International Journal of Mathematical Archive-2(6), June - 2011, Page: 924-930

SOME COMMON FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES

¹S. K Malhotra, ²N. Verma*, ³R. Sen and ⁴S. Shukla

¹Department of Mathematics, Govt. S. G. S. P. G. College Ganj Basoda Distt. Vidisha (M.P.), India

²Department of Mathematics S. D. Bansal College of Technology, Indore (M.P.), India

^{3,4}Department of Applied Mathematics, Shri Vaishnav Institute of Technology and Science Indore (M.P.)

E-mail: verma_05navin@yahoo.com

(Received on: 30-05-11; Accepted on: 09-06-11)

ABSTRACT

In this paper we prove some common fixed point theorem for occasionally weakly compatible mapping in fuzzy metric spaces by taking average of some elements.

Keywords: Occasionally weakly compatible (owc) mappings, fuzzy metric space.

1. INTRODUCTION:

Fuzzy set was defined by Zadeh [26]. Kramosil and Michalek [14] introduced fuzzy metric space, Grorge and Veermani [6] modified the notion of fuzzy metric spaces with the help of continuous t-norms. Many researchers have obtained common fixed point theorems for mappings satisfying different types of commutativity conditions. Vasuki [25] proved fixed point theorems for R-weakly commutating mappings. Pant [18, 19, 20] introduced the new concept reciprocally continuous mappings and established some common fixed point theorems. Balasubramaniam er al. [4], have shoen that Rhoades [22] open problem on the existence of contractive definition which generates a fixed point but does not force the mappings to be continuous at the fixed point. Posses an affirmative answer. Pant and Jha [20] obtained some analogous results proved by Balasubramaniam et. Al. Recent literature in fixed point in fuzzy metric space can be viewed in [1, 2, 9, 16, 24].

This paper presents some common fixed point theorems for more general commutative condition i.e. occasionally weakly compatible mappings in fuzzy metric space by taking average of some elements.

2 PRELIMINARY NOTES:

Definition: 2.1 [12] A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition: 2.2 [4] A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norms if it satisfies the following conditions:

- (i) *is associative and commutative;
- (ii) *is continuous;
- (iii) a*1 = a for all $a \in [0, 1]$;
- (iv) $a*b \le c*d$ whenever $a \le c$ and $b \le d$, and $a, b, c, d \in [0,1]$.

Definition: 2.3 [2] A 3-tuples (X, M, *) is said to be a fuzzy metric space (shortly FM Space) if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set of $X^2 \times (0, \infty)$ satisfying the following conditions, for all x, y, $z \in X$ and s, t > 0;

- (FM 1): M(x, y, t) > 0;
- (FM 2): M(x, y, t) = 1 for all t > 0 if and only if x = y;
- (FM 3): M(x, y, t) = M(y, x, t);

S. K Malhotra¹, N. Verma^{2*}, R. Sen³ and S. Shukla⁴ / Some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces / IJMA- 2(6), June-2011, Page: 924-930

(FM 4): $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$ (FM 5): $M(x, y, .) : (0, \infty) \to (0, 1]$ is left continuous.

(X, M, *) denotes a fuzzy metric space, M(x, y, t) can be thought of as degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0. In the following example every metric induces a fuzzy metric.

Example: 2.4 (Induced fuzzy metric [6]) Let (X, d) be a metric space. Denote a * b = a.b & for all a,b \in [0,1] and let M_d be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows.

$$M_{d}(x,y,t) = \frac{t}{t+d(x,y)}$$

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric induced by a metric \mathbf{d} as the standard intuitionistic fuzzy metric.

Definition: 2.5 [8] Two self mappings f and g of a fuzzy metric space $(X, M,^*)$ are called compatible if $\lim_{n\to\infty} M$ (fg X_n , gf X_n , t) = 1 wherever $\{X_n\}$ is sequence in X such that

 $\lim_{n\to\infty} f x_n = \lim_{n\to\infty} g x_n = x$ for some x in X

Definition: 2.6 [24] Two self maps f and g of a fuzzy metric space (X, M, *) are called reciprocally continuous on X if $\lim_{n\to\infty} f X_n = fx$ and $\lim_{n\to\infty} g f X_n = gx$ wherever, $\{X_n\}$ is sequence in X such that

 $\lim_{n\to\infty} f x_n = \lim_{n\to\infty} g x_n = x$ for some x in X.

Definition: 2.7 [6] Let (X, M,*) be a fuzzy metric space. Then

- (a) A sequence $\{x_n\}$ in X is said to converges to x in X if for each $\varepsilon > 0$ and each t > 0, there exist $n_o \in \mathbb{N}$ such that $M(x_n, x, t) > 1 \varepsilon$ for all $n \ge n_o$.
- (b) A sequence $\{x_n\}$ in X is said to be Cauchy if for each $\varepsilon > 0$ and each t > 0, there exist $n_o \in N$ such that $M(x_n, x_m, t) > 1 \varepsilon$ for all $n, m \ge n_o$.
- (c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition: 2.8 Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in X which is a coincidence point of f and g at which f and g commute. A.Al-Thagafi and Naseer Shahzad [15] shown that occasionally weakly is weakly compatible but converse is not true.

Example: 2.9 Let R be the usual metric space. Define S, T: $R \to R$ by Sx = 3x and $Tx = x^2$ for all $x \in R$. Then Sx = Tx for x = 0, 3 but ST0 = TS0, and $ST3 \neq TS3$. Hence S and T are occasionally weakly compatible self maps but not weakly compatible.

Example: 2.10 [3] Let R be the usual metric space. Define S, T: R \rightarrow R by Sx = 2x and Tx = x^2 for all x \in R. Then Sx = Tx for x = 0, 2, but ST0 = TS0, and ST2 \neq TS2. Hence S and T are occasionally weakly compatible self maps but not weakly compatible.

Lemma: 2.11 [12] Let X be a set and f, g owc self maps of X. If f and g have a unique point of coincidence, w = fx = gx, then w is the unique common fixed point of f and g.

Lemma: 2.12 Let (X, M, *) be a fuzzy metric space. If then exist $q \in (0, 1)$ such that

 $M(x,y,qt) \ge M(x,y,t)$ for all $x, y \in X \& t > 0$ then x = y.

3 MAIN RESULTS:

Theorem: 3.1

Let (X, M, *) be a compete fuzzy metric space and let P, Q, Sand T are self–mapping of X. Let the pairs $\{P, S\}$ and $\{Q, T\}$ be owc . If there exists $q \in \{0, 1\}$ such that

S. K Malhotra¹, N. Verma^{2*}, R. Sen³ and S. Shukla⁴ / Some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces / IJMA- 2(6), June-2011, Page: 924-930

$$M(Px,Qy,qt) \geq \min\{\frac{M\left(Sx,Ty,t\right) + M\left(Px,Ty,t\right) + M\left(Qy,Sx,t\right)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\} \tag{1}$$

for all x, y $\in X$ and for all t > 0, then there exists a unique point w $\in X$ such that Pw = Sw = w and a unique point z $\in X$ such that Qz = Tz = z. Moreover, z = w, so that there is a unique common fixed point of P, Q, S and T.

Proof: Let the pairs $\{P, S\}$ and $\{Q, T\}$ be owc so there are points $x,y \in X$ such that Px = Sx and Qy = Ty. We claim that Px = Qy. If not by inequality (1)

$$\begin{split} M(Px,Qy,qt) &\geq min\{\frac{M\left(Sx,Ty,t\right) + M\left(Px,Ty,t\right) + M(Qy,Sx,t\right)}{3} \;,\; M(Sx,Px,t) \;,\; M(Qy,Ty,t)\}\\ &= min\{\frac{M\left(Px,Qy,t\right) + M\left(Px,Qy,t\right) + M(Qy,Px,t\right)}{3} \;,\; M(Px,Px,t) \;,\; M(Qy,Qy,t)\}\\ &= min\left\{\frac{M\left(Px,Qy,t\right) + M\left(Px,Qy,t\right) + M(Qy,Px,t\right)}{3} \;,\; 1,1\}\\ &= M\;(Px,Qy,t) \end{split}$$

Therefore Px = Qy, i.e. Px = Sx = Qy = Ty. Suppose that z such that Pz = Sz then by (1) we have Pz = Sz = Qy = Ty so Px = Pz and W = Px = Sx is the unique point of coincidence of P and S.

Similarly there is a unique point $z \in X$ such that z = Qz = Tz.

Assume that $w \neq z$. We have

$$\begin{split} M\left(w,z,qt\right) &= M(Pw,Qz,qt) \\ M(Px,Qy,qt) &\geq \min\{\frac{M\left(Sx,Tz,t\right) + M\left(Pw,Tz,t\right) + M\left(Qz,Sw,t\right)}{3}, \, M(Sw,Pz,t), \, M(Qz,Tz,t)\} \\ &= \min\left\{\frac{M\left(w,z,t\right) + M\left(w,z,t\right) + M\left(w,z,t\right)}{3}, \, M(w,z,t), \, M(z,z,t)\right\} \\ &= M\left(w,z,t\right) \end{split}$$

Therefore we have z = w by Lemma 2.14 and z is a common fixed point of P, Q, S and T. The uniqueness of fixed point holds from (1)

Theorem: 3.2

Let (X, M, *) be complete fuzzy metric space and let P,Q,S and T be self mappings of X. Let the pairs $\{P, S\}$ and $\{Q, T\}$ be owc. If there exists $q \in (0, 1)$ such that

$$M(Px,Qy,qt) \ge \emptyset[\min\{\frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Qy,Sx,t)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\}]$$
(2)

for all x, $y \in X$ and $\emptyset : [0,1] \longrightarrow [0,1]$ such that $\emptyset(t) > t$ for all 0 < t < 1, then there exist a unique common fixed point of P, Q, S and T

Proof:

$$\begin{split} M(Px,Qy,qt) &\geq \emptyset \; [\min\{\frac{M(Sx,Ty,t)+M(Px,Ty,t)+M(Qy,Sx,t)}{3} \;, \; M(Sx,Px,t) \;, \; M(Qy,Ty,t)\}] \\ &\geq \emptyset \; [M \; (Px,Qy,t)] \qquad \qquad \text{from theorem 3.1} \\ &\geq \emptyset \; [M \; (Px,Qy,t)] \end{split}$$

Now proof fallows by (3.1)

Theorem: 3.3

Let (X, M, *) be a complete fuzzy metric space and let P, Q, S and T are self mappings of X.

Let the pairs $\{P, S\}$ and $\{Q,T\}$ be owc. If there exists $q \in (0, 1)$ such that

$$M(Px,Qy,qt) \ge \emptyset[\min\{\frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Qy,Sx,t)}{3}, M(Sx,Px,t), M(Qy,Ty,t)\}] \tag{3}$$

For all x, y \in X and \emptyset : $[0,1]^4 \rightarrow [0,1]$ such that \emptyset (t,1,t,t) > t for all 0 < t < 1 then there exists a unique common fixed point of P, Q, S and T.

Proof: Let the pairs $\{P, S\}$ and $\{Q, T\}$ are owc ,there are points $x, y \in X$ such that Px = Sx and Qy = Ty are claim that Px = Qy. By inequality (3) we have

$$\begin{split} M(Px,Qy,qt) &\geq \varnothing [\min \{ \frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Qy,Sx,t)}{3} \,,\, M(Sx,Px,t) \,,\, M(Qy,Ty,t) \}] \\ &= \varnothing [\min \{ \frac{M(Px,Qy,t) + M(Px,Qy,t) + M(Qy,Px,t)}{3} \,,\, M(Px,Px,t) \,,\, M(Qy,Qy,t) \}] \\ &= \varnothing \, [\min \{ M(Px,Qy,t),1,1 \}] \,,\, [\because M(Px,Px,t) = 1, M(Qy,Qy,t) = 1] \\ &> M \,\, (Px,Qy,t) \end{split}$$

a contradiction, therefore Px = Qy i.e. Px = Sx = Qy = Ty suppose that there is another point z such that Pz = Sz then by (3) we have

Pz = Sz = Qy = Ty so Px = Pz and w = Px = Tx is unique point of coincidence of P and T. Qy Lemma 2.14 w is a unique common fixed point of P and S, similarly there is a unique point $z \in X$ such that z = Qz = Tz. Thus z is common fixed point of P, Q, S, and T. The uniqueness of fixed point holds from (3).

Theorem: 3.4

Let (X,M,*) be complete fuzzy metric space and let P,Q,S and T be self mappings of X, let the pairs $\{P,S\}$ and $\{Q,T\}$ are owc. If there exists a points $q \in (0,1)$ for all x, $y \in X$ and t > 0

$$M(Px,Qy,qt) > \{ \frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Sx,Qy,t)}{3}, M(Px,Sx,t), M(Qy,Ty,t) \}$$
(4)

then there exists a unique common fixed points of P, Q, S and T.

Proof: Let the points $\{P, S\}$ and $\{Q, T\}$ are owc and there are points $x, y \in X$ such that Px = Sx and Qy = Ty and claim that Px = Qy By inequality (4)

We have

$$\begin{split} M(Px,Qy,qt) > &\{ \frac{M(Sx,Ty,t) + M(Px,Ty,t) + M(Sx,Qy,t)}{3}, M(Px,Sx,t), M(Qy,Ty,t) \} \\ &= \{ \frac{M(Px,Qy,t) + M(Px,Qy,t) + M(Px,Qy,t)}{3}, M(Px,Px,t), M(Qy,Qy,t) \} \\ &\geq M(Px,Qy,t) * 1 * 1 \\ &\geq M(Px,Qy,t) \end{split}$$

Thus we have Px = Qy i.e. Px = Sx = Qy = Ty. Suppose that there is another point z such that Pz = Sz then by (4) we have Pz = Sz = Qy = Ty so Px = Pz and Px = Sx is unique point of coincidence of P and S.

Similarly there is a unique point $z \in X$ such that z = Qz = Tz. Thus w is a common fixed point of P, Q, S and T.

Corollary: 3.5

Let (X, M, *) be a complete fuzzy metric space and let P, Q, S and T be self mappings of X. Let the pairs $\{P, S\}$ and $\{Q, T\}$ are owc. If there exists a point $q \in (0, 1)$ for all x, $y \in X$ and t > 0

$$M(Px,Qy,qt) \ge [\{\frac{M(Sx,Ty,t) + M(Qy,Sx,2t) + M(Px,Ty,t)}{3}\} *M(Px,Sx,t)*M(Qy,Ty,t)]$$
 (5)

then there exists a unique common fixed point of P, Q, S and T.

Proof: We have

$$\begin{split} M(Px,Qy,qt) &\geq [\{\frac{M(Sx,Ty,t) + M(Qy,Sx,2t) + M(Px,Ty,t)}{3}\} *M(Px,Sx,t)*M(Qy,Ty,t)] \\ &\geq [\{\frac{M(Sx,Ty,t) + M(Sx,Ty,t)*M(Ty,Qy,t) + M(Px,Ty,t)}{3}\} *M(Px,Sx,t)*M(Qy,Ty,t)] \\ &\geq [\{\frac{M(Sx,Ty,t) + M(Sx,Ty,t)*M(Qy,Qy,t) + M(Px,Ty,t)}{3}\} *M(Px,Px,t)*M(Qy,Ty,t)] \\ &\geq [\{\frac{M(Sx,Ty,t) + M(Sx,Ty,t)*M(Px,Ty,t)}{3}\} *1*1] \\ &\geq [\{\frac{M(Sx,Ty,t) + M(Sx,Ty,t)*1 + M(Px,Ty,t)}{3}\} *1*1] \\ &\geq [\{\frac{M(Sx,Ty,t) + M(Sx,Ty,t) + M(Px,Ty,t)}{3}\} *1*1] \\ &\geq M(Px,Px,t), [\because Px = Sx \text{ and } Qy = Ty] \end{split}$$

and therefore from Theorem 3.4, P, Q, S and T have common fixed point.

Corollary: 3.6

Let (X, M, *) be complete fuzzy metric space and let P, Q, S and T be self-mapping of X. Let the pairs $\{P, S\}$ and $\{Q, T\}$ are owc. If there exist point $q \in \{0, 1\}$ for all x, $y \in X$ and t > 0

$$M(Px,Qy,qt) \ge M(Sx,Ty,t) \tag{6}$$

then there exists a unique common fixed point of P, Q, S and T.

Proof: The proof follows from Corollary 3.5

Theorem:3.7

Let (X, M,*) be complete fuzzy metric space. Then continues self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping P of X such that the following conditions are satisfied

- (i) PX \subseteq TX \cap SX
- (ii) pairs {P, S} and {P, T} are weakly compatible,
- (iii) there exists a point $q \in (0,1)$ such that for every $x, y \in X$ and t > 0

$$M(Px,Qy,qt) \ge \{ \frac{M(Sx,Ty,t) + M(Px,Sx,t) + M(Px,Ty,t)}{3} * M(Py,Ty,t) \}$$
(7)

then P, S and T have a unique common fixed point.

Proof: Since compatible implies owc, the result follows from 3.4

Theorem: 3.8

Let (X, M, *) be a complete fuzzy metric space and let P and Q be self mapping of X. Let P and Q are owc. If there exists a point $q \in (0,1)$ for all $x, y \in X$ and $t \ge 0$

S. K Malhotra¹, N. Verma^{2*}, R. Sen³ and S. Shukla⁴ / Some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces / IJMA- 2(6), June-2011, Page: 924-930

$$M\left(Sx,Sy,qt\right) \geq \alpha M(Px,Py,t) + \beta \{\frac{M\left(Px,Py,t\right) + M\left(Sy,Px,t\right) + M\left(Sx,Py,t\right)}{3}\} \tag{8}$$

for all $x,y \in X$, where $\alpha, \beta > 0$, $\alpha+\beta > 1$. Then P and S have a unique common fixed point.

Proof: Let the pairs $\{P, S\}$ be owc, so there is a point $x \in X$ such that Px = Sx. Suppose that there exist another point $y \in X$ for which Py = Sy We claim that Sx = Sy by equation (8) we have

$$\begin{split} M(Sx,Sy,qt) &\geq \alpha M(Px,Py,t) + \beta \{\frac{M\left(Px,Py,t\right) + M\left(Sy,Px,t\right) + M\left(Sx,Py,t\right)}{3} \} \\ M(Sx,Sy,qt) &\geq \alpha M(Sx,Sy,t) + \beta \{\frac{M\left(Sx,Sy,t\right) + M\left(Sy,Sx,t\right) + M\left(Sx,Sy,t\right)}{3} \} \\ &= (\alpha + \beta) \ M\left(Sx,Sy,t\right) \end{split}$$

A contradiction, since $(\alpha+\beta) > 1$ therefore Sx = Sy. Therefore Px = Py and Px is unique. From lemma 2.14, P and S have a unique fixed point.

REFERENCES:

- [1] C.T. Aage , J.N. Salunke, "Common Fixed Point Theorems in Fuzzy Metric Spaces", International Journal of pure and Applied Mathematics 56(2), 2009, pp 155-164.
- [2] C.T. Aage , J.N. Salunke, "Some Fixed Point Theorems in Fuzzy Metric Spaces", International Journal of pure and Applied Mathematics 56(3), 2009, pp 311-320.
- [3] A.Al-Thagafi and Naseer Shahzad , "Generalized I-Nonexpansive Selfmaps and Invarient Approximations , Acta Mathematica Sinica, English Series May ,2008, Vol. 24, No.5pp 867876
- [4] P. Balasubrmaniam, S. Muralisnkar, R.P. pant, "Common Fixed Points of four mappings in a fuzzy metric spaces" J Fuzzy math. 10(2) (2002)
- [5] Y.J. Cho, H.K. Pathak, S.M. Kang, J.S. Jung "Common Fixed Points of compatible maps of type (A) on fuzzy metric spaces", Fuzzy Sets and Systems 93 (1998), 99-111
- [6] A George, P. Veeramani, "On some results in fuzzy metric spaces", Fuzzy Sets and Systems, 64 (1994), 395-399.
- [7] M. Grabiec, "Fixed points in fuzzy metric spaces", Fuzzy Sets and Systems 27 (1988), 385-389.
- [8] O. Hadzic, "Common Fixed point theorems for families of mapping in complete metric space", Math.Japon. 29 (1984), 127-134.
- [9] Mohd.Imdad and Javid Ali , "Some Fixed Point Theorems in Fuzzy Metric Spaces" , Mathematical Communications 11(2006) , 153-163 153.
- [10] G. Jungck, "Compatible mappings and common fixed points (2)" Inter-nat. J.math. Math. Sci.(1988), 285-288.
- [11] G. Jungck and B.E. Rhoades , "Fixed point for Set valued functions without Continuity" , Indian J. Pure Appl. Math ,29 (3), (1998), pp.771-779.
- [12] G. Jungck and B.E. Rhoades , "Fixed Point Theorems for Occasionally Weakly compatible Mappings" , Fixed point Theory, Volume 7, No. 2, 2006, 287-296.
- [13] G. Jungck and B.E. Rhoades, "Fixed Point Theorems for Occasionally Weakly compatible Mappings", Erratum, Fixed point Theory, Volume9, No.1, 2008, 383-384.
- [14] O. Kramosiland J. Michalek, "Fuzzy metric and statistical metric spaces", Kybernetka, 11(1975), 326-334.

- S. K Malhotra¹, N. Verma^{2*}, R. Sen³ and S. Shukla⁴ / Some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces / IJMA- 2(6), June-2011, Page: 924-930
- [15] S. Kutukcu "A fixed point theorem for contraction type mappings in Menger spaces", Am. J.Appl. Sci. 4(6) (2007), 371-373.
- [16] Servet Kutukcu , Sushil Shrma and Hanifi Tokogoz , "A Fixed Point Theorem in Fuzzy Metric Spaces" Int. Journal of Math. Analysis , Vol.1, 2007, no. 18,861-872.
- [17] S.N. Mishra, "Common Fixed points of compatible mapping in PM- spaces", Math. Japon.36 (1991), 283-289.
- [18] R.P. Pant, "Common Fixed points of four mappings", Bull.Math. Soc. 90 (1998), 281-286.
- [19] R.P. Pant, "Common Fixed points of for contractive mapps", J. Math. Anal. Appl. 226(1998), 251-258.
- [20] R.P. Pant , K. Jha, "Aremark on common fixed points of four mappings in afuzzy metric space" , J. Fuzzy Math. 12(2) (2004) ,433-437.
- [21] H. K.Pathak and Prachi Sing ,"Common fixed Point Theorem for Weakly Compatible Mapping", International Mathematical Forum, 2, 2007, no.57,2831-2839.
- [22] B. E. Rhoades, "Contractive definitions", Contemporary Math.72 (1988), 233-245.
- [23] B. Schweizer and A. Sklar, "Statistical metric spaces", Pacific J.Math. (1960), 313-334.
- [24] Seong Hoon Cho, "On common Fixed point in fuzzy metric space", Int. Math. Forum, 1,2006, 10 471-479.
- [25] R. Vasuki, "Common fixed points for R-weakly commuting Maps in fuzzy metric spaces", Indian J .Pure Appl. Math 30 (1999) ,419-423.
- [26] L.A. Zadeh, Fuzzy sets, Inform and Control 8(1965), 338-353.
