 𝑗 = 1, 2,……,m                                                                                                                                          (30) 

where s( . ) is the hyperbolic tangent activation function, and the output N(𝑥𝑥, p) of the network is        
 
N= ∑ 𝑣𝑣𝑗𝑗m

𝑗𝑗=1 𝑍𝑍𝑗𝑗                                                                                                                                                                    (31) 
Where 𝑣𝑣𝑗𝑗  is a weight parameter from the 𝑗 th unit in the hidden layer to the output layer. From Eqs (22)-(28), we can be 
rewritten for r-level sets of the Eqs (29)-(31). For reducing the complexity of the learning algorithm, the input 𝑥𝑥 usually 
assumed as non-negative in fuzzy neural network. :  
 
Input Unit:  
𝑜𝑜= H(𝑥𝑥) = ϵ (𝑥𝑥2 + 𝑥𝑥+1), 𝜖𝜖 ∈ (0,1)                                                                                                                                  (32) 
 
Hidden Unit:  
𝑍𝑍𝑗𝑗= s�𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 �, 𝑗 = 1,2,…,m                                                                                                                                                (33)              
𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗  = 𝑜𝑜 𝑊𝑊𝑗𝑗+𝐵𝐵𝑗𝑗                                                                                                                                                                 (34)                                                             
 
Output Unit:                                                                                                             
[𝑁𝑁]𝑟𝑟 = [[𝑁𝑁]𝑟𝑟𝐿𝐿 , [𝑁𝑁]𝑟𝑟𝑈𝑈  ]�∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝐿𝐿  𝑚𝑚

𝑗𝑗=1 Zj,∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈  𝑚𝑚
𝑗𝑗=1 Zj �                                                                                                       (35) 

 

 
 
5.1. Solution of First Order Fuzzy Differential Equation 
 
Let us consider the FDE: 
𝑦𝑦′ = f (𝑥𝑥 ,𝑦𝑦),   𝑥𝑥 ϵ [𝑎𝑎, b] and  𝑦𝑦 (𝑎𝑎) = A                                                                                                                         (36)    
Where 𝑦𝑦 is a fuzzy function of 𝑥𝑥, f(𝑥𝑥, 𝑦𝑦)is  a fuzzy function of the crisp variable 𝑥𝑥 and the fuzzy variable 𝑦𝑦, and 𝑦𝑦´ is 
the fuzzy derivative of 𝑦𝑦,and A is a fuzzy number in 𝐸𝐸1 with r-level set: 
[𝐴𝐴]𝑟𝑟 = [[𝐴𝐴]𝑟𝑟𝐿𝐿  , [𝐴𝐴]𝑟𝑟𝑈𝑈],  r ϵ (0, 1]. 
the related trial function will be in the form : 
𝑦𝑦𝑡𝑡 (𝑥𝑥 , p) = A + (𝑥𝑥 − 𝑎𝑎) N(𝑥𝑥 , p),                                                                                                                                     (37) 
this solution by intention satisfies the initial condition in Eq. (36).               
 
The error function that must be minimized for problem (36) has the form [34, 38, 39]:      
E = ∑  (𝐸𝐸𝑖𝑖𝑖𝑖  

𝐿𝐿𝑔𝑔
𝑖𝑖=1 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑈𝑈  ),         

Where : 
𝐸𝐸𝑖𝑖𝑖𝑖  
𝐿𝐿  = ([𝑑𝑑𝑦𝑦𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑝𝑝)

𝑑𝑑𝑑𝑑
]𝑟𝑟𝐿𝐿 − [f(𝑥𝑥𝑖𝑖  , 𝑦𝑦t(𝑥𝑥𝑖𝑖  , p)]𝑟𝑟𝐿𝐿)2                                                                                                                          (38) 

𝐸𝐸𝑖𝑖𝑖𝑖  
𝑈𝑈  = ([𝑑𝑑𝑦𝑦𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑝𝑝)

𝑑𝑑𝑑𝑑
]𝑟𝑟𝑈𝑈 − [f(𝑥𝑥𝑖𝑖  , 𝑦𝑦t (𝑥𝑥𝑖𝑖  , p)]𝑟𝑟𝑈𝑈)2                                                                                                                         (39) 
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and {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑔𝑔  are discrete points belonging to the interval [𝑎𝑎, 𝑏𝑏] , 𝐸𝐸𝑖𝑖𝑖𝑖  
𝐿𝐿  and 𝐸𝐸𝑖𝑖𝑖𝑖     

𝑈𝑈 can be viewed as the squared errors for the 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.        
 
Now differentiating the trial function 𝑦𝑦𝑡𝑡(𝑥𝑥, p)  in Eq (37), we obtain:  
∂  [𝑦𝑦𝑡𝑡(𝑥𝑥  ,p) ]𝑟𝑟𝐿𝐿

∂𝑥𝑥
 = [𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝐿𝐿 + (𝑥𝑥-𝑎𝑎) 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

∂𝑥𝑥
                                                                                                                       (40) 

∂  [𝑦𝑦𝑡𝑡(𝑥𝑥  ,p) ]𝑟𝑟𝑈𝑈

∂𝑥𝑥
 = [𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝑈𝑈  + (𝑥𝑥-𝑎𝑎) 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

∂𝑥𝑥
                                                                                                                      (41)   

where       
[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝐿𝐿 = ∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝐿𝐿𝑚𝑚

𝑗𝑗=1  𝑠𝑠( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                                      (42)                  
[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝑈𝑈  =∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚

𝑗𝑗=1  𝑠𝑠( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                                       (43)                    
∂[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿  

∂𝑥𝑥
  = ∑  𝜖𝜖(2𝑥𝑥𝑖𝑖  + 1)𝑊𝑊𝑗𝑗 [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝐿𝐿𝑚𝑚

𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                              (44)                          
∂[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈  

∂𝑥𝑥
 = ∑  𝜖𝜖(2𝑥𝑥𝑖𝑖  + 1)𝑊𝑊𝑗𝑗 [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚

𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                              (45)       
 
5.2. Solution of Second Order Fuzzy Differential Equation 
 
Now, we consider the second order fuzzy differential equation:  
𝑦𝑦ˊˊ = f(𝑥𝑥,𝑦𝑦,𝑦𝑦ˊ), 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]                                                                                                                                             (46) 
𝑦𝑦(𝑎𝑎) = 𝐴𝐴,𝑦𝑦ˊ(𝑎𝑎) = 𝐵𝐵. 
such that the functions:    
𝑦𝑦: [𝑎𝑎, 𝑏𝑏] → 𝐸𝐸1        and      f: [𝑎𝑎, 𝑏𝑏] × 𝐸𝐸1 × 𝐸𝐸1 → 𝐸𝐸1 
where 𝑦𝑦 is a function with fuzzy derivative 𝑦𝑦ˊ, also A and B are fuzzy numbers in 𝐸𝐸1 with r-level sets : 
[𝐴𝐴]𝑟𝑟 = [[𝐴𝐴]𝑟𝑟𝐿𝐿  , [𝐴𝐴]𝑟𝑟𝑈𝑈],   [𝐵𝐵]𝑟𝑟 = [[𝐵𝐵]𝑟𝑟𝐿𝐿  , [𝐵𝐵]𝑟𝑟𝑈𝑈]       . 
 
The related trial function will be in the form:  
𝑦𝑦𝑡𝑡 (𝑥𝑥 , p) = A +B(𝑥𝑥 − 𝑎𝑎) + (𝑥𝑥 − 𝑎𝑎)2 N(x, p),                                                                                                                 (47) 
 
This solution by intention satisfies the conditions in Eq. (46). 
 
Also, the error function that must be minimized for problem (46) is  
              E = ∑ ( 𝐸𝐸𝑖𝑖𝑖𝑖𝐿𝐿

𝑔𝑔
𝑖𝑖=1  + 𝐸𝐸𝑖𝑖𝑖𝑖𝑈𝑈  ),  

where 
𝐸𝐸𝑖𝑖𝑖𝑖𝐿𝐿  = ([𝑦𝑦ˊˊ𝑡𝑡(𝑥𝑥𝑖𝑖  , 𝑝𝑝)]𝑟𝑟𝐿𝐿 –f(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑡𝑡(𝑥𝑥𝑖𝑖 , 𝑝𝑝), 𝑦𝑦ˊ𝑡𝑡(𝑥𝑥𝑖𝑖 , 𝑝𝑝))]𝑟𝑟𝐿𝐿)2                                                                                                     (48)               
𝐸𝐸𝑖𝑖𝑖𝑖𝑈𝑈  = ([𝑦𝑦ˊˊ𝑡𝑡(𝑥𝑥𝑖𝑖  , 𝑝𝑝)]𝑟𝑟𝑈𝑈  –f(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑡𝑡(𝑥𝑥𝑖𝑖 , 𝑝𝑝), 𝑦𝑦ˊ𝑡𝑡(𝑥𝑥𝑖𝑖 , 𝑝𝑝))]𝑟𝑟𝑈𝑈)2                                                                                                    (49) 
and {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑔𝑔   are discrete points belonging to the interval [𝑎𝑎, 𝑏𝑏]. 
 
Now differentiating the trial function yt (𝑥𝑥, p) in eq. (47), we obtain:  
𝜕𝜕[𝑦𝑦𝑡𝑡(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝜕𝜕
=  [𝐵𝐵]𝑟𝑟𝐿𝐿 +  2(𝑥𝑥 − 𝑎𝑎)[𝑁𝑁(𝑥𝑥,𝑝𝑝)]𝑟𝑟𝐿𝐿 + (𝑥𝑥 − 𝑎𝑎)2 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝜕𝜕
                                                                                      (50) 

𝜕𝜕[𝑦𝑦𝑡𝑡(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝜕𝜕
=  [𝐵𝐵]𝑟𝑟𝑈𝑈 +  2(𝑥𝑥 − 𝑎𝑎)[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝑈𝑈  + (𝑥𝑥 − 𝑎𝑎)2 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝜕𝜕
                                                                                    (51)  

𝜕𝜕2[𝑦𝑦𝑡𝑡(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝑥𝑥2  = 2[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝐿𝐿+ 4(𝑥𝑥 − 𝑎𝑎) 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝜕𝜕
 + (𝑥𝑥 − 𝑎𝑎)2 𝜕𝜕

2[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝑥𝑥2                                                                              (52)                                                                                                                                                                                                                                                                                                                      
𝜕𝜕2[𝑦𝑦𝑡𝑡(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝑥𝑥2 = 2[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝑈𝑈+4(𝑥𝑥 − 𝑎𝑎) 𝜕𝜕[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝜕𝜕
+(𝑥𝑥 − 𝑎𝑎)2 𝜕𝜕2[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝑥𝑥2                                                                               (53)                                                                                                                                                                                                                                    
Where                                                                                                                                                                                                                   
[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝐿𝐿 = ∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝐿𝐿𝑚𝑚

𝑗𝑗=1  𝑠𝑠( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                                      (54) 
[𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟𝑈𝑈  =∑ [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚

𝑗𝑗=1  𝑠𝑠( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                                       (55) 
∂[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

∂𝑥𝑥
  = ∑  𝜖𝜖(2𝑥𝑥 + 1)𝑊𝑊𝑗𝑗 [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝐿𝐿𝑚𝑚

𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                 (56) 
∂[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

∂𝑥𝑥
  = ∑  𝜖𝜖(2𝑥𝑥 + 1)𝑊𝑊𝑗𝑗 [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚

𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 )                                                                                                (57) 
𝜕𝜕2[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝐿𝐿

𝜕𝜕𝑥𝑥2 =  ∑ [ 𝜖𝜖2 𝑊𝑊𝑗𝑗
2 (2𝑥𝑥 + 1)2 �𝑣𝑣𝑗𝑗 �𝑟𝑟   

𝐿𝐿 𝑠𝑠ˊˊ� 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 � + 2𝜖𝜖 𝑊𝑊𝑗𝑗  [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚
𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 ) ]                             (58) 

𝜕𝜕2[𝑁𝑁(𝑥𝑥 ,𝑝𝑝)]𝑟𝑟𝑈𝑈

𝜕𝜕𝑥𝑥2 =  ∑ [ 𝜖𝜖2 𝑊𝑊𝑗𝑗
2 (2𝑥𝑥 + 1)2 �𝑣𝑣𝑗𝑗 �𝑟𝑟   

𝑈𝑈 𝑠𝑠ˊˊ� 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 � + 2𝜖𝜖 𝑊𝑊𝑗𝑗  [𝑣𝑣𝑗𝑗 ]𝑟𝑟𝑈𝑈𝑚𝑚
𝑗𝑗=1  𝑠𝑠ˊ( 𝐻𝐻(𝑥𝑥)𝑊𝑊𝑗𝑗 + 𝐵𝐵𝑗𝑗 ) ]                            (59) 

 
To find a numerical solution for third (and more) order fuzzy differential equation and and fuzzy partial differential 
equation by using this method, we apply the same procedure in the subsections (5.1) and (5.2). 
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6. NUMERICAL EXAMPLES  
 
To show the behavior and properties of the new method, four problem will be solved in this subsection. For each 
example, the accuracy of the method is illustrated by computing the deviations E (𝑥𝑥, r) and E (𝑥𝑥, r)  
Where  E (𝑥𝑥,r) = �𝑦𝑦𝑡𝑡(𝑥𝑥,r)-𝑦𝑦𝑎𝑎(𝑥𝑥,r)�   𝑎𝑎𝑎𝑎𝑎𝑎    E  (𝑥𝑥,r) = �𝑦𝑦𝑡𝑡(𝑥𝑥,r)-𝑦𝑦𝑎𝑎(𝑥𝑥,r)�.              
 
And 𝑦𝑦𝑎𝑎(𝑥𝑥,r) = �𝑦𝑦𝑎𝑎(𝑥𝑥,r) ,𝑦𝑦𝑎𝑎(𝑥𝑥,r)� is the known exact solution and 𝑦𝑦𝑡𝑡(𝑥𝑥,r) = �𝑦𝑦𝑡𝑡(𝑥𝑥,r) ,𝑦𝑦𝑡𝑡(𝑥𝑥,r)� is the trial (approximated) 
solution. Note that, for all examples, a multilayer perceptron consisting of one hidden layer with 10 hidden units and 
one linear output unit is used.We will use BFGS quasi – Newton method to minimize the error function. 
 
Example 1: Consider the following fuzzy initial value problem:  
𝑦𝑦´ = - 𝑦𝑦 + 𝑥𝑥+1, 𝑥𝑥 ∈ [0,1] 
[𝑦𝑦(0)]𝑟𝑟  = �0.96+0.04 r , 1.01 - 0.01𝑟𝑟�, where 𝑟𝑟 ∈ [0,1].  
 
The fuzzy exact solution is:  
𝑦𝑦𝑎𝑎(𝑥𝑥,r) = �𝑥𝑥 + (0.96+0.04 r)e−𝑥𝑥 , 𝑥𝑥 + �1.01 - 0.01 r�e−𝑥𝑥�.  
 
The fuzzy trial solution for this problem is:  
𝑦𝑦𝑡𝑡  (𝑥𝑥,r) = [0.96 + 0.04r, 1.01 – 0.01r] + 𝑥𝑥 [𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟 . Fig. (1) shows the exact solution and the approximated solution 
for 𝑥𝑥 = 0.1 and 𝜖𝜖 = 0.6. Numerical results for 𝑥𝑥 = 0.2 and 𝑟𝑟 = 0.5 can be found in table (1).  
 
Note that for 𝑥𝑥= 0.2 and r= 0.5, the fuzzy exact solution is 
                              𝑦𝑦𝑎𝑎(0.2,0.5)= [1.0023561 , 1.0228244], and H(𝑥𝑥) = 𝜖𝜖 (𝑥𝑥2 + 𝑥𝑥+1) = 1.24 𝜖𝜖 , 𝜖𝜖 ∈ (0,1) . 
   
  
 
 
 
 
 
 
 
 
 

Table-1: Comparison of the exact and approximated solution for example (1), for 𝑥𝑥= 0.2 and 𝑟𝑟 = 0.5. 
 

Example 2: Consider the following nonlinear FIVP: 
𝑦𝑦´(𝑥𝑥)=3A𝑦𝑦2,  𝑥𝑥 ∈ [0,0.1]                                                                                                                            
[𝑦𝑦(0)]𝑟𝑟  = �0.5 √r , 0.2 √1 − r  + 0.5 �, where   𝑟𝑟 ∈ [0,1], and A = �1+r , 3-r� is a fuzzy parameter.                
 
For this problem, the fuzzy exact solution is: 

𝑦𝑦𝑎𝑎(𝑥𝑥,r) = � 0.5 √r
1-3 (1+r) �0.5 √r�𝑥𝑥

 , 0.2 √1−r +0.5
1-3 (3+r) �0.2 √1−r +0.5� 𝑥𝑥

�   

 
while the fuzzy trial solution is: 
𝑦𝑦𝑡𝑡  (𝑥𝑥,r) = [0.5 √𝑟𝑟   , o.2 √1 − 𝑟𝑟 +0.5] + 𝑥𝑥 [𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟  
 
Fig. (2) shows the exact solution and the approximated solution for 𝑥𝑥 = 0.1 and 𝜖𝜖 = 0.7. Numerical results can be found 
in table (2). Note that for 𝑟𝑟= 0.2, the fuzzy exact solution is:  
𝑦𝑦𝑎𝑎(𝑥𝑥,0.2) = � 0.22360680

1−0.80498447 𝑥𝑥
 , 0.67888544

1−5.70263768 𝑥𝑥
�, H(𝑥𝑥)= 0.7(𝑥𝑥2 + 𝑥𝑥 + 1).  

 
 
 
 
 
 
 
 
 

E (0.2 , 0.5) 𝑦𝑦𝑡𝑡(0.2 , 0.5)  E (0.2 , 0.5)  𝑦𝑦𝑡𝑡(0.2 , 0.5)   𝜖𝜖 
0.01944532 
0.01578959 
0.00092255 
0.00885621 
0.00053479 
0.00001844 
0.01599890 
0.03987462 
0.07115282  

1.04226973 
1.03861400 
1.02374696 
1.03168062 
1.02335920 
1.02284285 
1.03882331 
1.06269903 
1.09397723 

0.02136754 
0.01124377 
0.00432144 
0.00411122 
0.00077240 
0.00002915 
0.00985424 
0.02622115 
0.03122131 

1.02372368 
1.01359991 
1.00667758 
1.00646736 
1.00312854 
1.00238529 
1.01221038 
1.02857729 
1.03357745 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
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Table-2: Comparison of the exact and approximated solution for example (2), for  𝑟𝑟 = 0.2   and 𝜖𝜖 =0.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. -1: Analytical and trial solutions for example (1), for 𝑥𝑥= 0.1and 𝜖𝜖=0.6 

 

 
Fig.-2: Analytical and trial solutions for example (2) for 𝑥𝑥 = 0.1 and 𝜖𝜖 = 0.7 

 
Example 3: Consider the homogeneous second order FDE:  
            𝑦𝑦ˊ́(𝑥𝑥) − 4𝑦𝑦(́𝑥𝑥) + 4𝑦𝑦(𝑥𝑥) =0,    𝑥𝑥 ∈ [0,1]. 
[𝑦𝑦(0)]𝑟𝑟 = [2 + 𝑟𝑟 ,4 − 𝑟𝑟],     [ 𝑦𝑦(́0)]𝑟𝑟  =[5 + r , 7 - r],    r ϵ [0,1].                           
 

E (𝑥𝑥,0.2) 𝑦𝑦𝑡𝑡(𝑥𝑥,0.2) 𝑦𝑦𝑎𝑎(𝑥𝑥,0.2)  E (𝑥𝑥,0.2) 𝑦𝑦𝑡𝑡(𝑥𝑥,0.2)   𝑦𝑦𝑎𝑎  (𝑥𝑥,0.2)    𝑥𝑥 

0.0000000 
0.0000212 
0.0000076 
0.0000372 
0.0000089 
0.0000079 
0.0000121 
0.0000036 
0.0000016 
0.0000223 
0.0000030 

0.6788854 
0.7199199 
0.7662744 
0.8190363 
0.8794966 
0.9496574 
1.0320011 
1.1299366 
1.2484338 
1.3946728 
1.5797694 

0.6788854 
0.7199411 
0.7662820 
0.8189991 
0.8795055 
0.9496653 
1.0319890 
1.1299402 
1.2484354 
1.3946951 
1.5797724 

0.0000000 
0.0000659 
0.0000079 
0.0000479 
0.0000199 
0.0000059 
0.0000624 
0.0000088 
0.0000846 
0.0000158 
0.0000021 

0.2236068 
0.2254873 
0.2272736 
0.2291883 
0.2310662 
0.2329901 
0.2350173 
0.2369680 
0.2389134 
0.2410563 
0.2431805 

0.2236068 
0.2254214  
0.2272657  
0.2291404  
0.2310463  
0.2329842  
0.2349549  
0.2369592  
0.2389980  
0.2410721  
0.2431826 0.10 

  0   
 0.01 
 0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
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The fuzzy exact solution is: 
𝑦𝑦𝑎𝑎(𝑥𝑥, 𝑟𝑟) = [(2 + 𝑟𝑟) 𝑒𝑒2𝑥𝑥  +(1 − 𝑟𝑟)𝑥𝑥𝑒𝑒2𝑥𝑥 , (4 − 𝑟𝑟)𝑒𝑒2𝑥𝑥  +(𝑟𝑟 − 1)𝑥𝑥𝑒𝑒2𝑥𝑥  ]. 
 
The fuzzy trial solution for this problem is: 
𝑦𝑦𝑡𝑡(𝑥𝑥, 𝑟𝑟) = [2 + 𝑟𝑟, 4 − 𝑟𝑟] + [5 + 𝑟𝑟, 7 − 𝑟𝑟]𝑥𝑥 + 𝑥𝑥2 [𝑁𝑁(𝑥𝑥, 𝑝𝑝)]𝑟𝑟  . 
 
Table (3) shows the exact solution and the trial solution for 𝑥𝑥 =0.1 and r= 0.5. Numerical results for 𝜖𝜖= 0.4 and r= 0.5 
can be found in table (4) 
 
Note that for 𝑥𝑥 =0.1 and r=0.5, the fuzzy exact solution is: 
𝑦𝑦𝑎𝑎  (0.1, 0.5) = [3.11457703, 4.21383952], 𝐻𝐻(𝑥𝑥) = 1.11𝜖𝜖 𝑎𝑎𝑎𝑎𝑎𝑎  for 𝜖𝜖=0.4 and r=0.5, the fuzzy exact solution is: 
𝑦𝑦𝑎𝑎  (𝑥𝑥, 0.5) = [2.5 𝑒𝑒2𝑥𝑥 +  0.5 𝑥𝑥𝑒𝑒2𝑥𝑥 , 3.5 𝑒𝑒2𝑥𝑥  - 0.5 x 𝑒𝑒2𝑥𝑥], 𝐻𝐻(𝑥𝑥)=0.4 (𝑥𝑥2+𝑥𝑥+1). 
 
 
 
 
 
   
 
 
 

 
 

Table-3: Comparison of the exact and trial solution for example (3), for 𝑥𝑥 =0.1, r=0.5 

Table-4: Comparison of the exact and trial solution for example (3), for 𝜖𝜖=0.4, r=0.5 
 
Example (4): Consider the nonhomogeneous second order FDE: 
        𝑦𝑦ˊˊ+ 4𝑦𝑦 = 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  𝑥𝑥 ∈ [0,1]. 
[𝑦𝑦(0)]𝑟𝑟 = [2𝑟𝑟 , 4 − 2𝑟𝑟],    [𝑦𝑦ˊ(0)]𝑟𝑟 = [−2 + 2𝑟𝑟 , 2 − 2𝑟𝑟],   𝑟𝑟 𝜖𝜖 [0,1]. 
 
The fuzzy exact solution is: 
𝑦𝑦𝑎𝑎(𝑥𝑥, 𝑟𝑟) = [( 2𝑟𝑟 − 2

3
)𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 + (𝑟𝑟 − 1)𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 + 2

3
 cos 𝑥𝑥,( 10

3
− 2𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥 + (1 − 𝑟𝑟)𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 +  2

3
 cos 𝑥𝑥]. 

 
The fuzzy trial solution for this problem is: 
𝑦𝑦𝑡𝑡 (𝑥𝑥 , r) = [2r, 4-2r] + [-2 + 2r, 2-2r] 𝑥𝑥 + 𝑥𝑥2 [𝑁𝑁(𝑥𝑥 , 𝑝𝑝)]𝑟𝑟 . 
 
Table (5) shows the exact and the trial solution for 𝑥𝑥 = 1 and r = 0.7. 
 
Numerical results for  𝜖𝜖 = 0.8 and r = 0.7 can be found in table (6). 
 
Note that for 𝑥𝑥 = 1 and r= 0.7, the fuzzy exact solution is: 
𝑦𝑦𝑎𝑎  (1, o.7) = [-0.21776204, -0.17155979], 𝐻𝐻(𝑥𝑥) = 3𝜖𝜖  
 
And for 𝜖𝜖 = 0.8, r = 0.7, the fuzzy exact solution is  
𝑦𝑦𝑎𝑎  (𝑥𝑥 , 0.7) = [o.73333 cos2𝑥𝑥 – 0.3 sin2𝑥𝑥 + 2

3
 cos𝑥𝑥 , 1.93333 cos2𝑥𝑥 + 0.3 sin2𝑥𝑥 + 2

3
 cos𝑥𝑥].      

 

E (0.1 , 0.5) 𝑦𝑦𝑡𝑡(0.1 , 0.5)  E (0.1 , 0.5)  𝑦𝑦𝑡𝑡(0.1 , 0.5)   𝜖𝜖 
0.0421877 
0.0354215 
0.0075395 
0.0000875 
0.0000430 
0.0000655 
0.0098779 
0.0421237 
0.0325987  

4.2560272 
4.1784181 
4.2063000 
4.2137520 
4.2138825 
4.2137174 
4.2237174 
4.1717159 
4.2464383 

0.0214588 
0.0111255 
0.0034922 
0.0000176 
0.0000195 
0.0005875 
0.0054455 
0.0726844 
0.0498568 

3.0931182 
3.1257025 
3.1110849 
3.1145594 
3.1145965 
3.1151645 
3.1091315 
3.0418927 
3.0647202 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

   𝑥𝑥       𝑦𝑦𝑎𝑎  ( 𝑥𝑥,0.5) 𝑦𝑦𝑡𝑡  ( 𝑥𝑥,o.5) E ( 𝑥𝑥,0.5) 𝑦𝑦𝑎𝑎  ( 𝑥𝑥,0.5) 𝑦𝑦𝑡𝑡  ( 𝑥𝑥,o.5) E( 𝑥𝑥,o.5) 
 
  0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9 
  1 

 
2.5000000 
3.1145770 
3.8787442 
4.8286148 
6.0089605 
7.4752750 
9.2963274 
11.5573199 
14.3637940 
17.8464600 
22.1671683 

 
2.5000000 
3.1145594 
3.8788188 
4.8285781 
6.0089507 
7.4752796 
9.2963053 
11.5573149 
14.3637205 
17.8464675 
22.1671053 

 
0.0000000 
0.0000176 
0.0000746 
0.0000367 
0.0000098 
0.0000046 
0.0000221 
0.0000050 
0.0000735 
0.0000075 
0.0000630 

 
3.5000000 
4.2138395 
5.0722040 
6.1040980 
7.3442851 
8.8344159 
10.6243742 
12.7738799 
15.3544005 
18.4514248 
22.1671683 

 
3.5000000 
4.2137520 
5.0722893 
6.1041436 
7.3442226 
8.8344185 
10.6244224 
12.7738714 
15.3544753 
18.4514645 
22.1671535 

 
0.0000000 
0.0000875 
0.0000853 
0.0000456 
0.0000625 
0.0000026 
0.0000482 
0.0000085 
0.0000748 
0.0000397 
0.0000148 
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Table-5: Comparison of the exact and the trial solution for example (4) for 𝑥𝑥 = 1 and r = 0.7. 

 
    𝑥𝑥      𝑦𝑦𝑎𝑎  (𝑥𝑥,0.7) 𝑦𝑦𝑡𝑡  (𝑥𝑥,o.7) E (𝑥𝑥,0.7) 𝑦𝑦𝑎𝑎 (𝑥𝑥,o.7) 𝑦𝑦𝑡𝑡 (𝑥𝑥,o.7) E(𝑥𝑥,o.7) 
    0 
   0.1 
   0.2 
   0.3 
   0.4 
   0.5 
   0.6 
   0.7 
   0.8 
   0.9 
    1 
 

1.4000000 
1.3224508 
1.2119969 
1.0727444 
0.9097521 
0.7288354 
0.5363410 
0.3389024 
0.1431861 
-0.044363 
-0.217762 

1.4000000 
1.3223751 
1.2120015 
1.0727385 
0.9097470 
0.7289057 
0.5363339 
0.3389635 
0.1431835 
-0.044339 
-0.217759 

0.0000000 
0.0000757 
0.0000046 
0.0000059 
0.0000051 
0.0000703 
0.0000072 
0.0000611 
0.0000026 
0.0000240 
0.0000030 

2.6000000 
2.6177966 
2.5509211 
1.9773386 
2.1762138 
1.8820808 
1.5303938 
1.1341329 
0.7078908 
0.2673036 
-0.171559 

2.6000000 
2.6177966 
2.5509281 
1.9773348 
2.1761849 
1.8821797 
1.5303961 
1.1340851 
0.7078820 
0.2673062 
-0.171563 

0.0000000 
0.0000643 
0.0000070 
0.0000038 
0.0000289 
0.0000989 
0.0000023 
0.0000478 
0.0000088 
0.0000026 
0.0000040 

Table-6: Comparison of the exact and the trial solution for example (4), for 𝜖𝜖 = 0.8 and r = 0.7. 
 
8. CONCLUSIONS 
 
In this paper, we presented a hybrid approach based on modified fuzzy neural networks for solving fuzzy differential 
equations. We demonstrate, for the first time, the ability of modified fuzzy neural networks to approximate the 
solutions of FDEs. By comparing our results with the results obtained by using numerical methods, it can be observed 
that the proposed method yields more accurate approximations. Even better results may be possible if one uses more 
neurons or more training points. Moreover, after solving a FDE the solution is obtainable at any arbitrary point in the 
training interval (even between training points). The main reason for using modified fuzzy neural networks was their 
applicability in function approximation. Further research is in progress to apply and extend this method to solve fuzzy 
partial differential equations FPDEs. 
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