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ABSTRACT.

This investigation is in the Bishop’s constructive mathematics. A theorem of the ideal extensions for ordered sets is
given. If X and Y are ordered sets under a partial order and an anti-order, we construct the ordered sets V = X_UY

which has ideal A isomorphic to X, and anti-ideal B in V isomorphic to Y.
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0 INTRODUCTIONS:
0.1 Setting and motivation:

The arguments in this paper conform to constructive mathematics in the sense of Bishop. Our setting is Bishop’s
constructive mathematics [2], [3], [5], [9], mathematics developed with Constructive logic (or Intuitionistic logic
([19]) — logic without the Law of Excluded Middle P v —P. We have to note that ‘the crazy axiom’ =P = (P = Q) is
included in the Constructive logic. Precisely, in Constructive logic the ‘Double Negation Law’ P & ——P does not
hold but the following implication P = ——P holds even in the Minimal logic. In Constructive logic “Weak Law of
Excluded Middle’ —P v ——P does not hold also. It is interesting, in Constructive logic the following deduction
principle AvB, —A |- B holds, but this is impossible to prove without ‘the crazy axiom’. As Intuitionistic logic is a
fragment of Classical logic, our arguments should be valid from a classical point of view.

The extension problem for groups is as follows: given two groups H and K, construct all groups G which have a
normal subgroup N such that N is isomorphic to H (in symbol, N = H) and G/N = K (where G/N is the quotient of G
by N). G is called the extension of H by K. Ideal extensions of semigroups have been considered by Clifford in [6]
with exposition of the theory appearing in [7], [17]. Ideal extensions of totally ordered semigroups have been studied
in [9], [10], and the ideal extensions of topological semigroups in [5], [8]. Ideal extensions of lattices have been
considered in [11]. Ideal extensions of ordered semigroups have been studied in [12], [13] and [14].

In this paper we study ordered set under two compatible relations: partial order and anti-order relations.
0.2 Set with diversity:
Let (X,=,#) be a set in the sense of books [2], [3], [5] and [9], where # is a binary relation on X which satisfies the
following properties:
X #EX),XEYDYEXXEZDXEYVYEZ
called apartness (A.Heyting). The relation # must be extensional by the equality, in the following sense
XEYAY=Z=>X#Z.
Let Y be a subset of X and let xe X. By x>><1Y we denote (Vye Y)(y # x) and by Y we denote subset {xeX :

x><1Y} — the strong complement of Y in X ([3]). The subset Y of X is strongly extensional ([19]) in X if and only if
yeY=>y#xVvxeY.
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Example I: Let g (X) be power-set of set X. If we for subsets A,B of X define A # B if and only if (3ac A)—(ae B)
or (3be B)—(be A), then the relation # is diversity relation on g (X) but it is not an apartness.
(2) ([9]) The relation # defined on the set QN by

f # g < (FTke N)@ne N)(Ve N)(m > n = | f(m) - g(m)| >k™)
is an apartness on Q~. ¢

For subsets X and Y of A we say that set X is set-set apartness from Y, and it is denoted by X ><Y, if and only if
(VxeX)(VyeY)(x # y). Sometime, we set x ><1 Y instead {x}><Y, and, of course, x # y instead {x}><{y}.

With S€ = {xeX: x><IS} we denote apartness complement of S. So, I>< is relation between pairs of subsets of A.
It is easy to see that the following holds:

0) ~(X><1X);
(1) X><Y = =(X = D AY= D)

(2) X>4Y = XNY = 2;

(3) XbAYAZCY =X ><AZ

() X><(YUZ) & XD<Y A XD><Z;
@) XpaY =Y><X;

Let Y be a subset of (S,=,#). We say that it is detachable if and only if
(Vx)(xeS = xeY vxP>JY).

For a function f : (S,=,#) — (T,=,#) we say that it is a strongly extensional if and only if (Va,be S)(f(a) #t f(b) = a #
b).

0.3 Filled product:
Let X be a set with apartness and let o, B be relations on X. The filed product ([18], [20], [21]) of o and P is the
relation defined by

Bra = {(x,2)e XXX : (Vye X)((x,y)ea v (y,2)eB)}.

Forn (=2) let "o = o*...*qt (n factors). Put 'f = f. By c(o) we denote the intersection My "o. The relation c(f) is a
cotransitive relation on X, by [18], (or [20], [21]) called cotransitive internal fulfillment of the relation a. Therefore,
the relation c(f N #) is the maximal consistent and cotransitive relation on X under .

0.4 Coequality relation:
Set with apartness was first defined and studied by Heyting. After that, several authors have worked on this important

topic as for example: Bishop ([2]), Bridges and Richman ([4]), Mines, Richman and Ruitenburg ([16]), Troelstra and
van Dalen ([24]), and this author ([18], [20], [21]). A relation q on X is a coequality relation on X if and only if

qc#q'=qandqcq#q.

If q is coequality on set S, then the strong complement q© of q is an equality on the set S compatible with q in the
following sense:

(Vx.y.zeS)(x.Y)q A (y.2)€ q° = (x2)€Q).
In the case when we have a pair (p,q) of compatible an equality and a coequality on set S, then we can construct the
factor-set S/(p,q) with
ap = bp & (a,b)ep, ap # bp & (a.b)eq, ap - bp =, abp.
Particularly, we can construct the factor-set S/(q°, q) in which equality and apartness defined by
aq“=bq"e (ab)><q,aq# bq = (ab)eq,aq -bq = abq".
Except that, we can construct the factor-set S/q = {aq : ac S} where equality and apartness defined as above:

aq = bq & (a,b)><q, aq #, bq & (a,b)eq, aq - bq =, abq.

The mapping ©(p,q) : S — S/(p,q) are strongly extensional and surjective function.
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0.5 Goals of this article:

The aim of this paper is to construct the ideal extensions of ordered sets. “We are often interested in building more
complex semigroups, lattices, ordered sets, and ordered or topological semigroups out of some of “simpler” structure
and this can be sometimes achieved by constructing the ideal extensions” (Kehayopulu, [13]). If X and Y are two
disjoint ordered sets, an ordered set V is called an ideal extension (or just an extension) of X by Y if there exists an
ideal A of V which is isomorphic to X and the complement X° of A to V is isomorphic to Y. We give the main
theorem of such extensions, which is the following: If (X,=x,#x,<x,0x) and (Y,=y,#y,<y,0ly) are two disjoint ordered
sets, 0 an arbitrary subset of XXY, and

00) ={(abeXxYI@AXye0cXXY)axxAy=<yb},
and

Q(8) = c((O(B)) N (X x Y)U(YXX))

then the set V=X U Y endowed with the order “<”, defined by < =<y U <y U 0, and with the antiorder “Z”, defined
by E = ax U ay U £(0), is an ordered set and it is an extension of X by Y.

Conversely, if (V,=v,#y,<y ,Z) is an extension of (X,=x,#x,<x,0x) by (Y,=y,%y,<y,0y), then the set X UY, endowed
with the relations “=", “#”, “<” and “Y” defined by

#=#x U #y U (XXY)U(YXX), <=<xU<yUB, Z=0x U 0y U Q,

is an ordered set and there exists strongly extensional, embedding, injective, order isotone and reverse isotone, anti-
order isotone and reverse isotone function

f: XUY,=#52) = (V= 2y, Sy, E).
First, notion and elementary properties of anti-order relation of sets are introduced. The basic definitions and
properties of ordered sets under order and anti-order are presented in section 2. Elementary properties of ordered anti-
ideals of ordered set are given in the above mentioned section. In the section 3 we give some preliminaries results
and, in section 4, we give main results (Theorem 4.1 and Theorem 4.2).
0.6 References:
For undefined notions and notations of classical ordered set we referred to books [1], [3], [7], [15], [17] and papers
[5], [6], [8], [10]-[14], [23]. For constructive items we referred to well-known books [2], [4], [16], and [24], and to
author’s papers [18]-[22].
1 ORDERED SET:

This section we start with the following definitions:

Let (S, =s, #5) be a set with apartness. For S we say that it is an ordered set if S equipped with relation < (partial
order) or O (anti-order) such that:

(1) The relation < satisfies the following conditions:
=g C < (reflexivity), < o< T o= (anti-symmetric), < o< C < (transitivity);

The relation p on S is a quasi-order if it is reflexive and transitive. If p is a quasi-order on set S, then the relation pMp
"' is an equality relation on S.

(2) As in [19] we define the notion of anti-order on set with apartness: The relation ® satisfies the following
conditions:

® c # (consistency), # C O U o' (linearity) and ® c ® * O (cotransitivity).

As in [18], [20], [21] the relation  is a quasi-antiorder on set S if it is consistent and cotransitive. If ® is a quasi-
antiorder on set S, then the relation q = ® U ™' is a coequality S.

(3) Relations < and ©® are compatible in the following sense:

(Vx,y,ze S) (X £y A zOy = z0Ox).
© 2011, I]MA. All Rights Reserved 971
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NOTES: Compatibility of order and anti-order relations in set is important notion for our work.

(i) The implication x <y A zOy = zOx is equivalent to condition =(x <y A xOy). Indeed: Suppose that implication
X £y A zOy = zOx holds and suppose that x <y and x®y. Then, by compatibility of relations, we have x®x. It is
impossible, because the relation © is consistent. So, should be —(x <y A x®y). Opposite, let condition (x <y A
x@y) holds. If x <y A zQy, then, by cotransitivity of ©, we have zOx v x@y. Thus we conclude z®x, because x <y
and x@y is impossible. So, the implication x <y A zOy = z@x is consequent of the condition —(x <y A xOy).

(i1) Except that, if relations < and ©® are compatible, then implication x®y A z <y = x0®z holds too. In fact, from x@y
follows x®z or z@y. Since z <y and z®y is impossible, we deduce x@z.

(iii) Let us note that the apartness on set S is an antiorder relation on S.
Essence of connection between partial order and anti-order relation in set with apartness is given in following lemma:

Lemma 1.1 Let ©® be an anti-order on set (S,=#,). Then O is an order on (S,—#, #,°). If the order relations < on set
S and @ are compatible, then < < OF.

Proof: (i) Let a =b and let (u,v) be an arbitrary element of ®. Then (u,2)e ® v (a,b)e® v (b,v)e®. Thusu#ava+#
bvb#v.Since a#b is impossible, we have (a,b) # (u,v)e®. So, = @F, i.e. the relation OF is reflexive relation.

(>i1) Let (a,b)e e° A (b,a)e OF. From a # b we conclude that (a,b)e ® or (b,a)e O. It is a contradiction. So, we have to

—(a#b).

(iii) Let (a,b)e ©° A (b,c)e O and let (u,v) be an arbitrary element of ®. Thus (u,2)e® v (a,b)e® v (b,c)e® v
(c,v)e®. Thusu#av c# v because (a,b)e OF A (b,c)e O holds. So, (a,c)e OF.

(iv) Let a,b,c be arbitrary element of S such that (a,b)e OF and let (u,v) be an arbitrary element of ®@. Then (u,ac)e ®
Vv (ac,bc)e ® v (be,v)e O. In the second case we should have (a,b)e ® which is impossible. So, have to u # ac or
bc # v. Therefore, (ac,bc)e ec.

(v) Let a < b and let (u,v) be an arbitrary element of ®. Then (u,a)e ® or (a,b)e ® or (b,v)e ®. Since (a,b)e® is
impossible, then u# a or b # v. So, (a,b)e e°.

Corollary 1.1.1 Let ® be a quasi anti-order on set (S,=#,). Then OF is an quasi-order on (S,—#, #,-). If the quasi-
order relations o on set S exists and o and ® are compatible, then o. c ©F.

Example II: Let S = {a,b,c,d,e} with apartness. Relation o, defined by
a = {(a,0).(a,d),(a.e).(b,a),(b,c),(b.d).(b.e).(c,a).(c,b).(c.d).(c.e).(d.a).(d.e).(e,a).(e,b),(e.d) },
is an antiorder relation on set S and the relation
B = {(ae).(b.e)(c.a)(c.b).(c.d).(c.e).(de)(e.a)(eb)(e.d)}
is a quasi-antiorder relation on set S.

Example III: Let A be a strongly extensional consistent subset of a semigroup (S,=,#,"). Then relation ®, < SxS,
defined by (a,b)e @, & a#b A ac A, is an quasi-antiorder relation on S but it is not antiorder relation on S.

Indeed: It is clear that ®, < #. Let a,b,c be arbitrary elements of S such that a @4 c, i.e. leta#c and ac A. Froma#c¢
follows a#borb#c. If a#b, then a ®, b. Suppose that b # c and ac A. Then a# b or be A. If ac A and a # b, we
have a @4 b again. If be A and b # ¢, then b @, c. Let xa @, xb (xeS), i.e. let xa # xb and xa€ A. Thus a # b and
ac€ A. So, a®, b. Similarly, we get ax @, bx = a @, b.

Suppose that —(a€ A) and —(be A) and a # b. We can not conclude that the implication a # b = a®@,b v b®,a holds.
So, the relation ® is not an antiorder relation on S.

Example III ([19]): Let (R,=,#,+,) be a commutative ring with apartness.
(1) The subset D of R is a cosubring of R if and only if satisfies the following conditions:

0><D, 1><D, -aeD = aeD, a+be D = aeD v be D, and abe D = ae D v beD.
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It is clear that cosubring D of R is strongly extensional in R.

(0) Every anti-ideal of a ring is a cosubring of R.
(1) Suppose that M is an A-module. Let S = AXM, and for (a,x), (b,y) let define:

(ax)=Mby)eoa=bax=yy, (ax)#(by) e a#bVvx#yy;
(a,x)+(b,y) = (a+b,x+y), (a,x)-(b,y) = (ab,bx + ay).
That S is a ring under these definitions. S has the identity if and only if a contains the identity and M is an unitary A-
module. The set A’ = {(a,0)e S : ac A} is a subring of S isomorphic to A. The set A” = {(a,x)eS:x#y 0} isa

cosubring of s. The set M” = {(a,x)e S : a#4 0} is a coideal of S.

(3) Let m be an integer. Then the set C(m) = Ui, m.1(MZ+i) is a cosubring of the ring Z.

(4) Let K be a Richman’s field and x be an unknown variable under K. Then the sets C = {Zaixie K[x]:a#0}and D
= {Zax'e K[x] : Za; # 0} are cosubrings of K[x].

Let R be a commutative ring with an apartness and D be a cosubring of R. Then the set D¢ is a subring of R
compatible with D in sense that ac D A be D = a+beD.

(2) If (K,=,#,+) be an additive Abelian group, for relation ® we say that it is compatible with the group operation if
(¥x,a,be K)((a+x,b+x)e ® = (a,b)e ®).
2.1 ([19], Proposition 4.1) If a subset P of an Abelian group (K,=,#,+) satisfies the following conditions:
0><P, PU(-P) = K", PN(-P) = {0}, (Va,be K)(a+be P = acP v beP),

then the relation ® on K, defined by (a,b)e ® < a — beP, is an anti-order relation on K compatible with the group
operation on K.

2.2 ([19], Theorem 5.2) Let (K,=,#,+,0,-,1) be a field and D be a cosubring of K. Then:

(1) The set S = {acK : acD v a'e D} is a strongly extensional cosubgroup of the multiplicative group K* = {acK: a
# 0} compatible with the subgroup S© and we can construct the factor-group G = K'/(S€,S);

(2) On the group G we define a relation ® by (aS¢,bS%e® < a'beD. The relation ® on G is an anti-order relation
on G compatible with the group operation on G.

2 ORDERED SUBSTRUCTURES:
Our next notions in ordered set are order substructures. We follows classical definition of order ideal of ordered
semigroup under a partially order. Here we doing with set ordered by a partial order and by an anti-order. Definitions
of order ideal and anti-ideal are given in the following definitions:
Let (S, =,#) be an ordered set with apartness under order relation < and under anti-order relation®.
(1) An order ideal of S is a subset I of S such that
xy)xelAay<x=yel)
(2) An order anti-ideal of S is a subset K of S such that
(Vx,y)(ye K = yBx v xeK)
For an order ideal I and order anti-ideal K we say that they are compatible if and only if I ¢ —K.
Example IV: (1) The order ideal generated by an element x is the set (a] = {yeS : y < a} called a principal ideal

generated by element a. (2) The subset K(a) = {zeS : z®a} is an order anti-ideal called a principal anti-ideal
generated by element a. In fact: Let z be an arbitrary element of K(a) and let y be an arbitrary element of S. Then,
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from z®a follows z®y or y®a. So, the implication ze K(a) = ye K(a) v zO®y holds. Therefore, set K(a) is an order
anti-ideal of S.

Now, suppose that we have a function @ : (S,=s,%s,<s,0s) = (T,=r1,#1,<1,071) between two ordered set under order and
anti-order relations. First let us remind oneself of some standard notions and notations about functions: A function ¢
is strongly extensional if

(Vx,x’e S)(P(X) #r O(X’) = X #s X);
¢ is an embedding if and only if

(Vx,x’eS)(X #5 X = Q(X) #1 9(X)).

Now, we need new kind of function between ordered sets

(1) A strongly extensional function ¢ : (S,<s) — (T,<7) of ordered sets under orders from S into T is an order-isotone
function if and only if for every X,y € S, x <g y implies @(x) <t @(y). If x <5 y implies from @(y) <r ¢(x) we say that @
is order - reverse isotone function of ordered sets.

(2) A strongly extensional function @ : (S,0s) — (T,01) of ordered sets under anti-orders from S into T is an anti-
order isotone function if and only if for every x,ye S, x@sy implies ¢(x) O ¢(y). If ¢©(y) Or @(x) implies x Qg 'y,
we say that @ is anti-order reverse isotone function of ordered sets.

Let ¢ : (S,=5#5,55,05) — (T,=1,#1,<1,01) be a strongly extensional function of ordered sets. Then ¢ 'I(ST) is an
order on set S, and @ (@) is an anti-order on set S such that Anti-ker@ = {(x,x’)e SXS : @(x) #r @(x’)} < ¢ '1(®T) ]
(p"(G)T’]). Then:

(¢ is order isotone function) & <g C (p’l(ST);

(@ is order reverse isotone function) & (p‘l(ST) c<s;
(@ is anti-order isotone function) < Qs C (p’l(®T);
(@ is anti-order reverse isotone function) & (p"(@T) c Os.

Binary relation ‘to be order function of ordered sets under orders’ is transitive. Symmetrically, the next lemma show
that binary relation ‘to be anti-order function of ordered sets under anti-orders’ is transitive, too.

Lemma 2.1 If ¢ : (R,0r) — (5,05) and v : (5,05) = (T,®1) are anti-order isotone (anti-order reverse isotone)
functions of ordered sets, then Yy o ¢ : (R,Or) — (T,0r) is an anti- order (anti-order reverse) isotone function of
ordered sets.

The notion of isomorphism of ordered sets is well-known: The order isotone and reverse isotone function must be
strongly extensional and embedding bijection. In the next definition we give a notion of anti-order isomorphism
between ordered sets under anti-orders: For the strongly extensional function ¢ : (S,=#,,0s) = (T,=#,-,0r) of
ordered sets under anti-orders is an anti-order isomorphism if and only if it is injective, embedding and surjective
anti-order isotone and anti-order reverse isotone function.

The following propositions show that order anti-ideals are preserved under union, intersection and reverse inverse
functions.

Lemma 2.2 Let (S,=,#,0) be an ordered set under an antiorder ® and let R = {K; : jeT'} be a family of order anti-
ideals of S. Then "R and UR are order anti-ideals of S.

Proof: (1) Let ye US . Then there exists j €I, ye K| and thus y®x or xe K;. It follows that y@x or xe UR and thus
UR is an order anti-ideal of S.

(2) Let ye nR. Then for all jeI', yeK; and thus yOx or xe K;. In the Constructive logic we know exactly which of
formula in previous disjunction holds for all singly jeI". If =(y®x) for all je I" holds, then xe "R. So, ye "R implies
yOx or xe€ "R. Therefore, "R is an order anti-ideal of S.

Lemma 2.3 Let ¢ : (S,=#,0) — (T,=#,0) be a reverse isotone anti-order function of ordered sets. If W is an anti-
ideal of T, then @ '(W) is an anti-ideal of S.

Proof: Let ye@ 'I(W) and let x be an arbitrary element of S. Then @(y)e W. Thus ¢@(y)@r¢(x) or ¢x)e W. If
¢(y)®r0(x), then yOsx because @ is reverse-isotone antiorder- function. If @(x)e W, then xe ¢ T(W). So, W) W) is
an anti-ideal of S.
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3 PRELIMINARY RESULTS:

Following classical definitions, we give a few new notions in the following definitions:

We say that (S,=s,%5,5s,0s) is an ordered substructure of (T,=1,#1,<1,0r1) if S is a subset of T and the order on S is
the restriction to S of the order on T.

Let (V, =#, <,E) be an ordered set. The following lemmas show some basic properties of ordered sets:

=

Lemma 3.1 Each nonempty subset Z. of an ordered set (V,=,#,<,Z) with the relations =z, #; , <7 ,&7 on Z defined by
=, ==y (ZXZ), #7 = #v (Zx2), <, =<y (2 X Z), &7 = By N (ZX2),
is an ordered set.

In the following, each subset Z of an ordered set (V,=,#,5,E) is considered as an ordered set .

Proof:
It is clear that relations =7 = =y N(ZXZ), #7z = #v N( ZXZ), <z = <y N(Z x Z) are well-defined. We will show the
proof for the anti-order relation & = E N (ZXZ) only.

(1) &=En@Zx2)ctnN(EZx2)= #;;

Q) #2= A2 NEZXZCEUENYN@ZXZ)=(ENZX2) U (E'NZXZ2) =(E N (Zx2) U (E N (Zx2)" =
& u (gz)_1 .

(3) & =ZN(ZxZ) < (E*E)N (ZXZ) C (E N (ZXZ)*(E N (Zx2)) =& * &; .

(4) Leta<ybanda&;b. Then ac Z, be Z and a <y b and aZb. It is impossible. Thus =(a <, b A a &, b). So, the
relation <; and &, are compatible if the relation <y and Z are such.

Corollary: 3.1.1 Let E is a cotransitive relation on V, and Z be a subset of V. Then the relation &, = Ey N (ZXZ) is a
cotransitive relation on Z.

Lemma: 3.2 Let (X, <x ), (Y,<y) be ordered sets such that X N"Y = @. Let ® < X X Y and V = X UY. Define a
relation “<” on V as follows:
<= Uy U 0O(0) € (XUY)XXUY).

where O(2) = {(a,b)e X x Y | (A(x,y)€0 < XXY)(a <x X Ay <y b}. Then (V,S) is an ordered set under order relation
<.

Proof: (1) Let ac V. If ac X, then (a,a)e <x = <. If ae Y, then (a,a)e <y < <. So, the relation < is reflexive.
(2) Let (a,b)e< and (b,c)e <. Then (a,c)e <.Indeed we consider the following cases:

(a) (a,b)e<x A (b,c)e <x = (a,0)e <x;
(b) (a,b)e<x A (b,c)e <y is impossible because be X NY = IJ;
(c) (a,b)e <x A (b,c)e®(B) = (A(b’,c’)eB)(b,b’)e <x A (¢c’,0)E <y)
= (A(b’,c’)eb)((a,b’)e <x A (c’,0)e <yv)
= (a,c)e O(0);
(d) (a,b)e <y A (b,c)e <x is impossible because be X NY = IJ;
(e) (a,b)e <y A (b,0)e <y = (a,0)e <y
(f) (a,b)e <y A (b,c)e O(0) is impossible because be X NY = I,
(g) (a,b)e O(B) A (b,c)e <x is impossible because be X NY = J,
(h) (a,b)e O(O) A (b,c)e<y = (A(a’,b’)eB)((a.a’)e <x A (b’,b)e<y)
= (J(’,b)eb)((a,a’)e <x A (b’ ,c)e<y)
= (a,c)e O(0);
() (a,b)e O(B) A (b,c)e BO(0) is impossible because be XNY = .

Therefore, the relation < is transitive.

(3) Let (a,b)e < and (b,a)e <. Then a = b. In fact: We put a instead of c in conditions (a) — (i) above.
(a) If (a,b)e <x A (b,a)e <x, then a =x b;

(b) If (a,b)e < A (b,a)e <y, then a,b € XNY = J. The case is impossible.

(c) Let (a,b)e <x A (b,a)e ©(0). Since O(0)e XXY, we have a,b e X Y = & The case is impossible.
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(d) (a,b)e <y A (b,c)e <x is impossible because be X NY = J;
(e) If (a,b)e <y A (b,a)e<y, thena=b.
(h) (a,b)e ® A(b,o)ey = A, y)eB)(a<xx Ay <yb)A(be)ey
= Ax,y)eb)(asxxAy<yc)
= (a,c)e B;

The cases (f), (g) (i) are also impossible.
Therefore, the relation < is an anti-symmetric.
NOTES: (1) 6 c ©(0).

(2) ©(0) =u{(a] x [b) : (a,b)eb}.

In fact: (x,y)e ®(0) if and only if there exists (a,b)e 0 such that x <x a and b <y y. Thus xe(a] and ye[b) for some
(a,b)e 0. Opposite, if (u,v)e U{(a] X [b) : (a,b)e 0}. Then there exists an element (a,b)e 6 such that ue (a] and ve [b).
So, u <x aand b <y v. We conclude that (u,v)e ©(0).

Lemma: 3.3 Let (X,=x,#x) and (Y,=y,%y) be sets with apartness such that X ><1Y. If define a relation “#” on V =
X UY as follows:

#=#x U 2y U (XXY)U(YXX) € (XUY)X(XXY).,
then (V,=,#) is a set with apartness.

Proof: (1) Let ae V be an arbitrary element. If ac X, then —(a #x a) holds. If ae Y, then —(a #y a) holds. So, the
relation “#” is a consistent relation on V.

(2) Let a#b. If ac X and be X, then a #x b. Thus, b #x a. If ac Y and be Y, then a #y b holds. Thus, b #y a. If ae X
and be Y, then be Y and ac X. Therefore, relation “#” is a symmetric relation.

(3) Let a # c and let b be an arbitrary element of V. Then:

acX AceXAabeXAna#xc=(a #xbVvb#xc);
acXAceXAbeYArna#gc=(a #bAb#c);
acXAceYAbeXAna#c= b#gc;
acXAceYAbeYArna#c= a#b;
acYAceXAbeXrnatc=a #b;
acYAceXAbeYArnazc=Db#c
acYAceYAbeXrnatyc=(a #bAb#0);
acYAceYAceEYAa#Eyc=>(a Zyb Vv b#y Q).
So, the relation “#” is cotransitive relation.

Therefore, the relation # on V is coequality relation.

Lemma: 3.4 Let (X,=x,#x,<x,0x) and (Y,=y,#y,<y,Qy) be ordered sets under antiorders 0x and Oy respectively such
that X ><1Y.Let 0 c X x Y and V =X UY. If define a relation “E” on V as follows:

E = (axUoy)NQ(0), Q(6) = c((O(0)°) N (X x Y)U(YxX)),
then (V,=#,E) is an ordered set under anti-order relation &..

Proof: (1) E is a consistent relation. Indeed: From ax < #x , 0ty € #y and Q(0) < (XXY)u(YXxX) follows E = oix U
ay UQB)c#.

(2) c((®(0)°) is cotransitive relation on set XUY. So, the relation () = c((O®O))N (XXY)U(YxX)) is a
cotransitive relation on set (XXY)u(YxX)) by Lemma 3.1.

(3) Z is linear relation. Indeed: Let a and b be arbitrary element of V= X UY such thata#b. Thena#xbora#ybor

(a,b)e (XXY)uU(YxX). Then
(ab)e #x cox U (o) € EBUE;
(ab)e #y C oy U (0y)' € BUE!;
(a,b)e (XxY)U(YXX) c (Q@®) ' UQ®) cEUE!.
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4. THE DEFINITION AND THE MAIN RESULTS:

Definition: Let (X,=x,#x,<x,0x), (Y,=y,#y,<y,0y) be ordered sets and X><1Y. An ordered set (V,=v,#v,<v ,&) is
called an extension of X by Y if there exists an ideal A and an anti-ideal B of V such that

(X =x2x5x,0x) = (A,=a,7%4,54,0), (B,=p,#555,B) = (Y, =v,%y,<y,0)
Where
=p ==y N(AXA), #5 = #v N(AXA), <p =<y N(A X A), a= Ey N (AxA), and

=p = =y N(BXB), #3 = #y N(BxB), <3 =<y N(B x B), B = Ey N (BxB).
If (V,=#,<v ,E) is an extension of X by Y, we always denote by ¢ and y the isomorphisms
0 1 (X=x#55%,0x) = (A=a74,50,00,
W (Y,=y,2y:Sy,0y) — (B,=p,#3=8,B).
We always denote by ® and Q sets defined by
0 = {(a,b)e XXY : ¢(a) < y(b)} and Q = {(a,b)e XXY : ¢(a)=y(b)}.
The following theorem gives our first result on extension of ordered sets:

Theorem 4.1 Let (V,=y,#v,<y ,E) be an extension of (X,=x,#x,<x,0x) by (Y,=v,#y,<y,0y). Then the set X UY,
endowed with the relations “=", “#”, “<” and “Y” defined by

Z=#Zx U Zy U (XXY)U(YXX), <=<xUUB, Z=0x Uy UL,

is an ordered set and there exists strongly extensional, embedding, injective, order isotone and reverse isotone, anti-
order isotone and reverse isotone function

f: (X UY, =% <, Z) — (V,:v, #y, <v, E)

Proof: Let (X,=x,#x,<x,0x) and (Y,=y,%y,<y,0Oly) be ordered sets, X><Y, and (V, =y, #v, <v ,&) an extension of X
by Y. Then there exist an ideal A and an anti-ideal B of V and isomorphisms:

(p : (X, =X ;tX, SX7 (XX) - (A, =As ;tA, SA, (X‘)s
vy (Y, =y, #y, <y, Oy) — (B, =g, #5, <g, B).

The set X UY endowed with the relations: =, #, < and X as above, is an ordered set.

(1) By Lemma 3.3 the relation “#”, defined by # = #x U #y U (XXY)U(YXX) is an apartness on XUY.
(2) Let ae V. If ae X, then (a,a)e <x c <. If a€ Y, then (a,a)e <y < <. So, the relation < is reflexive.
Let (a,b)e < and (b,c)e <. Then (a,c)e <.Indeed we consider the following cases:

(a) (a,b)e<x A (b,c)e <x = (a,0)e <x;
(b) (a,b)e<x A (b,c)e <y is impossible because be X NY = J;
(c) (a,b)e <x A (bc)e® = a<xbA@bd)<yVy(c)
= 0(a) <y 9(b) A @(b) <y ¥ (¢)
= @) <y Yy (c)
= (a,c)eB;
(d) (a,b)e <y A (b,c)e <x is impossible because be X NY = J;
(e) (a,b)e <y A (b,o)e <y = (a,0)e <y
(f) (a,b)e <y A (b,c)e ® is impossible because be X NY = J;
(2) (a,b)e ® A (b,c)e <x is impossible because be X NY = I,
(h) (a,b)e O A(bc)ey = 9(@)<yy(b)Ab<yc
= 0(a) <y ¥ (b) A Y(b) <y Y(c)
= o) vy (o)
= (a,0)eB;
() (a,b)e O(B) A (b,c)e BO(O) is impossible because be XNY = .
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Therefore, the relation < is transitive.
Let (a,b)e < and (b,a)e <. Then a = b. In fact: We put a instead of c in conditions (a) — (i) above.

(a) If (a,b)e <x A (b,a)e <x, then a =x b;

(b) If (a,b)e < A (b,a)e <y, then a,b € XNY = J. The case is impossible.

(c) Let (a,b)e <x A (b,a)e ®. Since O(0)e XXY, we have a,b € X NY = & The case is impossible.
(d) (a,b)e <y A (b,c)e <x is impossible because be X NY = J;

(e) If (a,b)e <y A (b,a)e<y, thena=b.

The cases (f), (g) (i) are also impossible.

Therefore, the relation < is an anti-symmetric.

(3) We consider the mapping f : XUY — V defined by f(a) =y ¢(a) if ac X and f(a) =y y(a) if ac Y.
The mapping f is a strongly extensional function:

3.1 The mapping f is a function: Let a and b be elements of XUY such that a =b. Then:
ae X AbeX Aa=x b= f(a) =y @(a) =5 ¢(b) =y f(b);
aeY AbeY Ana=y b= f(a) =y y(a) =g y(b) =y f(b);
Cases ac X AbeY and ae Y A be X are impossible because XNY = .
3.2. The mapping f is an embedding function: Let a and b be elements of XUY such that a # b. Then:
ae X AbeX A a#x b= f(a) =y ¢(a) #4 9(b) =y f(b);
acY AbeY Aa#y b= f(a) =y y(a) # Y (b) =y f(b);
ac X AbeY Aa#b = f(a) =y ¢(a) v Y(b) =y f(b) because ANB = J;
acY AaeY Aa#b = f(a) =y y(a) #y ¢(b) =y f(b) because AnB = .
3.3 The mapping is an injective function. Let a and b be elements of XUY such that f(a) = f(b). Then:
ae X A be X A f(a) = f(b) = ¢(a) =y f(a) = f(b) =v ¢(b)
=a=xb;
ac Y AbeY A f(a) = f(b) = y(a) =v f(a) = f(b) =y y(b)
=a=yb;

The case ac X AbeY A @(a) =y f(a) A f(b) =y W(b) and @(a) = y(b) is impossible because ANB = J;

The case ac Y A be X A y(b) =y f(b) A f(a) =y @(b) and @(b) = y(a) is impossible also because ANB = .

3.4 f is strongly extensional function. Indeed: Let a and b be arbitrary elements of V = XUY such that f(a) # f(b).
Then

ac X Abe X Af(a) # f(b) = ac X Abe X A @(a) %5 @(b)
=a#xb (@isastrongly extensional)
=a=#bh.

acY AbeY Af(a) #f(b) = ac Y AbeY A y(a) #5 W(b)
=a#yb (yisastrongly extensional )
=a=#b.

ac X AbeY Af(a) #f(b) =>a=#b.

acY AbeX Af(a)zf(b) =>a#b.

3.5 f is order isotone. Let a,be XUY, a <b. If a <x b, then @(a) <5 @(b) since @ is order isotone function. Since ae X
and be Y, we have f(a) = @(a) and f (b) = @(b). Then f (a) <, f (b) that is, f(a) < f(b). Let a <y b. Since v is isotone,

we have y(a) <g y(b). Since ae Y and be Y, we have f(a) = y(a), f(b) = y(b). Then f (a) <z f (b), that is, f(a) < f(b).
Let (a,b)e ®. By hypothesis, (a,b)e XUY and @(a) <y y(b). Since ae X, be Y, we have f(a) = ¢(a), f(b) = y(b). Then
f(a) <y f(b).

3.6 f is order reverse isotone function. If ac X and be X and f(a) < f(b). Then @(a) = f(a) < f(b) = @(b), and @(a) <,
¢(b). Since is reverse isotone, we have a <x , so a<b.
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Let ac X and be Y and f(a) < f(b). Then f(a) = ¢(a)e A, f(b) = y(b)e B, @(a) <y y(b). Since (a,b)e XXY and ¢(a) <y
y(b), we have (a,b)e ® c <.

Let ae Y and be X and f(a) < f(b). Then f(a) = y(a)e B, f(b) = ¢(b)e A. Since V _ f(a) <y f(b) and f(b)e A and A is an
ideal of V, we have f(a)e A. The case is impossible.

Suppose that ac Y and be Y and f(a) < f(b). Then f(a) = y(a)e B, f(b) = y(b)e B, and y(a) <y y(b). Since v is reverse
isotone, we have a<x b and a<b.

(4) 4.1 Firstly, we conclude o € #x < # and B < #y < #. Secondly, if (a,b)e Q, i.e. if (¢(a),y(b))e E, then @(a)e A
and y(b)e B. So, ac X and be Y. Thus, (a,b)e XXY < #. Therefore, the relation X is a consistent relation on XUY.

4.2 Let a,be XUY and a # b. If ae X and be X, then (a,b)e ok or (b,a)e 0x. So, (a,b)e X or (b,a)e X.
If a,be Y, then (a,b)e iy or (b,a)e ay. Thus (a,b)e X or (b,a)e X.

If ac X and beY, then @(a)e A and y(b)e B. Since A><1B, we have @(a)Zy(b) or y(b)E@(a). Hence (a,b)eX or
(abeXr’.

If ac Y and be X, then @(b)e A and y(a)e B. Since A><IB, we have @(a)Zy(b) or y(b)Z@(a). Hence (b,a)e X or
(a,b)e ¥'!. Therefore, the relation X is linear.

4.3 The function f is anti-order isotone. If (a,b)e X, i.e. if (a,b)e 0x or (a,b)e oy or (a,b)e Q, then:

(a,b)e ox = (¢(a),p(b))e o = E N (AXA)

= (f(a),f(b))e & because @(a) = f(a) and @(b) = f(b);
(ab)eay = (W) y(b)eP = E N (BxB)

= (f(a),f(b))e & because y(a) = f(a) and y(b) = f(b);
@b)eQ & (@) y(b)eE

= (f(a),f(b))e & because @(a) = f(a) and y(b) = f(b).

4.4 f is anti-order reverse isotone function. Let a,be XUY such that (f(a),f(b))e E. Then:

ac X Abe X A (f(a),f(b))eE =

f(a) = p(a)e A A f(b) = @(b)e A A (9(a),0(b))e E N (AXA) =«
= (a,b)ea @ is anti-order reverse isotone

= (a,b)eX;

ae X AbeY A (f(a),f(b))eE =

f(a) = pa)e A A f(b) = Y(b)e B A (9(a).W(b)e E

= (a,b)eQcX;

If ac Y A be X A (f(a),f(b))e E then f(b) = ¢(b)e A A f(a) = y(a)e B A (y(a),p(b))e E which is impossible.
acY AbeY A (f(a),f(b))eE =

f(a) = W(@)e B A f(b) = y(b)e B A (W(@),y(b))e E N(BXB) = B
= (abeaycX.

So, the function f is anti-order reverse isotone function.

We give the main theorem of extensions: If (X,=x,#x,<x,0x) and (Y,=y,#y,<y,0ly) are two aparted ordered sets, 6 an
arbitrary subset of X XY

B0)={(ab)eXxYI3AXyebccXxY)aixxAy<yb},
and
Q(6) = c((B(8)) N (X x Y)U(YXX)),

then set V = X U Y, endowed with the order “<”, defined by < = <x U <y U 0, and with the antiorder “Y”, defined by
Y = (oxUoy) U Q(0), is an ordered set and it is an extension of X by Y.

Theorem: 4.2 Let (X,=x,#x,<x,0x) and (Y,=y,#vy,<y,0y) be ordered sets such that X ><1Y.Let® c X xY andV =
X UY. Define relations “=", “#”, “<” and “¥”on V by
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#=#x U2y U (XXVU(YXX), <=<xUU0, T=0xUdy UL,
Then (V, =y, #v, <v , L) is an ordered set and it is an extension of X by Y.

Proof: (I) Set V is an ordered set under partial order <, by Lemma 3.2, and it is ordered set under anti-order X, by
Lemma 3.4.

(IT) The set X is an ideal of V. In fact, let ac X and b < a. Thus, we have b <x a, b <y a or (b,a)e @(0). If b <x a, then
be X. If b <y a, then ac XNY = . The case is impossible. If (b,a)e ®(0) c X X Y, we have ac XNY = . The case is
impossible.
The set Y is an anti-ideal of V. Indeed: Let be Y and ac V = XUY. From be Y A ac Y we conclude ac Y. Let ae X.
Thena#b. ThusaX borb X a. So, last means

(aoxb v adaybv(abeQ)v(boxa v bayav(b,aeQ).

The case (a,b)e Q is only impossible. Thus, we have (a,b)e Q < X. Therefore, the implication

beY AnaecV=aXbvaeY
holds. So, the set Y is an anti-ideal of V.

(IIT) The identity mappings
Ix : (X, =x, #x, <x,0x) = (X, =N X2, 2n X5 <N X5, 2N XD)

Iy : (Y, =y, 2y, <y ,0y) = (Y, =NY, 20YL <N YL 2N YD)
are strongly extensional, injective, embedding and onto functions. Moreover, we have
=x ==N (XXX), # =#N (XXX), <x =<N (XXX) and oy = £ N (XXX),
=y ==N(YXY), Zy=#nN (YXY), <y =< (YXY) and oy = £ N (YXY).
By above equalities, the mappings Ix and Iy are order-isotone and reverse isotone, and antiorder-isotone and reverse
isotone functions. Thus, we have
X, =x %06 <X .00) =X, =N XL 2N XL <N XL 2N X))
and
(Y, =y, #v, Sy 0y) = (Y, =NYL, #NY, <N YL, 2N YD),
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