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ABSTRACT

This paper presents the soft computing technique on computational mathematics for current research. Current
research on computational mathematics basically needs to address the issues of uncertainty for reliability analysis and
optimization process. Research on reliability modeling can not be addressed completely by probability distribution of
the governing parameters because some of the parameters may be of imprecise due to lack of knowledge or information
about them. It is also true that the imprecise information can not be translated or transformed into probability
distribution. Hence, it is mandatory to treat the imprecise nature of parameters of a reliability model in a different
manner. The methodology of handling the uncertainty of such parameters is basically carried out by using evidence
theory which provides the belief and plausibility — lower and upper bounds of the epistemic uncertainty of the model.
Traditional probability exists between belief and plausibility. The body of evidence for the model to be tested for its
reliability is gathered by expert’s opinion by assigning a basic probability mass to each of the focal sets comprising the
evidence. Soft computing technique also includes the chaos theory so called as polynomial chaos which also can be
applied to quantify the uncertainty. Polynomial chaos theory is an efficient version of traditional Monte Carlo method
of handling aleatory uncertainty. Potential capability of polynomial chaos theory in handling aleatory or stochastic
uncertainty is illustrated with a case study of contaminant transport through groundwater.

1.0 INTRODUCTION:

Soft computing techniques emerged from the studies of natural systems. In the past bi-inspired methods were difficult
to be implemented because of the limitations in computational power. Examples of bio-inspired techniques are
Artificial Immune systems (AIS), Artificial Neural Networks (ANN), Fuzzy systems (FS), Evolutionary computing
(EC) and swarm intelligence (SI). Such techniques are also known as Computational Intelligence (CI) techniques and
are part of the so-called Artificial Intelligence (Al) research area. They can be combined among themselves and with
stochastic methods in order to develop more effective methods to solve complex engineering problems. In summary,
soft Computing is a complex of methodologies that includes artificial neural networks, genetic algorithms, fuzzy logic,
Bayesian networks, and their hybrids. It admits approximate reasoning, imprecision, uncertainty and partial truth in
order to mimic the remarkable human capability of making decisions in real-life, ambiguous environments. Soft
Computing has therefore become popular in developing systems that encapsulate human expertise. Chaos belongs to
the soft computing group. Chaos in the polynomial form is very important research application on computational
mathematics. Stochastic differential equation can be solved by using the polynomial chaos. Not only that, one can very
easily quantify the aleatory uncertainty which is only due to the stochasticity or randomness uncertainty of the
parameter associated with the governing equation of the system. In this regard, it is required to introduce the types of
uncertainties. This article addresses the polynomial chaos component of the soft computing for research on
computational mathematics. Computational mathematics basically dictates the knowledge of science.

The paper describes the utility of polynomial chaos for quantifying aleatory uncertainty efficiently. Before going to
polynomial chaos theory it is always better to introduce a brief description of uncertainty. Uncertainties are typically
classified as aleatory and epistemic [1]. Aleatory uncertainty (also called probabilistic uncertainty) arises from
randomness in the system whereas epistemic uncertainty arises due to the lack of knowledge (or ignorance). Epistemic
uncertainties may also arise from assumptions introduced in the mathematical models and it can be possible to reduce
them using inference from experimental observations. Uncertainty that is explicitly recognized by a stochastic model is
categorized as aleatory. Uncertainty of the model parameters and the model itself is epistemic. Hence, the
aleatory/epistemic split of the total uncertainty is model-dependent [2]. The steps involved in the uncertainty
quantification of a model generally include (a) estimation of uncertainties of model inputs, (b) estimation of uncertainty
of the model output, and (c) propagation of uncertainty in the model output. Monte Carlo methods are the most widely
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used techniques for statistical/probabilistic uncertainty analysis, with diverse applications. Given the input uncertainty
distributions (frequency or probability density data), these methods involve repeated generation of pseudo-random
instantiations (sampling) of inputs followed by application of the model to these instantiations to yield a set of model
responses. These model outputs are then analyzed statistically.

A traditional “uncertainty analysis or error analysis” typically focuses on uncertainty present in the data itself labeled
as the “data uncertainty”. The traditional method consists of (a) the characterization of uncertainty in model
parameters/inputs via their probability density functions (pdfs) and (b) the propagation of these pdfs through model
equations to obtain the pdf of selected output metrics [3]. A large number of sample realizations (10° or more) of
model inputs are required to achieve an acceptable level of confidence in the model output uncertainty. The large
numbers of realizations reduce the efficiency of the simulation even though it involves standard or Latin Hypercube
sampling. In case of computationally intensive models, the time and resources required by these methods will be
prohibitively expensive. However, the number of simulations for adequate estimation of uncertainty of the model
output can be substantially reduced as compared to conventional simulation, if the model uncertain inputs and
output are expressed in the form of a series expansion of standard normal random variable (chaotic expansion). The
output of the model then contains the coefficients which are calculated from a limited number of model simulations.
The net result is to create a statistically equivalent polynomial approximation to the model outputs. This efficient
simulation method presented in this paper is called as “Polynomial Chaos Expansion” (PCE) [3]. PCE is applied for
quantification and propagation of the uncertainty of the model output with a limited number of model runs. This
article is organized in the following way. Section 2 presents the theory of PCE (mathematical details of PCE). Section 3
illustrates the implementation of PCE through the problems. Section 4 draws the conclusion about the PCE.

2.0 THEORY OF POLYNOMIAL CHAOS EXPANSION:

The PCE approach has its foundation in the work of Wiener [4], who represented a Gaussian process as an infinite
series of Hermite polynomial that takes a vector of random variables as arguments. Ghanem and Spanos [5] used this
representation to develop the stochastic finite element method. Xiu and Karniadakis [6] extended the theoretical
framework to non-Gaussian process by using different polynomial basis functions. This generalized polynomial chaos
approach was used to address the problem of heat transfer with random material properties by Wan et al. [7].

The PCE is the representation of a random variable, more generally a stochastic process, with an infinite series of
orthogonal polynomials that take a vector of independent and identically distributed (iid) random variables as
arguments. Mathematically, the PCE of a random process can be represented by
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where {a;; | k =0, I,...., n-1} are unknown coefficients to be determined with respect to the specified model used for
the uncertainty analysis, n represents the number of uncertain model inputs and I'y(€)’s are defined to be multivariate
Hermite polynomials in the p — dimensional sequence of uncorrelated standard normal random variables, {&;}. The
multivariate Hermite polynomials can be written as:
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The inputs are represented as functions of identically independently distributed normal random variables {&;l i=1,n} and
each &; has zero mean and unit variance. These random variables are referred to as “Standard Random Variables
(srvs)”. Once the inputs are expressed as functions of these srvs, the output metrics can be represented as functions of
the same set of srvs [8]. The minimum number of srvs needed to represent the inputs is defined as the “number of
degrees of freedom” in the input uncertainty. In practice, in the theory of PCE, the minimum number of simulations
required for generating the sample points of the uncertain inputs from the respective pdf depends on the order of the
Hermite polynomial and the number of uncertain inputs. Therefore, if n is the number of uncertain inputs and r be the
order of the polynomial, the number of simulations required can be formulated as:
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Since the model outputs are deterministic functions of model inputs, they have at most the same number of degrees of
freedom in uncertainty. So, the number of unknown coefficients to be determined for the fitted polynomial that
represents the model output can be explicitly written using Eq. (3) as:
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So, an explicit representation of 2™ order polynomial chaos expansion for two and three uncertain inputs can be written
using Eqgs.(1-5) as:
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So, according to the number of uncertain model inputs, n = 2, 3, and 4, the number of unknown coefficients to be
determined in the polynomial chaos expansion can be obtained using Eqs.(4) and (5) as {6, 10 and 15} and {10, 20 and
35} respectively. The number of unknown coefficients will guide the number of simulations. Thus for two uncertain
model inputs, the second order polynomial chaos expansion needs six simulations to estimate the unknown coefficients.
For reference, the first few Hermite polynomials are given by:

Ho(€) =1, Hy(§) = 2&, Hy(§) = 2(&>-1) )

and the higher order Hermite polynomials can be generated using the recurrence relation given by:
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Polynomial chaos theory is not limited to the Hermite polynomials. Generalized polynomial chaos (otherwise known as
Wiener-Askey Polynomial Chaos) expanded the theory to use all the polynomials from the Askey scheme of
orthogonal polynomials [9]. In reference with the most common distribution we have: Hermite polynomials are
associated with the Gaussian distribution, Legendre polynomials are associated with the uniform distribution, and
Laguerre polynomials are associated with the exponential distribution [9]. The use of Hermite, Legendre, and Laguerre
polynomials will from now on be referred to as Hermite-Chaos, Legendre-Chaos, and Laguerre-Chaos respectively
[10]. When all of the variables in the examined system have been expanded onto the basis of choice, a Galerkin
projection onto the basis is applied. The Galerkin projection is realized by the integration of each component of the
examined system with the polynomial basis. The projection takes the form of an integral because the chosen
polynomial bases are all continuous. The limits of the integral correspond to the region where the chosen polynomials
are valid. The limits for Hermite-Chaos, Legendre-Chaos, and Laguerre-Chaos are -co to oo, -1 to 1, and O to o
respectively. This region is represented by the symbol Q.

2.1 TRANSFORMATION OF MODEL INPUTS:

The number of sample values for the model outputs will have to be generated on the basis of the number of unknown
coefficients. Therefore, for six unknown coefficients, six model outputs are to be generated for the specified model.
Sampling points for the generation of these outputs will be obtained from the model uncertain inputs for which inputs
are to be transformed into standard normal random variables (srvs) [8]. In the PCE, approach for transforming model
uncertain inputs is based on the principle that random variables with well-behaved (square-integrable) probability
density functions can be represented as functions of a set of srvs [8, 9]. Standard transformation of the uniform, normal,
lognormal and gamma pdfs of model inputs in terms of srvs can be written as:

. . N D IR -
Uniform [a,b]: a + (b a){2+ze#(ﬁ)}

Normal (U1,0): y2/ + O-é:
&)
Lognormal (u,6): €XP (u+ O-ég)

2
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Sample values of the output metrics [Eq. (6)] and the corresponding polynomial chaos expansion are finally arranged in
the matrix form as [E]{a} =y, from which the coefficient vector, {a} can be solved using singular value decomposition.

3.0 PROBLEM 1: ONE DIMENSIONAL SOLUTE TRANSPORT THROUGH GROUNDWATER:

Solute transport in groundwater is used for computing the concentration of a dissolved chemical species (contaminant)
in an aquifer at any time and at any specified distance from the point of release of the chemical. The measured
parameters associated with the representing model are seepage velocity and longitudinal dispersivity. In case of one —
dimensional case, the governing equation is as given below:

oC 0°C oC
o P T, (1)

where,

C = concentration of the dissolved chemical species(contaminant) (M / L3)
D, =longitudinal dispersioncoefficient = a/Lu(L2 /T)

u = seepage velocity in the x —direction (L/T)
The boundary conditions for the above one-dimensional solute transport equations are:

C0,t)=C, ,t20
t>0

(1)
C(o0,1) =0,
and for the initial condition, we assume that,
C(x,00=0,x20 (12)

For the present problem, we have taken the initial concentration, Cy = 100 mg/L. In the deterministic calculations, both
the longitudinal dispersivity, &, and seepage velocity, u will be specified exactly. But this assumption may not be
always correct. Hence these parameters must be treated as random parameters with specific probability distribution. In
the present case study, these parameters are assumed to be normally distributed with the mean, i and the standard

deviation, © as specified in Eq. (13)

for u, 4, =2.5m/dayand o, =0.2m/day
for a;,u, =153m and o, =3.0m (13)

The analytical expression of the concentration of the solute can be written as [12]:

X — ut X X + ut
+ exp | — |erfc

4o ut o [4a | ut (14)

The second term in the square bracket of Eq. (14) has a little effect compared to the first term and that is why the model
is simplified into the following form:

1
C/C():? erfc

1 X — ut
C/Cy,=—|erfc \—F/—

2 4o ut
SOLUTION OF PROBLEM:

The number of uncertain inputs are two (seepage velocity, u and longitudinal dispersivity, o) and their distributions
are presented in Table 1. We have selected the 2™ order polynomial as our response surface from the point of ease of
computation. Following Eq. (4), six simulations are required for solving six unknown coefficients. Two sets (one for u
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and the other for ay) of six standard random variables are sampled using standard standardized normally distributed
random number generator. The polynomial chaos matrix of order 6 x 6 is constructed using the first one of Eq. (6).
Simple random sampling (Monte Carlo) technique is used to simulate the random values of the model output [(C/Cy) =
y,]. Finally, the unknown coefficients of the response surface (keeping time fixed at t = 400 days) are solved using
singular value decomposition and their values are as shown in Table 2. Statistics of this response surface is generated
using 5000 Monte Carlo samples (convergence criteria followed) and is tabulated in Table 3. The uncertainty plot
of the ratio of steady state derived concentration to the initial concentration (C/Cy ) for varying downstream distance at
time t = 400 days is presented in Fig. 1. The mean value of dilution factor at downstream distance, x = 1220 m is
calculated using this response surface constructed as 7.86. Table 4 represents the coefficients of the polynomial chaos
expansion which are used to construct the transient response surface by using the similar procedure. The transient
response surface of concentration of contaminant is also constructed using the polynomial chaos and the statistics of
this response surface at different times for a specific downstream distance (400 m) is tabulated in Table 5. The
uncertainty plot of the ratio of the derived concentration to the initial concentration (C/Coy) for varying time at
downstream distance, x = 400 m is shown in Fig. 2. The ratio of the derived concentration of contaminant to the
original concentration at time 300 (days) is computed as 0.99. This indicates that the response surface can be used to
predict the concentration of the contaminant at any time.

Table 1: Uncertain input parameters of solute transport problem

Parameter Distribution | Mean | Standard deviation
Seepage velocity, v Normal 2.50 0.20
Longitudinal dispersivity, oy, Normal 15.30 3.00

Table 2: Coefficients of response polynomial for varying downstream distance

Downstream distance, X (m) a a a, a3 ay as
1000 0.4898 | 0.1794 | -0.0001 | -0.0106 | 0.0004 | -0.0221
1100 0.2938 | 0.1620 | 0.0159 | 0.0084 | 0.0011 | -0.0140
1200 0.1494 | 0.1056 | 0.0205 | 0.0214 | 0.0011 | 0.0027
1300 0.0636 | 0.0496 | 0.0153 | 0.0206 | -0.0003 | 0.0106
1400 0.0221 | 0.0168 | 0.0078 | 0.0121 | -0.0011 | 0.0084

Table 3: Statistics of the response surface of the concentration at time t = 400 days

Standard

Downstream distance, x (m) | Mean deviation Skewness | Kurtosis | 5% percentile C/C, 95t percentile C/C,
1000 0.4923 | 0.1840 -0.3590 3.1433 0.1763 0.7698
1100 0.2973 | 0.1664 0.1417 2.8964 0.0334 0.5704
1200 0.1491 | 0.1130 1.1619 4.6479 0.0093 0.3725
1300 0.0627 | 0.0577 2.0072 9.0895 0.0109 0.1787
1400 0.0209 | 0.0240 1.9749 7.4161 0.0003 0.0717

14

0.9

0.8

0.7
—#—— 5th percentile
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0.4r- 400 days
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Fig 1: Variation of mean value, 5™ and 95" percentiles of C/C, at time, t = 400 days
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Table 4: Coefficients of response polynomial for different time at downstream distance, x = 400 m

Time, t (days) a a a, a3 ay as
200 0.7814 | 0.0838 | -0.0223 | -0.0125 | 0.0035 | -0.0028
220 0.8651 | 0.0601 | -0.0221 | -0.0141 | 0.0022 | 0.0025
240 0.9190 | 0.0400 | -0.0180 | -0.0132 | 0.0008 | 0.0055
260 0.9523 | 0.0253 | -0.0130 | -0.0110 | -0.0002 | 0.0061
280 0.9722 | 0.0153 | -0.0086 | -0.0084 | -0.0006 | 0.0054

Table S: Statistics of the response surface of C/C for different times at downstream 400 m

Time, t (days) | Mean value Star}dgrd Skewness | Kurtosis | 5™ percentile | 95" percentile
Deviation
200 0.7830 0.0879 -0.6857 3.7536 0.6301 0.9074
220 0.8654 0.0690 -1.1590 5.2942 0.7411 0.9512
240 0.9223 0.0445 -1.4492 5.9535 0.8379 0.9721
260 0.9522 0.0338 -1.7708 6.8369 0.8859 0.9850
280 0.9719 0.0216 -1.9609 9.0094 0.9272 0.9920
i - {
0.9t —o— Mean el T
——+—— 5th percentile e
0.8 ——+—— 95th percentile *
0.7} i
Downstream
0.6 - distance = 400 m i
g 0.5F i
0.4 -
0.3F i
0.2t i
0.1t i
Ot ot e ‘ ‘ ‘
50 100 150 200 250
Time (days)

Fig 2: Variation of mean value, 5™ and 95" percentiles of C/C,at downstream, x = 400 m
3.1 PROBLEM 2: ONE DIMENSIONAL HEAT CONDUCTION:

Consider a rectangular slab of length, say 1 m. Heat transfer takes place through this slab. Problem is to estimate the
uncertainty of the temperature at 20 cm along the length of the slab.

SOLUTION OF PROBLEM 2:
Governing equation is
107 _ 0°T
k 9t 9x?
where,  k = Thermal  diffusivit y = ——
pC
K = Thermal conductivi ty 15)
p = Density of material and
C = Specific heat

Boundary conditions are given as:

oT
T(x=0)=0, a—(x=1)=0 (16)
X

© 2011, IUIMA. All Rights Reserved 940



D. Datta*/ Uncertainty analysis using polynomial chaos theory case study- transport of contaminant through ground water and
temperature profile of a rectangular bar /IJMA- 2(6), June-2011, Page: 935-943

Initial condition is given as: T (t = O) = TO =100 0 C (17)

Analytical solution of the equation (16) with the initial and boundary conditions can be written as

1
T(x,t):T I—er E\/:
’ /{2 K 18)

In this problem, we have considered thermometric conductivity (k) and initial temperature (T,) as uncertain and their
uncertainty is selected as stochastic in nature. Uncertainty (stochastic) of the input parameters is as given in Table 6.

Table 6: Distribution of Input Parameters

Parameter | Distribution | Mean | Standard deviation
k Normal 10 0.2
Ty Normal 100 0.5

Order of the polynomial chaos matrix in this case is again 6 x 6 due to the fact that the number of uncertain parameters
is 2 and order of the polynomial selected as response surface is also 2. Elements of the 6 x 6 polynomial chaos matrix
given in Table 7 are expressed in terms of standardized random variables (&, and &).

Table 7: Elements of Polynomial Chaos Matrix

Const & & &1 | &1 | &%
1.0 0.1654 | - 0.4587 | - 0.9727 | -0.7895 | -0.0759
1.0 0.5191 0.5019 | -0.7305 | -0.7481 | 0.2605
1.0 -0.1941 | -1.3347 | - 0.9623 | 0.7815 | 0.2591
1.0 -1.0320 | - 0.1039 | 0.0649 | -0.9892 | 0.1072
1.0 -0.4783 | 0.0048 | -0.7712 | -1.0000 | -0.0023
1.0 1.0548 | 1.3162 | 0.1126 | 0.7324 | 1.3883

Using this polynomial chaos matrix (A), representation of T(x,t) and right hand side of equation (18) at different
sampled values of the model corresponding to the uncertain parameters, coefficients of response polynomial {ayl k =
0,1,2,3,4,5} at different spatial points varying from x = 1 to 100 m with an increment of x = 5 cm at a specific time, t =
50 seconds are evaluated and they are tabulated in Table 8.

Table 8: Coefficients of the response polynomial

Distance, x (m) ag a; a, as ay as

1 97.48 | 0.0252 | 0.4874 | -0.0004 | -0.0000 | 0.0002
6 84.94 | 0.1487 | 0.4247 | -0.0023 | -0.0001 | 0.0009
11 72.79 | 0.2612 | 0.3639 | -0.0039 | -0.0001 | 0.0016
16 61.28 | 0.3552 | 0.3064 | -0.0050 | -0.0001 | 0.0021
21 50.66 | 0.4250 | 0.2532 | -0.0056 | -0.0001 | 0.0025
26 41.09 | 0.4679 | 0.2054 | -0.0056 | -0.0001 | 0.0026
31 32.69 | 0.4837 | 0.1634 | -0.0050 | -0.0001 | 0.0026
36 25.49 | 0.4751 | 0.1275 | -0.0041 | 0.0000 | 0.0025
56 7.66 | 0.2946 | 0.0383 | 0.0003 | 0.0001 | 0.0013
76 1.63 | 0.1068 | 0.0081 | 0.0015 | 0.0000 | 0.0005
96 0.24 | 0.0242 | 0.0012 | 0.0007 | 0.0000 | 0.0002

Statistics of the response surface of the temperature at a specific time, t = 50 secs for those spatial points, x (Table 8)
are generated using traditional Monte Carlo simulations of the response surface. Statistical results are presented in
Table 9. Uncertainty plot of the temperature for varying distance (x = 1 to 100 m) at a fixed time t = 50 seconds is as
shown in Fig 3.
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Table 9: Statistics of the Response surface

Distance, x m | Average | Standard deviation | skewness | Kurtosis | 5™ percentile | 95 percentile
1 97.46 0.4667 0.1891 3.3217 96.72 98.26
6 84.95 0.4444 0.0482 2.7250 84.23 85.69
11 72.83 0.4356 -0.0579 2.9864 72.11 73.49
16 61.27 0.4745 -0.0508 2.7811 60.48 62.04

21 50.66 0.4922 -0.1857 2.8505 49.86 5143
26 41.06 0.5166 -0.0076 3.0952 40.23 41.88
31 32.68 0.5267 -0.1453 3.1166 31.76 33.50
36 25.51 0.4988 -0.1214 3.0739 24.67 26.28
56 7.66 0.2971 0.0455 2.8463 7.17 8.17
76 1.62 0.1096 0.0487 2.6648 1.45 1.80
96 0.24 0.0241 0.1618 3.0981 0.20 0.28

Uncertainty plot of the temperature

20 ,\
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Fig 3: Variation of Temperature, T(x,t) with distance, x at time t = 20 secs

Mean value of the temperature evaluated at 20 (cm) distance = 52.70° C. In a similar way stochastic response surface of
the temperature for varying time with a fixed distance x = 20 cm is generated. Uncertainty plot of the generated
temperatures for different time varying from 0 to 100 seconds is as shown in Fig 4. Mean value of temperature at time
100 (seconds) at x = 20 cm is estimated 65.66°C.
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Fig 4: Time variation of temperature, T(x,t) at x = 20 cm
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4.0 CONCLUSIONS:

In this work, uncertainty of concentration of contaminant at time, t = 400 days for varying downstream distances has
been quantified using modified polynomial chaos. The same is applied to compute the uncertainties of the transient
response surface for which downstream distance has been fixed at 400 m for convenience of calculation. Velocity of
the water body and longitudinal dispersivity are considered as uncertain input parameters of the model. Hermite
polynomials are considered as basis of the polynomial expansion and input parameters of the model are simulated in
terms of standard random variable using the transformation mentioned. Hermite polynomials being represented as
Gaussian, the expansion scheme can be named as Hermite (polynomial) chaos. Coefficients of the expansion are
considered as time dependent and accordingly standard Hermite polynomials are modified. Modification of the Hermite
polynomial justifies the present treatment of uncertainty as Modified chaos
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