SOME PROPERTIES OF A CERTAIN CLASS OF ARITHMETICAL FUNCTIONS

P. Sundarayya and S. Kalesha Vali*
Department of Engineering Mathematics, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India
E-mail: psundarayya@yahoo.co.in, *vali312@gitam.edu

(Received on: 02-06-11; Accepted on: 15-06-11)

Abstract

In this paper, we define a certain class of arithmetical multiplicative functions which are called R-multiplicative functions. Every R-multiplicative function is a multiplicative function but converse need not be true. A necessary and sufficient condition for the Dirichlet product of two R-multiplicative functions to be as R-multiplicative function is given. Some properties on R-multiplicative functions are derived.

Key words: Multiplicative function, R-multiplicative function, completely multiplicative function.
AMS Mathematics subject classification (2010):11A25, 11N37.

1. INTRODUCTION:

An arithmetical function is a mapping from the set of all positive integers \mathbb{Z}^{+}to set of all complex numbers \mathbb{C}. The set of all arithmetical functions is denoted by \mathcal{A}. An arithmetical function f is said to be multiplicative if $f(1)=1$ and $f(m n)=f(m) f(n)$ whenever $(m, n)=1 . f$ is said to be Completely multiplicative function if $f(1)=1$ and $f(m n)=f(m) f(n)$ for all $m, n \in \mathbb{Z}^{+}$. The set of all multiplicative functions is denoted by \mathcal{M} and the set of all Completely multiplicative functions is is denoted by \mathcal{C}. In this paper it is defined that Dirichlet $*_{l, k}$-multiplication of two arithmetical functions. It is proved that the Dirichlet ${ }_{l, k}$ multiplication of two multiplicative functions is again a multiplicative function. * is a classical Dirichlet convolution that is $f, g \in \mathcal{A},(f * g)(n)=\sum_{d / n} f(d) g\left(\frac{n}{d}\right)$ or equivalently $\sum_{a b=n} f(a) g(b)$. It is known that $f, g \in \mathcal{M}$ then $f * g \in \mathcal{M}$. Also it is known that $f \in \mathcal{M}$ then $f \in \mathcal{C}$ if and only if $f\left(p^{\alpha}\right)=f(p)^{\alpha}$ for all prime p, for all positive integers α. We define a certain class of arithmetical multiplicative functions which are called R-multiplicative functions. Every R-multiplicative function is a multiplicative function but converse need not be true. A necessary and sufficient condition for the Dirichlet product of two R-multiplicative functions to be as R-multiplicative function is given. Some properties on R-multiplicative functions are derived.

2. DIRICHLET $*_{l, k}$-MULTIPLICATION OF ARITHMETICAL FUNCTIONS:

In this section we define $*_{l, k}$-multiplication of two arithmetical functions and prove that the Dirichlet Product $*_{l, k}$ two multiplicative functions is again a multiplicative function. Also prove some properties of completely multiplicative functions.

Theorem 2.1: $f, g \in \mu$ such that $f(p) g(p)=0$ for every prime p then $(f * g)\left(p^{i}\right)=f(p)^{i}+g(p)^{i}$, for all $i \geq 2$ if and only if $f * g \in \mathcal{C}$

Proof: Suppose $f, g \in \mathcal{M}$ and $f(p) g(p)=0$ for every prime p then we have $f * g \in \mathcal{M}$.
Assume that $(f * g)\left(p^{i}\right)=f(p)^{i}+g(p)^{i}$, for all $i \geq 2$, for all primes p
Now we have to show that $(f * g)\left(p^{i}\right)=(f * g)(p)^{i}$, for $i \geq 2$. Consider

$$
\begin{aligned}
(f * g)\left(p^{i}\right) & =f(p)^{i}+g(p)^{i} \\
& =f(p)^{i}+i_{C_{1}} f(p)^{i-1} g(p)+i_{C_{2}} f(p)^{i-2} g(p)^{2}+\cdots+i_{C_{i-1}} f(p)^{i} g(p)^{i-1}+g(p)^{i}(\text { since } f(p) g(p)=0) \\
& =(f(p)+g(p))^{i} \\
& =((f * g)(p))^{i}(\text { By Dirichlet Convolution })
\end{aligned}
$$

Conversely assume that $f * g \in \mathcal{C}$.

$$
\text { Now, } \begin{aligned}
(f * g)\left(p^{i}\right) & =((f * g)(p))^{i} \\
& =(f(p)+g(p))^{i} \\
& =f(p)^{i}+g(p)^{i} \quad(\text { since } f(p) g(p)=0)
\end{aligned}
$$

Definition 2.2: Let f, g be arithmetical functions and l, k be positive integers. Then we define $\left(f *_{l, k} g\right)(m)=\sum_{d / n}\left(f\left(d^{l}\right) g\left(\frac{n}{d}\right)^{k}\right)$. This is called Dirichlet $*_{l, k}$-multiplication.

Now, we prove that Dirichlet $*_{l, k}$-multiplication of two arithmetical functions are again multiplicative.
Theorem 2.3: f, g are multiplicative functions, then $f *_{l, k} g$ is also multiplicative function
Proof: Let f, g are multiplicative functions, clearly $\left(f *_{l, k} g\right)(1)=1$.
Let m, n be positive integers such that $(m, n)=1$. Then every devisor c of $m n$ is in the form $c=a b$ where $a / m, b / n$. We observe that if $(a, b)=1,\left(\frac{m}{a}, \frac{n}{b}\right)=1$ then $\left(a^{l}, b^{l}\right)=1,\left(\left(\frac{m}{a}\right)^{k},\left(\frac{n}{b}\right)^{k}\right)=1$.

$$
\begin{aligned}
\left(f *_{l, k} g\right)(m n) & =\sum_{a / m, b / n} f\left((a b)^{l}\right) g\left(\left(\frac{m n}{a b}\right)^{k}\right) . \\
& =\sum_{a / m, b / n} f\left(a^{l}\right) f\left(b^{l}\right) g\left(\left(\frac{m}{a}\right)^{k}\right)\left(g\left(\frac{n}{b}\right)^{k}\right) \\
& =\sum_{a / m, b / n} f\left(a^{l}\right) f\left(b^{l}\right) g\left(\left(\frac{m}{a}\right)^{k}\right)\left(g\left(\frac{n}{b}\right)^{k}\right) \\
& =\sum_{a / m} f\left(a^{l}\right) g\left(\left(\frac{m}{a}\right)^{k}\right) \sum_{b / n} f\left(b^{l}\right)\left(g\left(\frac{n}{b}\right)^{k}\right) \\
& =\left(f *_{l, k} g\right)(m)\left(f *_{l, k} g\right)(n)
\end{aligned}
$$

Therefore $f *_{l, k} g$ is also multiplicative.
The Dirichlet ${ }_{l, k}$ product of two completely functions is need not be completely multiplicative. In fact, if $l=1, k=1$ then $*_{l, k}$ is a classical Dirichlet multiplication.

3. R-MULTIPLICATIVE FUNCTIONS:

In this section we define a certain class of arithmetical functions which are called R-multiplicative functions. The set of all R-multiplicative functions is denoted by \mathcal{R}. Every R-multiplicative function is multiplicative but converse need not be true.

Definition 3.1: An arithmetical function f is said to be R-multiplicative function if
(i) $f(1)=1$
(ii) $f(n)=f\left(p_{1}\right) f\left(p_{2}\right) \ldots \ldots f\left(p_{n}\right)$ where $n=p_{1}{ }^{\alpha_{1}}{p_{2}}^{\alpha_{2}} \ldots . . p_{n}{ }^{\alpha_{n}}, p_{1}, p_{2} \ldots, p_{n}$ are distinct primes and $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}$ are positive integers.

Note: Every R-multiplicative function satisfies $f\left(p^{\alpha}\right)=f(p)$ for all p, for all positive integers α.
The set of all R-multiplicative functions is denoted by \mathcal{R}.
Lemma 3.2: Every R-multiplicative function is multiplicative but converse need not be true.
Proof: Let f be an R-multiplicative function.
Let $(m, n)=1, m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . p_{k}{ }^{\alpha_{k}}, n=q_{1}{ }^{\beta_{1}} q_{2}{ }^{\beta_{2}} \ldots . . q_{l}{ }^{\beta_{l}}$, where $p_{i}{ }^{\prime}$ s, q_{i} 's are primes, $\alpha, \beta^{\prime} s$ are positive integers. There are no common prime factors of m, n.

$$
\begin{aligned}
f(m n) & =f\left(p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots \ldots p_{k}{ }^{\alpha_{k}} \cdot q_{1}{ }^{\beta_{1}} q_{2}{ }^{\beta_{2}} \ldots \ldots q_{l}{ }^{\beta_{l}}\right) \\
& =f\left(p_{1}\right) f\left(p_{2}\right) \ldots \ldots f\left(p_{k}\right) f\left(q_{1}\right) f\left(q_{2}\right) \ldots \ldots f\left(q_{l}\right) \\
& =f(m) f(n)
\end{aligned}
$$

Therefore every R-multiplicative function is multiplicative.

Definition 3.3[1]: $\mu: \mathbb{N} \rightarrow \mathbb{C}$ (mobious function) defined by
$\mu(1)=1$, if $n>1$ write $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . p_{k}{ }^{\alpha_{k}}$.
$\mu(n)=(-1)^{k}$, if $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=1$
$\mu(n)=0$ otherwise.
μ is multiplicative function but it is not R -multiplicative because $\mu\left(3^{2}\right)=0$, but $\mu(3)=-1, \mu$ is not completely multiplicative function.

Theorem 3.4: f, g are R-multiplicative functions, then Dirichlet product $f * g$ is also R-multiplicative function if and only if $f(p) g(p)=0$ for all primes p .

Proof: Let f, g are R-multiplicative functions then f, g are multiplicative and hence $f * g$ is also multiplicative function.

Suppose $f * g$ is R-multiplicative function. Let $\alpha \geq 2$

```
Now, \((f * g)\left(p^{\alpha}\right)=\sum_{d / p^{\alpha}} f(d) g\left(\left(\frac{p^{\alpha}}{d}\right)\right)\)
    \(=g\left(p^{\alpha}\right)+f(p) g\left(p^{\alpha-1}\right)+f\left(p^{2}\right) g\left(p^{\alpha-2}\right)+\cdots+f\left(p^{\alpha-1}\right) g(p)+f\left(p^{\alpha}\right)\)
    \(=g(p)+f(p) g(p)+f(p) g(p)+\ldots+f(p) g(p)+g(p)\)
\((f * g)(p)=g(p)+f(p) g(p)+f(p) g(p)+\ldots+f(p) g(p)+g(p)\)
\(f(p)+g(p)=g(p)+(\alpha-1) f(p) g(p)+g(p)\)
\(\Rightarrow(\alpha-1) f(p) g(p)=0\)
\(\Rightarrow f(p) g(p)=0\)
```

Therefore $f(p) g(p)=0$ for all primes p. Conversely assume that $f(p) g(p)=0$ for all primes p. Since f, g are multiplicative functions then $f * g$ is also multiplicative. Therefore $(f * g)(1)=1$.

First we prove $(f * g)\left(p^{\alpha}\right)=(f * g)(p)$

$$
\begin{aligned}
(f * g)\left(p^{\alpha}\right) & =\sum_{d / p^{\alpha}} f(d) g\left(\left(\frac{p^{\alpha}}{d}\right)\right) \\
& =f(1) g\left(p^{\alpha}\right)+f(p) g\left(p^{\alpha-1}\right)+f\left(p^{2}\right) g\left(p^{\alpha-2}\right)+\cdots+f\left(p^{\alpha-1}\right) g(p)+f\left(p^{\alpha}\right) g(1) \\
& =g(p)+f(p) g(p)+f(p) g(p)+\ldots+f(p) g(p)+f(p)\left(\text { since }\left(p^{\alpha}\right)=f(p)\right) \\
& =f(p)+g(p)(\text { since } f(p) g(p)=0) \\
& =(f * g)(p)
\end{aligned}
$$

Now for $m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . . p_{n}{ }^{\alpha_{n}}$

$$
\begin{aligned}
(f * g)(m) & =(f * g)\left(p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . p_{n}{ }^{\alpha_{n}}\right) \\
& =(f * g)\left(p_{1}{ }^{\alpha_{1}}\right)(f * g)\left(p_{2}{ }^{\alpha_{2}}\right) \ldots \cdot(f * g)\left(p_{n}{ }^{\alpha_{n}}\right) \\
& =(f * g)\left(p_{1}\right)(f * g)\left(p_{2}\right) \ldots \cdot(f * g)\left(p_{n}\right)
\end{aligned}
$$

Hence $f * g$ is R-multiplicative function.
Definition 3.5[1]: An arithmetical function I is given by $I(n)=\left\{\begin{array}{l}1, \text { if } n=1 \\ 0, \text { if } n>1\end{array}\right.$.
Then $I(n)$ is both R-multiplicative and completely multiplicative.
Definition 3.6[1]: The arithmetical function $U(n)=1$ for all $n \in \mathbb{Z}^{+}$then U is both R-multiplicative and completely multiplicative.

Example 3.7: Example of a R-multiplicative function which is not completely multiplicative is given below.
An arithmetical function h is defined by $h(1)=1, h\left(p_{1}{ }^{\alpha_{1}}{p_{2}}^{\alpha_{2}} \ldots . . p_{n}{ }^{\alpha_{n}}\right)=2^{n}$ then
$h\left(p_{1}\right), h\left(p_{2}\right) \ldots . h\left(p_{n}\right)=2.2 \ldots .2(n$ times $)=2^{n}$
Therefore h is R-multiplicative function.
But h is not completely multiplicative function.
$h\left(2^{2} \cdot 3 \cdot 2^{5} \cdot 3^{2} \cdot 7^{4}\right)=h\left(2^{7} \cdot 3^{3} \cdot 7^{4}\right)=2^{3}$ and $h\left(2^{2} \cdot 3\right) \cdot h\left(2^{5} \cdot 3^{2} \cdot 7^{4}\right)=2^{2} \cdot 2^{3}=2^{5}$
Therefore $h(m n) \neq h(m) h(n)$ for all $m, n \in \mathbb{Z}^{+}$.
Therefore h is not completely multiplicative function.
Theorem 3.8: An arithmetical function f which is both R-multiplicative and completely multiplicative functions then $f(n)=0$ or 1 for all positive integers n.

Proof: Let f be an arithmetical function which is both R-multiplicative and completely multiplicative.
Therefore $f(1)=1$ for any prime p and $n \in \mathbb{Z}^{+}$.
$f\left(p^{a}\right)=f(p)^{a} \quad$ (since f completely multiplicative)
$\Rightarrow f(p)=f(p)^{a}$ (since f is R-multiplicative)
$\Rightarrow f(p)\left(f(p)^{a-1}-1\right)=0$
$\Rightarrow f(p)=0$ or $f(p)^{a-1}=1$ for all positive integers $a \geq 2$.
$\Rightarrow f(p)=0$ or $f(p)=1$ for all primes.
However for $n>1, n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . p_{n}{ }^{\alpha_{n}}$
$f(n)=f\left(p_{1}\right) f\left(p_{2}\right) \ldots \ldots f\left(p_{n}\right)$
If one $f\left(p_{i}\right)=0$ then $f(n)=0$
If all $f\left(p_{i}\right)=1$ then $f(n)=1$.
Lemma 3.9: A multiplicative function is R-multiplicative if and only if $f\left(p^{n}\right)=f(p)$ for all primes p, all positive integers n.

Proof: Let f is multiplicative function.
Suppose f is R-multiplicative then $f\left(p^{n}\right)=f(p)$ for all primes p
Conversely assume that $f\left(p^{n}\right)=f(p)$ for all primes $p, n \in \mathbb{Z}^{+}$.
Let $n=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots . p_{n}{ }^{\alpha_{n}}$
$f(n)=f\left(p_{1}{ }^{\alpha_{1}}\right) f\left(p_{2}{ }^{\alpha_{2}}\right) \ldots f\left(p_{n}{ }^{\alpha_{n}}\right)$ (since f is multiplicative)
$f(n)=f\left(p_{1}\right) f\left(p_{2}\right) \ldots \ldots f\left(p_{n}\right)$
Hence f is R -multiplicative function.
Corollary 3.10: $g, f * g$ are R-multiplicative then f is also R-multiplicative if and only if $f\left(p^{n}\right)=f(p)$ for all primes $p, n \in \mathbb{Z}^{+}$.

Proof: Let $g, f * g$ are R-multiplicative functions then $g, f * g$ are multiplicative functions. Then f is also multiplicative function.

Therefore by above lemma $3.9, f$ is R-multiplicative if and only if $f\left(p^{n}\right)=f(p)$ for all primes $p, n \in \mathbb{Z}^{+}$.
Example 3.11[1]: A completely multiplicative but not R-multiplicative. Consider $N(n)=n$ for all $n \in \mathbb{Z}^{+}$. Clearly \mathbb{N} is completely multiplicative but not R -multiplicative.

Note: The set of all R-multiplicative function does not form a semi group under Dirchilet convolution.

REFERENCES:

[1] T.M. Apostol: Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics- Springer verlag, New York 1976.
[2] Vichian Laohakosol and Nittiya Pabhapote: Completely multiplicative functions arising from simple operations, International Journal of Mathematics and mathematical Sciences, 2004:9, 431-441.
[3] Pentti Haukkanan: Some Characterizations of Specially multiplicative functions, International Journal of Mathematics and Mathematical Sciences, 2003: 37, 2335-2344.

