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ABSTRACT 
In this paper we introduce and study the notions of 𝐼𝐼𝑠𝑠𝑔𝑔�-closed sets, 𝐼𝐼𝑠𝑠𝑔𝑔�-continuity, 𝐼𝐼𝑠𝑠𝑔𝑔�-irresolute, 𝐼𝐼𝑠𝑠𝑔𝑔�-connected,          
𝐼𝐼𝑠𝑠𝑔𝑔�-normal in ideal topological spaces. 
 
Keywords: 𝐼𝐼𝑠𝑠𝑔𝑔�-closed, 𝐼𝐼𝑠𝑠𝑔𝑔�-continuity, 𝐼𝐼𝑠𝑠𝑔𝑔�-irresolute, 𝐼𝐼𝑠𝑠𝑔𝑔�-connected and 𝐼𝐼𝑠𝑠𝑔𝑔�-normal. 
 
 
1. INTRODUCTION AND PRELIMINARIES 
 
An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following 
properties.  (1) A ∈I and B ⊆ A implies B ∈ I, (2) A ∈ I and B ∈ I implies A  B ∈ I. An ideal topological space is a 

topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I).  For a subset A ⊆ X, A*(I,τ) = {x ∈ X: A  U 
∉I for every U∈τ (X, x)} is called the local function of A with respect to I and τ [8].  We simply write A* in case there 
is no chance for confusion. A kuratowski closure operator cl*(.) for a topology τ*(I, τ) called the *- topology, finer than 
τ is defined by cl*(A) = A  A* [13].  If A ⊆ X, cl(A) and int(A) will respectively, denote the closure and interior of A 
in (X, τ). 
 
Definition 1.1: A subset A of a topological space (X, τ) is called 

1. g-closed [9], if cl (A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
2. g*-closed[14],  if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ). 
3. ĝ -closed [15], if cl(A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ). 
4. gs-closed [2], if scl (A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
5. sg-closed [5], if scl (A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ). 
6. s𝑔𝑔�-closed [11], if scl (A) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open in (X, τ). 

Complements of the above mentioned closed sets are called their respective open sets. 
 
Definition 1.2: A subset A of an ideal topological spaces (X, τ, I) is said to be  

1. semi-I-closed [7], if int(cl*(A)) ⊆ A 
2. Igs -closed [10], if sIcl(A) ⊆ U whenever A ⊆ U and U is open in X. 
3. Isg -closed [10], if sIcl(A) ⊆ U whenever A ⊆ U and U is  semi-open in X. 

The complements of the above mentioned closed sets are called their respective open sets. 
 
Definition 1.3: A function f: ( X, 𝜏𝜏, I ) → ( Y, 𝜎𝜎 ) is said to be  

1. g-continuous [3], if for every open set v ∈ 𝜎𝜎, f−1(v) is g-open in ( X, 𝜏𝜏 ). 
2. gs-continuous [5], if for every open set v ∈ 𝜎𝜎, f−1(v) is gs-open in ( X, 𝜏𝜏 ). 
3. sg-continuous [12], if for every open set v ∈ 𝜎𝜎, f−1(v) is sg-open in ( X, 𝜏𝜏 ). 
4. gp-continuous [1], if for every open set v ∈ 𝜎𝜎, f−1(v) is gp-open in ( X, 𝜏𝜏 ). 
5. gsp-continuous [6], if for every open set v ∈ 𝜎𝜎, f−1(v) is gsp-open in ( X, 𝜏𝜏 ). 
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2. 𝐈𝐈𝐬𝐬𝐠𝐠�  -CLOSED SETS  
 
Definition 2.1: A subset A of a space (X, τ, I) is called Isg� -closed, if sIcl(A) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open. 
 
Theorem 2.2: Every closed set is Isg� -closed but not conversely. 
 
Proof: Let A be a closed set. Let U be 𝑔𝑔�-open such that A ⊆ U. Since A is closed, sIcl(A) ⊆ cl(A) = A ⊆ U. Hence A 
is Isg� -closed. 
 
Example 2.3: Let X = {a, b, c},τ = { Φ ,{a},{a,b},X} and I = {Φ,{a}}. Here {a, c} is Isg� -closed but not closed. 
 
Theorem 2.4: Every Isg� -closed is s𝑔𝑔�-closed but not conversely. 
 
Proof: Let A be Isg� -closed set of (X, τ, I). Let U be 𝑔𝑔�-open such that  
U ⊇ sIcl(A) = A ∪ int*(cl(A)) ⊆ A∪ int(cl(A)) = scl(A). This shows that A is s𝑔𝑔�-closed. 
 
Example 2.5: Let X = {a, b, c},τ = {Φ,{a},{b,c},X} and I = {Φ,{a},{b},{a,b}}. Here {b} and {c} are s𝑔𝑔�-closed but not 
Isg� -closed. 
 
Theorem 2.6: Every Isg� -closed is gs-closed but not conversely. 
 
Proof: Let A be Isg� -closed set of (X, τ, I). Let U be any open set such that A ⊆ U. Since every open set is 𝑔𝑔�-open. 
scl(A) ⊆ U. Hence A is gs-closed set. 
 
Example 2.7: Let X = {a, b, c}, τ = {Φ,{a},{b,c}, X}} and I = { Φ,{a},{b},{a,b}}. Here {a, b} is gs-closed but not        
Isg� -closed. 
 
Theorem 2.8: The union of two Isg� -closed set is Isg� -closed set. 
 
Proof: Assume that A and B are Isg� -closed in (X, τ, I). Let U be 𝑔𝑔�-open such that A∪ B⊆ U. Then A ⊆ U and B ⊆ U. 
Since A and B are Isg� -closed, sIcl(A) ⊆ U, sIcl(B) ⊆ U. sIcl(A∪ B) = sIcl(A)∪ sIcl(B) ⊆ U. That is sIcl(A∪ B) ⊆ U. 
Hence A∪ B is Isg� -closed in (X, τ, I). 
 
Theorem 2.9: Let A be Isg� -closed set of (X, τ, I). Then sIcl(A) − A does not contain a nonempty set.  
 
Proof: Let A be Isg� -closed set and F be a ĝ -closed set contained in sIcl(A). Then Fc is 𝑔𝑔�-open set, such that A ⊆ Fc. 
Since A is Isg� -closed set. sIcl(A) ⊆ Fc. Thus F ⊆ (sIcl(A))c. Also F⊆  sIcl(A) − A.  
 
Therefore F ⊆ (scl(A))c ∩ sIcl(A) = Φ. Hence F = Φ. 
 
Remark 2.10: Suppose I = {Φ}, then Isg� -closed sets coincides with s𝑔𝑔�-closed set. 
 
Theorem 2.11: Let (X, τ, I ) be an ideal space. Then either {x} is 𝑔𝑔�-closed or {x}c is Isg� -closed for every x ∈ X. 
 
Proof: Suppose that {x} is not 𝑔𝑔�-closed in X, then {x}c is not 𝑔𝑔�-open and that only 𝑔𝑔�-open set containing {x}c is the 
space X itself. That is {x}c ⊆ X. Therefore sIcl(A) ⊆ X and so {x}c is a Isg� -closed. 
 
Theorem 2.12: Let A be a Isg� -closed in ( X, τ, I). Then A is semi-I-closed iff sIcl(A) − A is closed. 
 
Proof:  
Necessity: Let A be an Isg� -closed and semi-I-closed. Then sIcl(A)=A and so sIcl(A) − A = Φ which is closed.  
 
Sufficiency: Since A is Isg� -closed set by Theorem 2.9, sIcl(A) − A contains no nonempty closed set. But sIcl(A) − A is 
closed. This implies that sIcl(A) − A = Φ. That is sIcl(A) = A. Hence A is semi-I-closed. 
 
Theorem 2.13: Every Isg� -closed is g-closed, g*-closed, sg-closed, gp-closed and gsp-closed but not conversely. 
 
Example 2.14: Let X = {a, b, c},τ = {Φ,{a},{b,c}, X} and I = {Φ,{a},{b},{a,b}}. Here {a,b} is g-closed, g*-closed,  
sg-closed, gp-closed and gsp-closed but not  Isg� -closed. 
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3. 𝐈𝐈𝐬𝐬𝐠𝐠� − 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 
 
Definition 3.1: A function f: ( X, 𝜏𝜏, I ) → ( Y, 𝜎𝜎 ) is said to be 𝐼𝐼𝑠𝑠𝑔𝑔�  continuous, if f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�-closed in ( X, 𝜏𝜏, I ) for 
every closed set v in ( Y, 𝜎𝜎 ).  
 
Theorem 3.2: For a function f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎),  the following  hold. 

1. Every continuous function is 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 
2. Every 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is s𝑔𝑔�- continuous. 
3. Every 𝐼𝐼𝑠𝑠𝑔𝑔�  - continuous function is gs - continuous. 

 
Proof  

(i) Let f be a continuous function and v be a closed set in (Y, 𝜎𝜎). Then f-1(v) is closed in (X, 𝜏𝜏, I). Since every 
closed set is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed, f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I ). Hence f is 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 

(ii) Let f be a 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function and v be a closed set in (Y, 𝜎𝜎). Then f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I). Since 
every 𝐼𝐼𝑠𝑠𝑔𝑔�- closed set is s𝑔𝑔�- closed set, f-1(v) is s𝑔𝑔�- closed in (X, 𝜏𝜏, I). Hence f is s𝑔𝑔�- continuous. 

(iii) Let f be a 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function and v be a closed set in (Y, 𝜎𝜎). Then f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I). Since 
every 𝐼𝐼𝑠𝑠𝑔𝑔�- closed set is gs- closed set, f-1(v) is gs- closed in (X, 𝜏𝜏, I). Hence f is gs- continuous. 

 
The above theorem need not be true as seen from the following examples. 
 
Examples 3.3: 

(i) Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, {a}, X}, 𝜎𝜎 = {Φ, {b}, {a, b}, Y} and I = {Φ, {a}, {c}, {a, c}}. Let the function  
f: (X, 𝜏𝜏, I ) → (Y, 𝜎𝜎) is defined by f(a) = a, f(b) = b, f(c) = c. Then the function f is 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous but not 
continuous. 

(ii) Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, {a}, {a, b}, X}, 𝜎𝜎 = {Φ, {b}, Y} and I = {Φ, {a}}. Let the function                    
f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎 ) is defined by f(a) = b, f(b) = c, f(c) = a. Then the function f is s𝑔𝑔�- continuous but not    
𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 

(iii) Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, {a}, {b, c}, X}, 𝜎𝜎 = {Φ, {c}, {a, c}, Y} and I = {Φ, {a}, {b}, {a,b}}. Let the 
function f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) be the identity function. Then the function f is sg-continuous but not                 
𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 

 
Theorem 3.4: For a function f: (X, 𝜏𝜏, I ) → ( Y, 𝜎𝜎 ), the following  hold.  

(i) Every  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is g-continuous. 
(ii) Every  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is g*-continuous. 
(iii) Every  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is sg-continuous. 
(iv) Every  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is gp-continuous. 
(v) Every  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is gsp-continuous. 

 
Proof: It is obvious. 
 
The above theorem need not be true as seen from the following examples. 
 
Examples 3.5: 

(i) Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, {a}, {b,c}, X}, 𝜎𝜎 = {Φ, {a}, {a,b}, Y} and I = {Φ, {a}, {c}, {a,c}}. Let the 
function f:(X, 𝜏𝜏, I) → (Y, 𝜎𝜎) is defined by f(a) = b, f(b) = c, f(c) = a. Then the function f  is g-continuous but 
not 𝐼𝐼𝑠𝑠𝑔𝑔�-continuous. 

(ii) Let X = Y = {a, b, c}, 𝜏𝜏 = { Φ, {a}, {a,b},{a,c}, X}, 𝜎𝜎 = { Φ, {a}, Y} and I = {Φ, {a}, {b}, {a,b}}. Let the 
function f: ( X, 𝜏𝜏, I ) → ( Y, 𝜎𝜎 ) be the identity function. Then f is g*- continuous but not 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 

(iii) Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, {b}, {a,b}, X}, 𝜎𝜎 = {Φ, {c}, Y} and I = {Φ, {b}}. Let the function                      
f: (X, 𝜏𝜏, I) → ( Y, 𝜎𝜎 ) be the identity function. Then f is sg-continuous but not  𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 

(iv) Let X = Y = {a, b, c}, 𝜏𝜏 = { Φ, {a}, {a,c}, X}, 𝜎𝜎 = {Φ, {c}, Y} and I = {Φ, {a}}. Let the function                    
f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) be the identity function. Then the function f is gp and gsp- continuous but not                 
𝐼𝐼𝑠𝑠𝑔𝑔�-continuous. 

 
Theorem 3.6: A map f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) is  𝐼𝐼𝑠𝑠𝑔𝑔�-continuous iff the inverse image of every closed set in  (Y, 𝜎𝜎) is       
𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I). 
 
Proof:  
Necessary: Let v be an open set in (Y, 𝜎𝜎). Since f is 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous, f−1(v∁) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I). But                
f−1(v∁) = X−f−1(v) . Hence f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I ). 
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Sufficiency: Assume that the inverse image of every closed set in (Y,) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I). Let v be a closed set in 
(Y, 𝜎𝜎). By our assumption f−1(v∁) = X − f−1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in (X, 𝜏𝜏, I), which implies that f-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�- closed in   
(X, 𝜏𝜏, I). Hence f is 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 
 
Remark 3.7:  

(i) The union of any two 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is 𝐼𝐼𝑠𝑠𝑔𝑔�continuous. 
(ii) The intersection of any two 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous function is need not be 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous. 
(iii) Suppose I = {Φ}, then the notion of 𝐼𝐼𝑠𝑠𝑔𝑔�- continuous consides with s𝑔𝑔�- continuous.  

 
Definition 3.8: A function f:(X, 𝜏𝜏, I1) → (Y, 𝜎𝜎, I2) is said to be 𝐼𝐼𝑠𝑠𝑔𝑔�-irresolute, if  f-1(v)  is 𝐼𝐼𝑠𝑠𝑔𝑔�-closed in (X, 𝜏𝜏, I1)  for 
every 𝐼𝐼𝑠𝑠𝑔𝑔�-closed set v in (Y, 𝜎𝜎, I2). 
 
Example 3.9: Let X = Y = {a, b, c}, 𝜏𝜏 = {Φ, X, {a}, {a, b}}, I1={ Φ,{a}} and 𝜎𝜎 = {Φ, Y, {b}} I2 = {Φ, {a}, {b},         
{a, b}}. Then the function f: (X, 𝜏𝜏, I1) → (Y, 𝜎𝜎, I2) defined by  f(a) = c, f(b) = a and f(c) = b is 𝐼𝐼𝑠𝑠𝑔𝑔�-irresolute. 
 
Theorem 3.14: Let f: (X, 𝜏𝜏, I1) → (Y, 𝜎𝜎, I2) and g:(Y, 𝜎𝜎, I2) →(Z, 𝜂𝜂, I3) be any two functions. Then the following hold. 

(i)  g ∘ f is 𝐼𝐼𝑠𝑠𝑔𝑔�   - continuous if f is 𝐼𝐼𝑠𝑠𝑔𝑔�   continuous and g is continuous. 
(ii)  g ∘ f is 𝐼𝐼𝑠𝑠𝑔𝑔�  - continuous if f is 𝐼𝐼𝑠𝑠𝑔𝑔�    irresolute and g is  𝐼𝐼𝑠𝑠𝑔𝑔�  continuous. 
(iii)  g ∘ f is 𝐼𝐼𝑠𝑠𝑔𝑔�  - irresolute if f is 𝐼𝐼𝑠𝑠𝑔𝑔�   irresolute and g is irresolute. 

 
Proof:  

(i) Let v be a closed set in Z. Since g is continuous, g-1(v) is closed in Y. 𝐼𝐼𝑠𝑠𝑔𝑔�-continuous of f implies, f-1(g-1(v)) is       
𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X and hence g ∘ f is  𝐼𝐼𝑠𝑠𝑔𝑔�   -continuous. 

(ii) Let v be a closed set in Z. Since g is 𝐼𝐼𝑠𝑠𝑔𝑔�  -continuous, g-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�   -closed in Y. Since f is 𝐼𝐼𝑠𝑠𝑔𝑔�  -irresolute,           
f-1(g-1(V)) is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X. Hence g ∘ f is 𝐼𝐼𝑠𝑠𝑔𝑔�  -continuous. 

(iii) Let v be a 𝐼𝐼𝑠𝑠𝑔𝑔�   -closed in Z. Since g is 𝐼𝐼𝑠𝑠𝑔𝑔�  - irresolute, g-1(v) is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in Y. Since f is 𝐼𝐼𝑠𝑠𝑔𝑔�-irresolute,            
f-1(g-1(v)) is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X. Hence g ∘ f is 𝐼𝐼𝑠𝑠𝑔𝑔�  -irresolute. 

 
Theorem 3.15: Let X = A ∪ B be a topological space with topology 𝜏𝜏 and Y be a topological space with topology 𝜎𝜎. 
Let f: (A, 𝜏𝜏/A) → (Y, 𝜎𝜎) and g:(B, 𝜏𝜏/B) → (Y, 𝜎𝜎) be 𝐼𝐼𝑠𝑠𝑔𝑔�-continuous maps such that f(x) = g(x) for every x ∈ A ∩ B. 
Suppose that A and B are 𝐼𝐼𝑠𝑠𝑔𝑔�-closed sets in X. Then the combination α: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) is 𝐼𝐼𝑠𝑠𝑔𝑔�  - continuous. 
 
Proof: Let F be any closed set in Y. Clearly α-1(F) = f-1(F) ∪ g-1(F) = C ∪ D where C = f-1(F) and D = g-1(F). But C is 
𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in A and A is be 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X and so C is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X. Since we have proved that if B ⊆ A ⊆ X, B is 
𝐼𝐼𝑠𝑠𝑔𝑔�-closed in A and A is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X, then B is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X. Also C ∪ D is 𝐼𝐼𝑠𝑠𝑔𝑔�  -closed in X. Therefore α-1(F) is 
𝐼𝐼𝑠𝑠𝑔𝑔�-closed in X.  Hence α is 𝐼𝐼𝑠𝑠𝑔𝑔�  -continuous. 
 
Definition 3.16: A topological space (X, 𝜏𝜏, I) is said to be 𝐼𝐼𝑠𝑠𝑔𝑔�-connected if X cannot be written as a disjoint union of 
two non-empty 𝐼𝐼𝑠𝑠𝑔𝑔�  - open subsets. A subset A of X is 𝐼𝐼𝑠𝑠𝑔𝑔�-connected if it is 𝐼𝐼𝑠𝑠𝑔𝑔�-connected as a subspace. 
 
Theorem 3.17: If  f:(X, 𝜏𝜏, I ) → (Y, 𝜎𝜎) is 𝐼𝐼𝑠𝑠𝑔𝑔�  -continuous surjection and X is 𝐼𝐼𝑠𝑠𝑔𝑔�  -connected, then Y is connected. 
 
Proof: Suppose Y = A ∪ B where A and B are disjoint open sets is Y. Since f is 𝐼𝐼𝑠𝑠𝑔𝑔�-continuous and onto,                   
X= f-1(A) ∪ f-1(B) where f-1(A) and f-1(B) are disjoint non-empty 𝐼𝐼𝑠𝑠𝑔𝑔�-open sets in X, a contradiction since X is             
𝐼𝐼𝑠𝑠𝑔𝑔�-connected. Hence Y is connected. 

 
Definition 3.18: An ideal space (X, 𝜏𝜏, I) is said to be  𝐼𝐼𝑠𝑠𝑔𝑔�-normal if for each pair of non-empty disjoint closed sets A 
and B of X, there exists disjoint 𝐼𝐼𝑠𝑠𝑔𝑔�-open subsets U and V of X such that    A ⊆ U and B ⊆ V. 
 
Theorem 3.19: If f:(X, 𝜏𝜏, I) → ( Y, 𝜎𝜎) is 𝐼𝐼𝑠𝑠𝑔𝑔�  -continuous, closed injection and Y is normal, then X is 𝐼𝐼𝑠𝑠𝑔𝑔�  -normal. 
 
Proof: Let A and B be a disjoint closed subsets of X. Since f is closed and injective, f(A) and f(B) are disjoint, closed 
subsets of  Y. Since Y is normal, there exists a disjoint open subsets U and V of X such that f(A) ⊆ U and f(B) ⊆ V.  
 
Hence A ⊆ f-1(U) and B ⊆ f-1(V) and f-1(U) ∩ f-1(V) = Φ. Since f is 𝐼𝐼𝑠𝑠𝑔𝑔�-continuous, f-1(U) and f-1(V) are 𝐼𝐼𝑠𝑠𝑔𝑔�-open in      
X which implies X is 𝐼𝐼𝑠𝑠𝑔𝑔�-normal. 
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