International Journal of Mathematical Archive-6(6), 2015, 76-83
 IMA Available online through www.ijma.info ISSN 2229-5046

ALGEBRAIC RELATIONS CONNECTING 3- STRUCTURE METRIC MANIFOLDS

LATA BISHT*
Department of Applied Science and Humanities, BTKIT, Dwarahat, Almora, Uttarakhand, India-263653.

(Received On: 18-05-15; Revised \& Accepted On: 16-06-15)

Abstract

The aim of this paper is to connect 3-structure metric, 3-structure almost Sasakian or 3-structure contact Riemannian, K- contact 3 - structure metric, Sasakian 3- structure metric,3- structure co-symplectic and 3 - structure nearly cosymplectic manifolds by an algebraic relations.

Index Terms- 3- structure metric, Sasakian, Co-Symplectic, Contact Riemannian, K- contact.

1. INTRODUCTION

Let us consider an n-dimensional manifold V_{n} with three vector fields ${\underset{x}{x}}$, three 1 -forms u and three tensor fields $\underset{x}{F}$ of the type $(1,1)$, such that

$$
\begin{align*}
& \mathcal{E}_{x y z} F_{z}^{F}=\underset{x}{F} \underset{x}{F}-u \otimes \underset{x}{U}+\underset{x y}{\delta_{n}} I_{n}, \tag{1.1}\\
& \underset{x}{F} \underset{y}{ }=\boldsymbol{E}_{x y z} U, \tag{1.1}\\
& \stackrel{x}{u \circ}{ }_{y}=\boldsymbol{\mathcal { E }}_{x y z}{ }^{z} \text {, } \tag{1.1}\\
& \stackrel{x}{u}\binom{U}{y}=\stackrel{x}{\delta} . \tag{1.1}
\end{align*}
$$

Where $\boldsymbol{E}_{x y z}=1$ or -1 according as xyz is an even or odd permutation of 123 and 0 otherwise. Then $\left\{\begin{array}{c}F \\ \underset{x}{ }, \underset{x}{U}, u\end{array}\right\}$, where $\mathrm{x}=1,2,3$ are said to define an almost contact $3-$ structure on V_{n} or almost co- quaternian Riemannian structure on V_{n} and the manifold is called an almost contact 3 - structure manifold.

Let a metric tensor g be defined on an almost contact 3 - structure V_{n}, satisfying
$g(\underset{x}{F} X, \underset{x}{F} Y)=\varepsilon_{x y z} g(\underset{z}{F} X, Y)-\stackrel{x}{u}(X) u^{y}(Y)+{\underset{x y}{ } g}(X, Y)$,
Where
$\stackrel{x}{u}(X)=g(X, \underset{x}{U})$.
Then the system $\{\underset{x}{F}, \underset{x}{U}, \stackrel{x}{u}, g\}$ is said to give to V_{n} a metric 3- structure and the manifold V_{n} is called 3- structure metric manifold.

If on the three structure metric manifold
$2^{\prime} \underset{x}{F}(X, Y)=\mathrm{d} u(X, Y)$

Then V_{n} is called 3- structure almost Sasakian manifold or 3- structure contact Riemannian manifold.
On this manifold, we have
$\mathrm{d}^{\prime} F=0$.

If on a 3- structure almost Sasakian manifold, U_{x} are a set of mutually orthogonal unit killing vectors:
$g\left({\underset{x}{x},}^{U_{y}}\right)=\delta$,
$\left(D_{X} u^{x}\right) X=0$
Satisfying
$\left[U_{x}, U_{y}\right]=2 \varepsilon_{x y z} U_{z}$,
$4 U_{z}=\varepsilon_{x y z}\left[U_{x}, U_{y}\right]$.
Then V_{n} is called a K- contact 3- structure metric manifold.

On such a manifold
$\left(D_{X} U_{x}\right)=\underset{x}{F} X$,
$\left(D_{X} \underset{x}{F}\right) Y=K\left(X, X_{x}, Y\right)$,
Where K is Riemannian-Christoffel curvature tensor.
If on a K- contact 3- structure metric manifold
$[\underset{x}{F}, \underset{x}{F}]+d \stackrel{x}{u} \otimes \underset{x}{U}=0$. x not summed,
Then V_{n} is called Sasakian 3 - structure metric manifold.
A 3 - structure metric manifold V_{n} is called a 3-structure co-symplectic manifold if the following relations hold:
$\left(D_{X} \underset{x}{F}\right) Y=\underset{x}{y}(X) \underset{y}{F} Y$,
$\stackrel{y}{A}+\stackrel{x}{A}=0$.

In consequence of equations (1.9), we have
$\left(D_{X} u^{x}\right)(Y)=-\stackrel{x}{A}(X){ }_{y}^{y} u(Y)$,
The equation (1.10)a may be replaced by
$\left(D_{X} U_{x}\right)=\stackrel{y}{A}(X) \underset{y}{U}$.

A 3 - structure metric manifold V_{n} is called a 3 - structure nearly co-symplectic manifold, if
$\left(D_{X}{\underset{x}{x}}_{F}^{)}\right.$X $=\underset{x}{y}(X) \underset{y}{F} X$,
$\underset{x}{y} \underset{y}{y}+\underset{y}{x}=0$.
The equation (1.11)a implies

ALGEBRAIC RELATIONS BETWEEN 3- STRUCTURE METRIC MANIFOLDS

Theorem 2.1: If we put
$\cdot_{x}^{F}(X, Y)=g\left(\underset{x}{F_{x}} X, Y\right)=-{\underset{x}{x}}_{F}(Y, X)$.
Then
${ }^{\prime} \underset{x}{F_{x}}(\underset{x}{F} X, \underset{x}{F} Y)={ }^{\prime} \underset{x}{F}(X, Y)$,
i.e. ' $\underset{x}{F}$ is hybrid in X and Y .
$\left.{ }^{\prime} \underset{x}{\underset{x}{F}} \underset{x}{F} X, Y\right)=-{\underset{x}{x}}_{F}^{(X, \underset{x}{F} Y) .}$
Proof: Applying ${\underset{x}{x}}_{F}$ on X and Y in equation (2.1) and using equations (1.1) a, (1.1) c and (1.2) a, we get the equation (2.2)a. Applying F_{x} on X in equation (2.1) and using equation (1.1) a then comparing the resulting equation with the equation obtained by applying F on Y in equation (2.1) with the use of equation (1.2)a, we get the equation (2.2)b.

Theorem 2.2: For a 3 - structure almost Sasakian manifold, we have

$$
\begin{align*}
& g\left(X, D_{Y} U_{x}\right)=g\left(Y, D_{X}{\underset{x}{x}}^{U_{x}} \underset{\sim}{F} X\right) \text {, } \tag{2.3}\\
& g\left(\underset{y}{F} Y, D_{X} U_{x}^{U}\right)-2 \mathcal{E}_{x y z} g(\underset{z}{F} X, Y)=g\left(X, D_{y}^{F_{y}}{\underset{x}{x}}_{U}-2 \stackrel{y}{u}(Y) \underset{x}{U}+2 \underset{x y}{\delta Y}\right), \tag{2.3}\\
& \left(D_{X} u\right){\underset{x}{x}}^{u}=\left({\underset{x}{U}}^{x} u\right) X, \tag{2.3}\\
& \left(D_{x}{\underset{x}{x}}^{x} u^{x}\right) Y+\left(D_{X} u^{x}\right) \underset{x}{F} Y=\left(D_{Y} u^{x}\right) \underset{x}{F} X+\left(D_{x}{ }_{x}^{x} u\right) X, \tag{2.3}\\
& \left(D_{X} u^{x}\right) Y+\left(D_{x}{\underset{x}{x}}^{x} u^{x}\right) \underset{x}{F} X=\left(D_{x}^{D_{X}} u^{x}\right) \underset{x}{F} Y+\left(D_{Y} u\right) X, \tag{2.3}\\
& g\left(\underset{y}{U}, D_{Y} U_{x}\right)=g\left(Y, D_{U}{\underset{y}{x}}_{U}^{U}-2 \varepsilon_{x y z} U_{z}\right) . \tag{2.3}
\end{align*}
$$

Proof: From equations (1.2)b and (1.3), we have
$2 g(\underset{x}{F} X, Y)=g\left(Y, D_{X} U_{x}\right)-g\left(X, D_{Y} U_{x}\right)$.
Equation (2.4) gives the equation (2.3)a. Applying $\underset{y}{F}$ on Y in equation (2.4) and using equation (1.2) in the resulting equation, we get the equation (2.3)b. Replacing Y by U in equation (2.1), we get
${ }^{\prime}{ }_{x} F_{x}(X, U)=0$.

Putting $\mathrm{Y}=U_{x}$ in equation (1.3) and using equation (2.5), we get the equation (2.3)c. Applying ${\underset{x}{x}}^{\text {on }} \mathrm{X}$ and Y alternatively in equation (1.3) and using equation (2.2)b, we get the equation (2.3)d. Applying F_{x} on X and Y in equation (1.3) and using equations (2.1) and (2.2)a, we get the equation (2.3)e. Putting $X=U_{y}$ in equation (2.3)a and using equation (1.1)b, we get the equation (2.3)f.

Theorem 2.3: For a K- contact 3- structure manifold, we have

$$
\begin{align*}
& 2 \underset{x}{F_{y}} U_{y}=\left[\underset{x}{U}, U_{y}\right] \text {, } \tag{2.6}\\
& \left.g(\underset{x}{U, U})_{y}\right)=\boldsymbol{E}_{x y z} \underset{z}{F}-\underset{x}{F} \underset{y}{F}+\stackrel{y}{u} \otimes U_{x}^{U}, \tag{2.6}\\
& \left(D_{X} u^{x}\right) \underset{x}{U}=0, \tag{2.6}\\
& \left(D_{\underset{U}{ }} \begin{array}{c}
x \\
u
\end{array}\right) X=0, \tag{2.6}\\
& g\left(U_{y}, D_{Y} U_{x}\right)=g\left(Y, D_{y}^{U} U_{x}-\left[{\underset{x}{x}, U_{y}}^{U}\right]\right), \tag{2.6}
\end{align*}
$$

Proof: From equations (1.6)a and (1.1)b, we get the equation (2.6)a. Using (1.5)a in equation (1.1)a, we get the equation (2.6)b. Using equation (2.3)c in equation (1.5)b, we get the equations (2.6)c and (2.6)d. Using equation (1.6)a in equation(2.3)f, we get the equation (2.6)e. Putting $X=U_{y}$ in equation (2.3)d and using equations (2.6)a and (1.1)c, we get the equation (2.6)f.

Theorem 2.4: For a Sasakian 3 - structure metric manifold, we have

$$
\begin{align*}
& {\left[F_{x}^{F}, F_{x}\right]+2\left(D_{X} u^{x}\right)(Y) \underset{x}{U}=0 \text {, }} \tag{2.7}\\
& {\left[\underset{x}{F_{x}}, \underset{x}{F}\right]+2^{\prime}{\underset{x}{x}}^{F}(X, Y) \underset{x}{U}=0 \text {, }} \tag{2.7}
\end{align*}
$$

$$
\begin{align*}
& \underset{x}{F}\left[D_{X} U_{x}, U_{x}\right]=u^{x}\left(\left[X, U_{x}\right]\right){\underset{x}{U}}-\left[X, U_{x}\right], \tag{2.7}\\
& { }^{y} u([\underset{x}{F} X, \underset{x}{F} Y])-u^{y}([X, Y])=\boldsymbol{E}_{x y z}\left\{u^{z}([\underset{x}{F} X, Y])+u^{z}\left(\left[X, F_{x}^{F} Y\right]\right)\right\}-{\underset{x}{x}}_{x}^{x}\left\{\begin{array}{l}
x \\
u
\end{array}([X, Y])+2\left(D_{X} u^{x}\right) Y\right\} \text {, } \tag{2.7}\\
& \boldsymbol{E}_{x y z}{ }^{z} u\left(\left[D_{X}{\underset{x}{x}, U_{x}}\right]\right)={\underset{x}{x}}_{x}^{x} u\left(\left[X, U_{x}\right]\right)-u^{y}\left(\left[X, U_{x}\right]\right) .
\end{align*}
$$

Proof: From equations (1.3) and (1.5)b, we have
$'{ }_{x}^{F}(X, Y)=\left(D_{X}{ }^{x} u^{\prime}\right) Y=-\left(D_{Y} u^{x}\right) X$,
Using equation (2.8) in equation (1.8), we get the equations (2.7)a and (2.7)b .
From equation (1.8), we have
$[\underset{x}{F} X, \underset{x}{F} Y]-[X, Y]+\stackrel{x}{u}([X, Y]) \underset{x}{U}-\underset{x}{F}[\underset{x}{F} X, Y]-\underset{x}{F}[X, \underset{x}{F} Y]+\left(\left(D_{X} u^{x}\right) Y-\left(D_{Y}{ }_{x}^{u}\right) X\right) \underset{x}{U}=0$.

Putting $\mathrm{X}=U_{x}$ and $\mathrm{Y}=U_{y}$ in equation (2.9) and then using equations (1.1)b, (1.1)d and (1.6), we get the equation (2.7)c. using equations (1.7)a and (1.3) in equation (2.9) , we get the equation (2.7)d. Putting $\mathrm{Y}={\underset{x}{ }}$ in equation (2.7)d and using equations (1.1)b and (2.5), we get the equation (2.7)e. Applying ${ }^{u} u$ on equation (2.9) and using equations (2.8), (1.1)c and (1.1)d, we get the equation (2.7)f. Applying $\stackrel{y}{u}$ on equation (2.7)e and and using equations (1.1)c and (1.1)d, we get the equation (2.7)g.

Theorem 2.5: A 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, if $\underset{x}{y}(X)^{\prime} F_{y}(Y, Z)+\underset{x}{y}(Y)^{\prime} F_{y}(Z, X)+\underset{x}{A_{x}}(Z)^{\prime} F_{y}(X, Y)=0$.

Proof: From equations (1.9)a, we have
$\left(D_{X}{ }^{\prime} F_{x}\right)(Y, Z)=\underset{x}{y}(X)^{\prime} F_{y}(Y, Z)$.
Writing similar equations by cyclic permutations of X, Y and Z in the equation (2.11), adding the resulting equations, we get

$$
\begin{equation*}
\left(D_{X}^{\prime}{\underset{x}{x}}_{F}^{)}(Y, Z)+\left(D_{Y}^{\prime}{\underset{x}{x}}_{F}^{x}\right)(Z, X)+\left(D_{Z}^{\prime}{\underset{x}{x}}_{F}\right)(X, Y)=\underset{x}{y}(X)^{\prime} F_{y}(Y, Z)+\underset{x}{y}(Y)^{\prime}{\underset{y}{y}}_{F}(Z, X)+\underset{x}{y}(Z)^{\prime} \underset{y}{F}(X, Y) .\right. \tag{2.12}
\end{equation*}
$$

Using equation (2.10) in equation (2.12), we get
$\left(D_{X}{ }_{x}^{\prime} F_{x}\right)(Y, Z)+\left(D_{Y}^{\prime} F_{x}\right)(Z, X)+\left(D_{Z}^{\prime} F_{x}\right)(X, Y)=0$.
Differentiating equation (1.3), we get equation (2.13). Hence the statement.
Theorem 2.6: A 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, if
${\underset{y}{x}}_{A}^{A}(Y){ }^{y} u(X)-\underset{y}{A}(X){ }^{y} u(Y)=2^{\prime}{\underset{x}{x}}_{F}(X, Y)$.
Proof: Interchanging X and Y in equation (1.10)a and then subtracting the resulting equation from equation (1.10)a, we get
$\left(D_{X}{ }^{x} u\right) Y-\left(D_{Y}^{x} u\right) X=\stackrel{x}{A_{y}^{x}}(Y) \stackrel{y}{u}(X)-\underset{y}{A}(X) \stackrel{y}{u}(Y)$.
Using equation (2.14) in equation (2.15), we get
$\left(D_{X} \stackrel{x}{u}^{u}\right) Y-\left(D_{Y}{ }^{x}\right) X=2{ }^{\prime} F_{x}(X, Y)$.
Which shows that the manifold is 3 - structure almost Sasakian manifold.
Theorem 2.7: A 3- structure co-symplectic manifold is K- contact 3-structure metric manifold, if $\stackrel{x}{A}(Y) \stackrel{y}{u}(X)+\underset{y}{\underset{y}{A}}(X){ }^{y} u(Y)=0$.

Proof: From equation (1.9)a, we have

$$
\begin{equation*}
g\left(D_{X} \underset{x}{F} Y-\underset{x}{F} D_{X} Y, Z\right)=\underset{x}{y}(X) g(\underset{y}{F} Y, Z) . \tag{2.17}
\end{equation*}
$$

Putting $\mathrm{Y}=U_{x}$ and $Z=U_{y}$ in equation (2.17) and using equations (1.1)b and (1.10)b, we get
$2 \stackrel{y}{\underset{x}{A}}(X) \varepsilon_{x y z} g(\underset{z}{U}, \underset{y}{U})=0$.

From equation (1.10)a, we get
$\left(D_{X} \stackrel{x}{u}\right) Y+\left(D_{Y} \stackrel{x}{u}\right) X=-\stackrel{x}{y}(X) \stackrel{y}{u}(Y)-\stackrel{x}{A}(Y) \stackrel{y}{u}(X)$.
Using equation (2.16) in equation (2.19), we get
$\left(D_{X} u^{x}\right) Y+\left(D_{Y} u^{x}\right) X=0$
Equations (2.18) and (2.20) give the statement.
Theorem 2.8: A 3- structure co-symplectic manifold is Sasakian 3 - structure metric manifold, if
$\stackrel{x}{A}(X) \stackrel{y}{u}(Y) \underset{x}{U}-\underset{y}{A}(Y) \stackrel{y}{u}(X) \underset{x}{U}=\left[\underset{x}{F}, F_{x}^{F}\right]$.
Proof: Multiplying equation (2.15) by U_{x} and then using equation (2.21) in the resulting equation, we get

$$
\begin{equation*}
\left\{\left(D_{X}^{x} u\right) Y-\left(D_{Y}^{x} u\right) X\right\}_{x}^{U}+\left[\underset{x}{F}, F_{x}\right]=0 \tag{2.22}
\end{equation*}
$$

Which shows that the manifold is Sasakian 3 - structure metric manifold.
Theorem 2.9: A 3- structure co-symplectic manifold is Sasakian 3 - structure metric manifold, if

Proof: From equation (1.9)a, we have

$$
\begin{equation*}
D_{X} \underset{x}{F} Y-\underset{x}{F} D_{X} Y=\underset{x}{y}(X) \underset{y}{F} Y . \tag{2.24}
\end{equation*}
$$

Applying F_{x} on equation (2.24), we get

Similarly, we have
$D_{F_{x} X} \underset{x}{F} Y-\underset{x}{F} D_{F_{x} X} Y=\underset{x}{y}\left(\underset{x}{F_{x} X}\right)_{y}^{F} Y$,
$D_{\underset{x}{ } Y} \underset{x}{F} X-\underset{x}{F} D_{x} D_{x} X=\underset{x}{y}(\underset{x}{\underset{x}{F} Y)} \underset{y}{F} X$,
$\underset{x}{F} D_{Y} \underset{x}{F} X-\underset{x}{F^{2}} D_{Y} X=\underset{x}{y}(Y) \underset{x}{F} \underset{y}{F} X$.
From equations (2.25) and (1.10)a, we get

Using equation (2.23) in equation (2.26), we get
$\left[\begin{array}{c}F \\ x\end{array}, F_{x}\right]+\left\{\left(D_{X} u^{x}\right) Y-\left(D_{Y} u^{x}\right) X\right\}_{x}^{U}=0$.
Hence the statement.

Theorem 2.10: If a 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, then we have

Proof: From equation (1.9)a, we have

$$
\begin{equation*}
\left(D_{X}^{\prime} \underset{x}{F}\right)(Y, Z)=\underset{x}{y}(X)^{\prime} \underset{y}{F}(Y, Z) \tag{2.28}
\end{equation*}
$$

Using equation (2.10) in equation (2.28), we get

$$
\begin{equation*}
\left(D_{X}^{\prime}{\underset{x}{x}}_{F}^{x}\right)(Y, Z)=-\underset{x}{y}(Y)^{\prime} \underset{y}{F}(Z, X)-\underset{x}{y}(Z)^{\prime} F_{y}^{F}(X, Y) . \tag{2.29}
\end{equation*}
$$

Now, using equations (1.3) and (1.10)a in equation(2.29), we get the equation (2.27).
Theorem 2.11: A nearly co-symplectic manifold is 3 - structure contact Riemannian manifold, if

$$
\begin{align*}
& +{\underset{l}{x}(Y){ }^{l} u(X)-\varepsilon_{x q p}{ }_{x}^{q}(\underset{x}{F} X) u^{p}(Y) . ~}_{\text {. }} \tag{2.30}
\end{align*}
$$

Proof: Interchanging X and Y in equation (1.12) and then subtracting the resulting equation from equation (1.12), We get

Now, using equation (2.30) in equation (2.31), we get

$$
\left(D_{X} u^{x}\right) Y-\left(D_{Y}^{u} u\right) X=2^{\prime} \underset{x}{F}(X, Y)
$$

Hence the statement.
Theorem (2.12: A nearly co-symplectic manifold is K- contact 3- structure metric manifold, if

$$
\begin{align*}
& \left(D_{x}^{D_{Y}} u^{x}\right)(\underset{x}{F} X)+\left(D_{x}^{F_{X}} u^{x}\right)(\underset{x}{F} Y)=\underset{l}{x}(X) u^{l}(Y)-\varepsilon_{x q p} \underset{x}{q} \underset{x}{F}(\underset{x}{F} Y) u^{p}(X) \tag{2.32}
\end{align*}
$$

Proof: Interchanging X and Y in equation (1.12) and then adding the resulting equation from equation (1.12), we get

Using equation (2.32) in equation (2.33), we get
$\left(D_{X} u^{x}\right) Y+\left(D_{Y} u^{x}\right) X=0$.
Which shows that the manifold is K- contact 3- structure metric manifold.

Theorem 2.13: A nearly co-symplectic manifold is Sasakian 3 - structure metric manifold, if

$$
\begin{align*}
& -{\underset{l}{x}(Y){ }^{l} u(X){ }_{x}+\varepsilon_{x q p}{ }_{x}^{q}(\underset{x}{F} X)^{p} u(Y) U_{x} .}^{p} \tag{2.34}
\end{align*}
$$

Proof: Multiplying equation (2.31) by ${\underset{x}{ }}^{\text {a }}$ and then using equation (2.34) in the resulting equation, we get

$$
\left\{\left(D_{X}{ }^{x} u\right) Y-\left(D_{Y}^{u} u\right) X\right\} U_{x}=-\left[\begin{array}{c}
F \tag{2.35}\\
\underset{x}{x}, \underset{x}{F}
\end{array}\right] .
$$

or

$$
\begin{equation*}
\left[\underset{x}{F}, F_{x}^{F}\right]+d \stackrel{x}{u} \otimes \underset{x}{U}=0 . \tag{2.35}
\end{equation*}
$$

The equation (2.35)b shows that the manifold is Sasakian 3 - structure metric manifold.

3. REFERENCES

1. B. Cappelletti Montano, A. De Nicola: 3- Sasakian manifolds, 3-cosymplectic manifolds and Darboun theorem, J.Geom.Phys., 2509-2520, 57(2007).
2. B. Cappelletti Montano, A. De Nicola, G.Dileo: The geometry of 3-quasi sasakian manifolds, Internat. J. Math. 20 no 9, 1081-1105, (2009).
3. R.S.Mishra: Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad (1984).
4. R.S.Mishra: Almost contact metric manifolds, Monograph no.1, Tensor Society of India, 21 chandganj Gardens, Lucknow (1991).
5. Sharief Deshmukh and A. Ghaffar Khan: Almost para contact 3-structure on a differentiable manifold, Indian J. pure appl.Math, 10(4) 442-448(1979).
6. T. Kashiwada: A note on a Riemannian space with Sasakian 3-structure, Nat.Sci.Reps. Ochanomizu Univ., 22, 1- 2, (1971).
7. T. Kashiwada: On a contact 3-structure, Math.Z. 829-832, 238(2001).
8. T. Miyazawa and S. Yamaguchi: Some theorems on K-contact metric manifold and Sasakian space, T.R.U. Math.J.2, 46-52(1966).
9. Uday Chand De and Abul Kalam Mondal: On 3- dimensional Almost contact metric manifolds satisfying certain curvature conditions commun. korean math.soc.24, no.2, 265-275(2009).
10. Wlodzimierz Jelonek: Positive and negative $3-\mathrm{K}$ - contact structures, proceedings of the American Mathematical Society volume 129, no. 1, 247-256(2000).
11. Ying-Yan Kuo: On almost contact 3-structures, Tohoku Math.J. 22 (3) 325-332(1970).

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

