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ABSTRACT 

This paper presents the soft computing technique on computational mathematics for current research. Current 

research on computational mathematics basically needs to address the issues of uncertainty for reliability analysis and 

optimization process. Research on reliability modeling can not be addressed completely by probability distribution of 

the governing parameters because some of the parameters may be of imprecise due to lack of knowledge or information 

about them. It is also true that the imprecise information can not be translated or transformed into probability 

distribution. Hence, it is mandatory to treat the imprecise nature of parameters of a reliability model in a different 

manner. The methodology of handling the uncertainty of such parameters is basically carried out by using evidence 

theory which provides the belief and plausibility – lower and upper bounds of the epistemic uncertainty of the model. 

Traditional probability exists between belief and plausibility. The body of evidence for the model to be tested for its 

reliability is gathered by expert’s opinion by assigning a basic probability mass to each of the focal sets comprising the 

evidence. Soft computing technique also includes the chaos theory so called as polynomial chaos which also can be 

applied to quantify the uncertainty. Polynomial chaos theory is an efficient version of traditional Monte Carlo method 

of handling aleatory uncertainty. Potential capability of polynomial chaos theory in handling aleatory or stochastic 

uncertainty is illustrated with a case study of contaminant transport through groundwater.  

------------------------------------------------------------------------------------------------------------------------------------------------ 

1.0 INTRODUCTION: 

Soft computing techniques emerged from the studies of natural systems. In the past bi-inspired methods were difficult 

to be implemented because of the limitations in computational power. Examples of bio-inspired techniques are 

Artificial Immune systems (AIS), Artificial Neural Networks (ANN), Fuzzy systems (FS), Evolutionary computing 

(EC) and swarm intelligence (SI). Such techniques are also known as Computational Intelligence (CI) techniques and 

are part of the so-called Artificial Intelligence (AI) research area. They can be combined among themselves and with 

stochastic methods in order to develop more effective methods to solve complex engineering problems. In summary, 

soft Computing is a complex of methodologies that includes artificial neural networks, genetic algorithms, fuzzy logic, 

Bayesian networks, and their hybrids. It admits approximate reasoning, imprecision, uncertainty and partial truth in 

order to mimic the remarkable human capability of making decisions in real-life, ambiguous environments. Soft 

Computing has therefore become popular in developing systems that encapsulate human expertise. Chaos belongs to 

the soft computing group. Chaos in the polynomial form is very important research application on computational 

mathematics. Stochastic differential equation can be solved by using the polynomial chaos. Not only that, one can very 

easily quantify the aleatory uncertainty which is only due to the stochasticity or randomness uncertainty of the 

parameter associated with the governing equation of the system. In this regard, it is required to introduce the types of 

uncertainties. This article addresses the polynomial chaos component of the soft computing for research on 

computational mathematics. Computational mathematics basically dictates the knowledge of science.  

 

The paper describes the utility of polynomial chaos for quantifying aleatory uncertainty efficiently. Before going to 

polynomial chaos theory it is always better to introduce a brief description of uncertainty. Uncertainties are typically 

classified as aleatory and epistemic [1]. Aleatory uncertainty (also called probabilistic uncertainty) arises from 

randomness in the system whereas epistemic uncertainty arises due to the lack of knowledge (or ignorance). Epistemic 

uncertainties may also arise from assumptions introduced in the mathematical models and it can be possible to reduce 

them using inference from experimental observations. Uncertainty that is explicitly recognized by a stochastic model is 

categorized as aleatory.  Uncertainty of the model parameters and the model itself is epistemic. Hence, the 

aleatory/epistemic split of the total uncertainty is model-dependent [2]. The steps involved in the uncertainty 

quantification of a model generally include (a) estimation of uncertainties of model inputs, (b) estimation of uncertainty 

of the model output, and (c) propagation of uncertainty in the model output. Monte Carlo methods are the most widely  
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used techniques for statistical/probabilistic uncertainty analysis, with diverse applications. Given the input uncertainty 

distributions (frequency or probability density data), these methods involve repeated generation of pseudo-random 

instantiations (sampling) of inputs followed by application of the model to these instantiations to yield a set of model 

responses. These model outputs are then analyzed statistically. 
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2.0 THEORY OF POLYNOMIAL CHAOS EXPANSION: 

 

The PCE approach has its foundation in the work of Wiener [4], who represented a Gaussian process as an infinite 

series of Hermite polynomial that takes a vector of random variables as arguments. Ghanem and Spanos [5] used this 

representation to develop the stochastic finite element method. Xiu and Karniadakis [6] extended the theoretical 

framework to non-Gaussian process by using different polynomial basis functions. This generalized polynomial chaos 

approach was used to address the problem of heat transfer with random material properties by Wan et al. [7].  

 

The PCE is the representation of a random variable, more generally a stochastic process, with an infinite series of 

orthogonal polynomials that take a vector of independent and identically distributed (iid) random variables as 

arguments. Mathematically, the PCE of a random process can be represented by 

 

                              (1) 

 

 

where {aj,k | k = 0, 1,...., n-1} are unknown coefficients to be determined with respect to the specified model used for 

the uncertainty analysis,  n represents the number of uncertain model inputs and Γp(ξ)’s are defined to be multivariate 

Hermite polynomials in the p – dimensional sequence of uncorrelated standard normal random variables, {ξi}. The 

multivariate Hermite polynomials can be written as: 

 

                                                                                                                                                                                     (2) 

 

 

 

The inputs are represented as functions of identically independently distributed normal random variables {ξi| i=1,n} and 

each ξi has zero mean and unit variance. These random variables are referred to as “Standard Random Variables 

(srvs)”. Once the inputs are expressed as functions of these srvs, the output metrics can be represented as functions of 

the same set of srvs [8]. The minimum number of srvs needed to represent the inputs is defined as the “number of 

degrees of freedom” in the input uncertainty. In practice, in the theory of PCE, the minimum number of simulations 

required for generating the sample points of the uncertain inputs from the respective pdf depends on the order of the 

Hermite polynomial and the number of uncertain inputs. Therefore, if n is the number of uncertain inputs and r be the 

order of the polynomial, the number of simulations required can be formulated as: 
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Since the model outputs are deterministic functions of model inputs, they have at most the same number of degrees of 

freedom in uncertainty. So, the number of unknown coefficients to be determined for the fitted polynomial that 

represents the model output can be explicitly written using Eq. (3) as:   
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So, an explicit representation of 2nd order polynomial chaos expansion for two and three uncertain inputs can be written 

using Eqs.(1-5) as: 
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So, according to the number of uncertain model inputs, n = 2, 3, and 4, the number of unknown coefficients to be 

determined in the polynomial chaos expansion can be obtained using Eqs.(4) and (5) as {6, 10 and 15} and {10, 20 and 

35} respectively. The number of unknown coefficients will guide the number of simulations. Thus for two uncertain 

model inputs, the second order polynomial chaos expansion needs six simulations to estimate the unknown coefficients. 

For reference, the first few Hermite polynomials are given by: 

 

                H0(ξ) =1, H1(ξ) = 2ξ, H2(ξ) = 2(ξ2-1)                                                                         (7) 

 

and the higher order Hermite polynomials can be generated using the recurrence relation given by: 

 

               Hk+1(ξ) = 2ξ Hk(ξ) – 2 k Hk-1(ξ)                                                                                                (8) 

 

Polynomial chaos theory is not limited to the Hermite polynomials. Generalized polynomial chaos (otherwise known as 

Wiener-Askey Polynomial Chaos) expanded the theory to use all the polynomials from the Askey scheme of 

orthogonal polynomials [9]. In reference with the most common distribution we have: Hermite polynomials are 

associated with the Gaussian distribution, Legendre polynomials are associated with the uniform distribution, and 

Laguerre polynomials are associated with the exponential distribution [9]. The use of Hermite, Legendre, and Laguerre 

polynomials will from now on be referred to as Hermite-Chaos, Legendre-Chaos, and Laguerre-Chaos respectively 

[10]. When all of the variables in the examined system have been expanded onto the basis of choice, a Galerkin 

projection onto the basis is applied. The Galerkin projection is realized by the integration of each component of the 

examined system with the polynomial basis. The projection takes the form of an integral because the chosen 

polynomial bases are all continuous. The limits of the integral correspond to the region where the chosen polynomials 

are valid. The limits for Hermite-Chaos, Legendre-Chaos, and Laguerre-Chaos are -� to �, -1 to 1, and 0 to � 

respectively. This region is represented by the symbol �. 

 

2.1 TRANSFORMATION OF MODEL INPUTS: 

 

The number of sample values for the model outputs will have to be generated on the basis of the number of unknown 

coefficients. Therefore, for six unknown coefficients, six model outputs are to be generated for the specified model. 

Sampling points for the generation of these outputs will be obtained from the model uncertain inputs for which inputs 

are to be transformed into standard normal random variables (srvs) [8]. In the PCE, approach for transforming model 

uncertain inputs is based on the principle that random variables with well-behaved (square-integrable) probability 

density functions can be represented as functions of a set of srvs [8, 9]. Standard transformation of the uniform, normal, 

lognormal and gamma pdfs of model inputs in terms of srvs can be written as: 
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Sample values of the output metrics [Eq. (6)] and the corresponding polynomial chaos expansion are finally arranged in 

the matrix form as [ξ]{a} = y, from which the coefficient vector, {a} can be solved using singular value decomposition. 

 

3.0 PROBLEM 1: ONE DIMENSIONAL SOLUTE TRANSPORT THROUGH GROUNDWATER: 

 

Solute transport in groundwater is used for computing the concentration of a dissolved chemical species (contaminant) 

in an aquifer at any time and at any specified distance from the point of release of the chemical. The measured 

parameters associated with the representing model are seepage velocity and longitudinal dispersivity. In case of one –

dimensional case, the governing equation is as given below: 
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The boundary conditions for the above one-dimensional solute transport equations are: 
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and for the initial condition, we assume that, 

 

                                0,0)0,( ≥= xxC                                                (12) 

 

For the present problem, we have taken the initial concentration, C0 = 100 mg/L. In the deterministic calculations, both 

the longitudinal dispersivity, Lα and seepage velocity, u will be specified exactly. But this assumption may not be 

always correct. Hence these parameters must be treated as random parameters with specific probability distribution. In 

the present case study, these parameters are assumed to be normally distributed with the mean,  and the standard 

deviation, σ as specified in Eq. (13) 
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The analytical expression of the concentration of the solute can be written as [12]: 
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The second term in the square bracket of Eq. (14) has a little effect compared to the first term and that is why the model 

is simplified into the following form: 
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SOLUTION OF PROBLEM: 

 

The number of uncertain inputs are two (seepage velocity, u and longitudinal dispersivity, αL) and their distributions 

are presented in Table 1. We have selected the 2nd order polynomial as our response surface from the point of ease of 

computation. Following Eq. (4), six simulations are required for solving six unknown coefficients. Two sets (one for u 
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and the other for αL) of six standard random variables are sampled using standard standardized normally distributed 

random number generator. The polynomial chaos matrix of order 6 x 6 is constructed using the first one of Eq. (6). 

Simple random sampling (Monte Carlo) technique is used to simulate the random values of the model output [(C/C0) ≡ 

y2].  Finally, the unknown coefficients of the response surface (keeping time fixed at t = 400 days) are solved using 

singular value decomposition and their values are as shown in Table 2. Statistics of this response surface is generated 

using 5000 Monte Carlo samples (convergence criteria followed) and is tabulated in          Table 3.  The uncertainty plot 

of the ratio of steady state derived concentration to the initial concentration (C/C0 ) for varying downstream distance at 

time t = 400 days is presented in Fig. 1. The mean value of dilution factor at downstream distance, x = 1220 m is 

calculated using this response surface constructed as 7.86. Table 4 represents the coefficients of the polynomial chaos 

expansion which are used to construct the transient response surface by using the similar procedure. The transient 

response surface of concentration of contaminant is also constructed using the polynomial chaos and the statistics of 

this response surface at different times for a specific downstream distance (400 m) is tabulated in Table 5. The 

uncertainty plot of the ratio of the derived concentration to the initial concentration (C/C0) for varying time at 

downstream distance, x = 400 m is shown in Fig. 2. The ratio of the derived concentration of contaminant to the 

original concentration at time 300 (days) is computed as 0.99. This indicates that the response surface can be used to 

predict the concentration of the contaminant at any time. 

 

Table 1:   Uncertain input parameters of solute transport problem 

 

Parameter Distribution Mean Standard deviation 

Seepage velocity, ν Normal 2.50 0.20 

Longitudinal dispersivity, αL Normal 15.30 3.00 

 

Table 2:  Coefficients of response polynomial for varying downstream distance  

 

Downstream distance, x (m) a0 a1 a2 a3 a4 a5 

1000 0.4898 0.1794 -0.0001 -0.0106 0.0004 -0.0221 

1100 0.2938 0.1620 0.0159 0.0084 0.0011 -0.0140 

1200 0.1494 0.1056 0.0205 0.0214 0.0011 0.0027 

1300 0.0636 0.0496 0.0153 0.0206 -0.0003 0.0106 

1400 0.0221 0.0168 0.0078 0.0121 -0.0011 0.0084 

 

Table 3:  Statistics of the response surface of the concentration at time t = 400 days 

 

Downstream distance, x (m) Mean 
Standard 

deviation 
Skewness Kurtosis 5th percentile C/C0 95th percentile C/C0 

1000 0.4923 0.1840 -0.3590 3.1433 0.1763 0.7698 

1100 0.2973 0.1664 0.1417 2.8964 0.0334 0.5704 

1200 0.1491 0.1130 1.1619 4.6479 0.0093 0.3725 

1300 0.0627 0.0577 2.0072 9.0895 0.0109 0.1787 

1400 0.0209 0.0240 1.9749 7.4161 0.0003 0.0717 

 

 

 

                 

Fig 1: Variation of mean value, 5
th

 and 95
th

 percentiles of C/C0 at time, t = 400 days 
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Table 4:  Coefficients of response polynomial for different time at downstream distance, x = 400 m 

 

Time, t (days) a0 a1 a2 a3 a4 a5 

200 0.7814 0.0838 -0.0223 -0.0125 0.0035 -0.0028 

220 0.8651 0.0601 -0.0221 -0.0141 0.0022 0.0025 

240 0.9190 0.0400 -0.0180 -0.0132 0.0008 0.0055 

260 0.9523 0.0253 -0.0130 -0.0110 -0.0002 0.0061 

280 0.9722 0.0153 -0.0086 -0.0084 -0.0006 0.0054 

 

Table 5: Statistics of the response surface of C/C0 for different times at downstream 400 m 

 

Time, t (days) Mean value 
Standard 

Deviation 
Skewness Kurtosis 5th percentile 95th percentile 

200 0.7830 0.0879 -0.6857 3.7536 0.6301 0.9074 

220 0.8654 0.0690 -1.1590 5.2942 0.7411 0.9512 

240 0.9223 0.0445 -1.4492 5.9535 0.8379 0.9721 

260 0.9522 0.0338 -1.7708 6.8369 0.8859 0.9850 

280 0.9719 0.0216 -1.9609 9.0094 0.9272 0.9920 
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Fig 2: Variation of mean value, 5
th

 and 95
th

 percentiles of C/C0 at downstream, x = 400 m 

 

3.1 PROBLEM 2: ONE DIMENSIONAL HEAT CONDUCTION: 

 

Consider a rectangular slab of length, say 1 m. Heat transfer takes place through this slab. Problem is to estimate the 

uncertainty of the temperature at 20 cm along the length of the slab. 

 

SOLUTION OF PROBLEM 2:  

 

Governing equation is  

heatSpecific   C           

and  material ofDensity             

tyconductivi Thermal            

 y diffusivit Thermal   where,
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Analytical solution of the equation (16) with the initial and boundary conditions can be written as  

 

 

 

 

                                                                                                                                                                                         �#5��

�

In this problem, we have considered thermometric conductivity (k) and initial temperature (T0) as uncertain and their 

uncertainty is selected as stochastic in nature.  Uncertainty (stochastic) of the input parameters is as given in Table 6.  

 

 

Table 6: Distribution of Input Parameters 

 

Parameter Distribution Mean Standard deviation 

k Normal 10 0.2 

T0 Normal 100 0.5 

 

Order of the polynomial chaos matrix in this case is again 6 x 6 due to the fact that the number of uncertain parameters 

is 2 and order of the polynomial selected as response surface is also 2. Elements of the 6 x 6 polynomial chaos matrix 

given in Table 7 are expressed in terms of standardized random variables (ξ1 and ξ2).    

 

 

Table 7: Elements of Polynomial Chaos Matrix 

 

Const ξξξξ1 ξξξξ2 ξξξξ1
2 -1 ξξξξ2

2 -1 ξξξξ1 *ξξξξ2 

1.0 0.1654 - 0.4587 - 0.9727 -0.7895 -0.0759 

1.0 0.5191 0.5019 - 0.7305 -0.7481 0.2605 

1.0 - 0.1941 - 1.3347 - 0.9623 0.7815 0.2591 

1.0 - 1.0320 - 0.1039 0.0649 -0.9892 0.1072 

1.0 - 0.4783 0.0048 - 0.7712 -1.0000 -0.0023 

1.0 1.0548 1.3162 0.1126 0.7324 1.3883 

 

Using this polynomial chaos matrix (A), representation of T(x,t) and right hand side of equation (18) at different 

sampled values of the model corresponding to the uncertain parameters, coefficients of response polynomial {ak| k = 

0,1,2,3,4,5} at different spatial points varying from x = 1 to 100 m with an increment of x = 5 cm at a specific time, t = 

50 seconds are evaluated and they are tabulated in Table 8.  

 

 

Table 8: Coefficients of the response polynomial 

 

Distance, x (m) a0 a1 a2 a3 a4 a5 

1 97.48 0.0252 0.4874 -0.0004 -0.0000 0.0002 

6 84.94 0.1487 0.4247 -0.0023 -0.0001 0.0009 

11 72.79 0.2612 0.3639 -0.0039 -0.0001 0.0016 

16 61.28 0.3552 0.3064 -0.0050 -0.0001 0.0021 

21 50.66 0.4250 0.2532 -0.0056 -0.0001 0.0025 

26 41.09 0.4679 0.2054 -0.0056 -0.0001 0.0026 

31 32.69 0.4837 0.1634 -0.0050 -0.0001 0.0026 

36 25.49 0.4751 0.1275 -0.0041 0.0000 0.0025 

56 7.66 0.2946 0.0383 0.0003 0.0001 0.0013 

76 1.63 0.1068 0.0081 0.0015 0.0000 0.0005 

96 0.24 0.0242 0.0012 0.0007 0.0000 0.0002 

 

Statistics of the response surface of the temperature at a specific time, t = 50 secs for those spatial points, x (Table 8) 

are generated using traditional Monte Carlo simulations of the response surface. Statistical results are presented in 

Table 9. Uncertainty plot of the temperature for varying distance (x = 1 to 100 m) at a fixed time t = 50 seconds is as 

shown in Fig 3. 
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Table 9: Statistics of the Response surface 

 

Distance, x m Average Standard deviation skewness Kurtosis 5
th

 percentile 95
th

 percentile 

1 97.46 0.4667 0.1891 3.3217 96.72 98.26 

6 84.95 0.4444 0.0482 2.7250 84.23 85.69 

11 72.83 0.4356 -0.0579 2.9864 72.11 73.49 

16 61.27 0.4745 -0.0508 2.7811 60.48 62.04 

21 50.66 0.4922 -0.1857 2.8505 49.86 51.43 

26 41.06 0.5166 -0.0076 3.0952 40.23 41.88 

31 32.68 0.5267 -0.1453 3.1166 31.76 33.50 

36 25.51 0.4988 -0.1214 3.0739 24.67 26.28 

56 7.66 0.2971 0.0455 2.8463 7.17 8.17 

76 1.62 0.1096 0.0487 2.6648 1.45 1.80 

96 0.24 0.0241 0.1618 3.0981 0.20 0.28 
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Fig 3: Variation of Temperature, T(x,t) with distance, x at time t = 20 secs 

 

Mean value of the temperature evaluated at 20 (cm) distance = 52.70o C. In a similar way stochastic response surface of 

the temperature for varying time with a fixed distance x = 20 cm is generated. Uncertainty plot of the generated 

temperatures for different time varying from 0 to 100 seconds is as shown in Fig 4. Mean value of temperature at time 

100 (seconds) at x = 20 cm is estimated 65.660C. 
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Fig 4: Time variation of temperature, T(x,t) at x = 20 cm 
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4.0 CONCLUSIONS: 

  

In this work, uncertainty of concentration of contaminant at time, t = 400 days for varying downstream distances has 

been quantified using modified polynomial chaos. The same is applied to compute the uncertainties of the transient 

response surface for which downstream distance has been fixed at 400 m for convenience of calculation. Velocity of 

the water body and longitudinal dispersivity are considered as uncertain input parameters of the model. Hermite 

polynomials are considered as basis of the polynomial expansion and input parameters of the model are simulated in 

terms of standard random variable using the transformation mentioned. Hermite polynomials being represented as 

Gaussian, the expansion scheme can be named as Hermite (polynomial) chaos. Coefficients of the expansion are 

considered as time dependent and accordingly standard Hermite polynomials are modified. Modification of the Hermite 

polynomial justifies the present treatment of uncertainty as Modified chaos 
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