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ABSTRACT

In this paper we prove some common fixed point theorem for occasionally weakly compatible mapping in fuzzy metric
spaces by taking average of some elements.
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1. INTRODUCTION:

Fuzzy set was defined by Zadeh [26]. Kramosil and Michalek [14] introduced fuzzy metric space, Grorge and
Veermani [6] modified the notion of fuzzy metric spaces with the help of continuous t-norms. Many researchers have
obtained common fixed point theorems for mappings satisfying different types of commutativity conditions. Vasuki
[25] proved fixed point theorems for R-weakly commutating mappings. Pant [18, 19, 20] introduced the new concept
reciprocally continuous mappings and established some common fixed point theorems. Balasubramaniam er al. [4],
have shoen that Rhoades [22] open problem on the existence of contractive definition which generates a fixed point but
does not force the mappings to be continuous at the fixed point. Posses an affirmative answer. Pant and Jha [20]
obtained some analogous results proved by Balasubramaniam et. Al. Recent literature in fixed point in fuzzy metric
space can be viewed in [1, 2, 9, 16, 24].

This paper presents some common fixed point theorems for more general commutative condition i.e. occasionally
weakly compatible mappings in fuzzy metric space by taking average of some elements.

2 PRELIMINARY NOTES:
Definition: 2.1 [12] A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition: 2.2 [4] A binary operation * : [0, 1] x [0, 1] — [0, 1] is a continuous t-norms if it satisfies the following
conditions:

(1) *is associative and commutative;

(i1) *is continuous;

(iii) a*1 =aforalla € [0, 1];

(iv) a*b< c*d whenevera<cand b<d,and a,b,c,d € [0,1].

Definition: 2.3 [2] A 3-tuples (X, M,*) is said to be a fuzzy metric space (shortly FM Space) if X is an arbitrary set, *
is a continuous t-norm and M is a fuzzy set of X x (0, ) satisfying the following conditions, for all x, y, z € X and s,
t>0;

(FM 1): M(x, y, t) > 0;
(FM 2): M(x,y,t)=1forall t>0if and only if x = y;
(FM 3): M(x, y, t) = M(y, x, 1);

. * . .
*Corresponding author: N. Verma®, *E-mail: verma_05navin@yahoo.com
International Journal of Mathematical Archive- 2 (6), June — 2011 924



S. K Malhotra’, N. Verma®", R. Sen’ and S. Shukla® / Some common fixed point theorems for occasionally weakly compatible
mappings in fuzzy metric spaces / IIMA- 2(6), June-2011, Page: 924-930
(FM 4): M(x, y, 1) * M(y, z, ) M(x, z, t +5);
(FM 5): M(x, y, .) : (0,22) — (0,1] is left continuous.

(X, M,*) denotes a fuzzy metric space, M (X,y,t) can be thought of as degree of nearness between x and y with respect
to t. We identify x = y with M(x, y, t) = 1for all t> 0. In the following example every metric induces a fuzzy metric.

Example: 2.4 (Induced fuzzy metric [6]) Let (X, d) be a metric space. Denote a * b = a.b & for all a,b = [0,1] and let
M, be fuzzy sets on X2 x (0, o) defined as follows.

t
M4 X,y,t) = )
Oy = o)

Then (X, M,*) is a fuzzy metric space. We call this fuzzy metric induced by a metric d as the standard intuitionistic
fuzzy metric.

Definition: 2.5 [8] Two self mappings f and g of a fuzzy metric space (X, M,*) are called compatible if lim,_..M
(fg %.gf %p, t) = 1 wherever { X} is sequence in X such that

lim,_.. fx, =lim,_... g X, = x for some x in X

Definition: 2.6 [24] Two self maps f and g of a fuzzy metric space (X, M,*) are called reciprocally continuous on X if
lim, o f%, =fx and lim, ... gf %, = gx wherever, { %} is sequence in X such that

lim, .. fx,=lm,_.. g X, = x for some x in X.
Definition: 2.7 [6] Let (X, M,*) be a fuzzy metric space. Then

(a) A sequence {x, }in X is said to converges to x in X if for each £ > 0 and each t > 0, there exist n, =N such that
M(x,,x,t)>1- £foralln>n,,

(b) A sequence {x, } in X is said to be Cauchy if for each £ > 0 and each t > 0, there exist n, = N such that

M (Xp,Xm,t ) >1—£foralln, m>n,

(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition: 2.8 Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in X

which is a coincidence point of f and g at which f and g commute. A.Al-Thagafi and Naseer Shahzad [15] shown that
occasionally weakly is weakly compatible but converse is not true.

Example: 2.9 Let R be the usual metric space. Define S, T: R — R by Sx = 3x and Tx = x” for all x £ R. Then Sx = Tx

for x = 0, 3 but STO = TS0, and ST3 # TS3. Hence S and T are occasionally weakly compatible self maps but not
weakly compatible.

Example: 2.10 [3] Let R be the usual metric space. Define S, T: R — R by Sx = 2x and Tx = x* for all x £ R. Then Sx

= Tx for x =0, 2, but STO = TS0, and ST2 # TS2. Hence S and T are occasionally weakly compatible self maps but not
weakly compatible.

Lemma: 2.11 [12] Let X be a set and f, g owc self maps of X. If f and g have a unique point of coincidence, w = fx =
gx, then w is the unique common fixed point of f and g.

Lemma: 2.12 Let (X, M,*) be a fuzzy metric space. If then exist q = (0, 1) such that
M (x,y,qt) >M (x,y,t) forallx,y EX & t>0thenx =y.

3 MAIN RESULTS:

Theorem: 3.1
Let (X, M, *) be a compete fuzzy metric space and let P, Q, Sand T are self-mapping of X. Let the pairs {P, S} and

{Q, T} be owc . If there exists q = (0, 1) such that
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M (5%, Ty, t) +M(Px,Ty,t) +M(Qy,5x,)
M(Px,Qy.qt) > min{ 3 , M(Sx,Px,t) , M(Qy,Ty,t)} (1)

for all x, y £X and for all t > 0, then there exists a unique point w = X such that Pw = Sw = w and a unique point z £
X such that Qz = Tz = z. Moreover, z = w, so that there is a unique common fixed point of P, Q, S and T.

Proof: Let the pairs {P, S} and {Q, T} be owc so there are points X,y = X such that Px = Sx and Qy = Ty. We claim
that Px = Qy. If not by inequality (1)

M{Sx, Ty, t) +M{Px,Ty,t) +M{Qy,Sxz,t)
M(Px,Qy,qt) > min{ 3 » M(Sx,Px,t) , M(Qy,Ty,)}
M{Px,Qv,t) +M{PxQv,t) +M{Qy,Pxt)
= mln{ 3 s M(PX,PX,t) ) M(anQy’t)}
M{PxQv, 1) +M{PxQy,t) +M{Qy,Pxt)

=min { , 1,1}

3
=M (Px,Qy,t)

Therefore Px = Qy , i.e. Px = Sx = Qy = Ty. Suppose that z such that Pz = Sz then by (1) we have Pz=Sz=Qy=Ty
so Px = Pz and w = Px = Sx is the unique point of coincidence of P and S.

Similarly there is a unique point z = X such that z = Qz = Tz.

Assume that w # z .We have

M (w,z,qt) = M(Pw,Q_z,qt) _
M{Sx,Tz,t) +M{Pw,Tz,t) +M{Qz,5w,t)

M(Px,Qy.qt) > min{ 3 , M(Sw,Pz,t), M(Qz,Tz,t) }
M{w,z,t) =M {w,z,t) +M{w,z,t)
=min { 3 , M(w,z,t) , M(z,,t)}
=M (w,z,t)

Therefore we have z = w by Lemma 2.14 and z is a common fixed point of P, Q, S and T. The uniqueness of fixed
point holds from (1)

Theorem: 3.2
Let (X, M, *) be complete fuzzy metric space and let P,Q,S and T be self mappings of X .Let the pairs {P, S} and
{Q, T} be owc . If there exists q = (0, 1) such that

M{Sx, Ty, 1) +M (P Ty, t) +M{Qv,55t)
M(Px,Qy.qt) > @[min{ 3 , M(Sx.Px,t) , M(Qy,Ty,t)}] 2)

forall x,y EXand @ :[0,1] —* [0,1] such that @(t) > t for all 0 < t < 1 ,then there exist a unique common fixed point
of P,Q,Sand T

Proof: _ _
M(Sx,Ty,t] +M(PxTy,t) +M{Qv,5xt)
M(Px,Qy,qt) > @ [min{ 3 , M(Sx,Px,t) , M(Qy,Ty,t)}]
> @ [M (Px,Qy,1)] from theorem 3.1

> @ M (Px,Qy,b)]
Now proof fallows by (3.1)

Theorem: 3.3
Let (X, M,*) be a complete fuzzy metric space and let P, Q, S and T are self mappings of X.
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Let the pairs {P, S}and {Q,T} be owc . If there exists q = (0, 1) such that

M{Sx, Ty, 1) +M (P Ty, t) +M{Qv,55t)
M(Px,Qy,qt) > @[min{ 3 ,M(Sx,Px,t) , M(Qy,Ty,t)}] 3)

For all x, y £ X and @: [0,1]*—[0.1] such that @ (t,1,t,t) > t for all 0 < t < 1 then there exists a unique common fixed
pointof P, Q, S and T.

Proof: Let the pairs {P, S}and {Q, T} are owc ,there are points X, y = X such that Px = Sx and Qy = Ty are claim that
Px = Qy. By inequality (3) we have

M{Sx, Ty, 1) +M (P Ty, t) +M{Qv,55t)

M(Px,Qy,qt) > @[min{ 3 » M(Sx,Px,t) , M(Qy,Ty,0)}]
M{Px,Qv,t) +M{PxQv,t) +M{Qy,Pxt)
= Q[mln{ 3 5 M(PXaPXat) s M(anQy’t)}]

=@ [min{M(Px,Qy,t),1,1}], [~*M(Px,Px,t) = 1,M(Qy,Qy,t) =1]
>M (Px,Qy.t)

a contradiction , therefore Px = Qy i.e. Px = Sx = Qy = Ty suppose that there is another point z such that Pz = Sz then
by (3) we have

Pz = Sz = Qy = Ty so Px = Pz and w = Px = Tx is unique point of coincidence of P and T. Qy Lemma 2.14 w is a
unique common fixed point of P and S, similarly there is a unique point z = X such that z = Qz = Tz..Thus z is common
fixed point of P, Q, S, and T. The uniqueness of fixed point holds from (3).

Theorem: 3.4
Let (X,M,#*) be complete fuzzy metric space and let P,Q,S and T be self mappings of X, let the pairs {P,S} and {Q,T}

are owc. If there exists a points q = (0,1) forall x,y X and t>0

M{Sx Ty, t) +M{Px, Ty, t) +M{5x,Qv,t)
M(Px,Qy,qt) >{ 3 , M(Px,Sx,t), M(Qy, Ty,t)} (€]

then there exists a unique common fixed points of P, Q, S and T.

Proof: Let the points {P, S} and {Q, T} are owc and there are points X, y £ X such that Px = Sx and Qy = Ty and claim
that Px = Qy By inequality (4)

We have _ _
M{Sx Ty, t) +M{Px, Ty, t) +M{5x,Qv,t)
M(Px,Qy,qt) >{ 3 , M(Px,Sx,t), M(Qy,Ty,t)}

M(PxQy,t) +M(PxQy,7) +M{PxQv,t)
={ 3 , M (Px,Px,t), M(Qy,Qy,t)}

> M (Px,Qy,n*1*1
>M (Px,Qy.)

Thus we have Px = Qy i.e. Px = Sx = Qy = Ty. Suppose that there is another point z such that Pz = Sz then by (4) we
have Pz = Sz = Qy=TYy so Px = Pz and w = Px = Sx is unique point of coincidence of P and S.

Similarly there is a unique point z = X such that z = Qz = Tz. Thus w is a common fixed point of P, Q, S and T.

Corollary: 3.5
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Let (X, M,*) be a complete fuzzy metric space and let P, Q, S and T be self mappings of X. Let the pairs {P, S} and
{Q, T} are owc. If there exists a point q = (0, 1) forall x,y EX and t > 0

M (5%, Ty, t) +M{Qy,5x, 2t) +M{Px,Ty,t)
M(Px,Qy.qt) = [{ 3 } *M(Px,Sx,0)*M(Qy, Ty, 0] (5)

then there exists a unique common fixed point of P, Q, S and T.

Proof: We have _ _
M (5%, Ty, t) +M{Qy,5x, 2t) +M{Px,Ty,t)
M(Px,Qy.qt) = [{ }*M(Px,Sx,0*M(Qy, Ty, )]

el
pu)

M(Sx,Tv,t) +M (Sx, Ty, t)*M(Ty,Qv,t)+M(Px, Ty t)

>[{ 3 FFM(Px,Sx,0)*M(Qy, Ty,0)]
M{(Sx, Ty, t) +M{Sx, Ty, t) *M{Qv.Qv,t) +M{Px, Ty t)

> [{ 3 PFM(Px,Px,t)*M(Qy, Ty,0)]
M{Sx,Ty,t) | M{Sx, Ty, t)¥1 | M{Px,Ty,t)

>[{ . JEL*1]

3

M{Sx, Ty, t) +M(5x, Ty, t)+M{Px, Ty t)

>[{ 3 PEL#L]

> M(Px,Px,t), [+ Px = Sx and Qy = Ty]

and therefore from Theorem 3.4 , P, Q, S and T have common fixed point.

Corollary: 3.6
Let (X, M,*) be complete fuzzy metric space and let P, Q, S and T be self-mapping of X. Let the pairs {P, S} and {Q,

T} are owc. If there exist point q £ (0, 1) forall x,y €Xandt>0
M (Px,Qy,qt) > M(Sx,Ty,t) 6)
then there exists a unique common fixed point of P, Q, S and T.
Proof: The proof follows from Corollary 3.5
Theorem:3.7

Let (X, M,*) be complete fuzzy metric space. Then continues self mappings S and T of X have a common fixed point
in X if and only if there exists a self mapping P of X such that the following conditions are satisfied

HPXZTXNSX
(ii) pairs {P, S} and {P, T} are weakly compatible,
(iii) there exists a point q = (0,1) such that for every x,y = X and t >0

MSx, Ty, 0 +M{2x5%,0 +M{Px,Tv.1)
M (Px,Qy.qt) ={ 3 *M(Py,Ty,t)} )

then P, S and T have a unique common fixed point.
Proof: Since compatible implies owc , the result follows from 3.4

Theorem: 3.8
Let (X, M,*) be a complete fuzzy metric space and let P and Qbe self mapping of X .Let P and Q are owc. If there

exists a point q £ (0,1) forall x,y EX and t = [
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M{PxPy,t)+M{5y,Pxt) +M{5xPy,0)
M (Sx,Sy,qt) > aM(Px,Py,t) + B{ 3 } )

for all x,y € X, where a, >0, o+p >1. Then P and S have a unique common fixed point.

Proof: Let the pairs {P, S} be owc, so there is a point x = X such that Px = Sx. Suppose that there exist another point y
< X for which Py = Sy We claim that Sx = Sy by equation (8) we have
M{Px,Py,t)+M{Sy,Pxt) +M{Sx,Py,t)
M(Sx,Sy,qt) > aM(Px,Py,t) + B{ 3 }
M{(Sx,Sy,t) +M{Sy,Sxt) +M{5x,5y,t)
}
3

M(Sx,Sy,qt) > aM(Sx,Sy,t) + B{
= (0+p) M (Sx,Sy,t)

A contradiction, since (a+f) > 1therefore Sx = Sy. Therefore Px = Py and Px is unique. From lemma 2.14, P and S have
aunique fixed point.
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