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ABSTRACT
In this paper, we investigate some properties of approximate identities and their Fourier coefficients with respect to
some appropriate orthonormal bases of |53 (B R (0)). Sufficient conditions for a function in 15 (B I (0)xB R (0)) to be

an approximate identity on L’ (B 2 (0)) are also proved.
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1. INTRODUCTION:

Since the interior of the Earth looks like a ball, therefore it becomes necessary to develop new methods and tools to
approximate functions on the 3-dimensional ball. The study of the Earth's interior, such as the mass density, the speed
of propagation of seismic P and S waves and other rheological quantities, is still a field of research. Similarly, if we
look at the 3-dimensional image of a human brain, it has similarity to the 3-dimensional ball. Since biologists deal with
the similarly simplified model of a living cell and they are very much satisfied by the results obtained from such a
model ([10], [15]), therefore approximating tools on the 3-dimensional ball can also be used to study the human brain.
A particular example is to study the electromagnetic potential of the Earth and also the electromagnetic potential in the
human brain whether it is produced by the local environment of the brain or it is produced by an electrotherapy for the
purpose of the treatment of a cancer patient.

In [2] M. Akram and V. Michel studied locally supported approximate identities on the unit ball, they further studied
the regularization of the Helmholtz decomposition on 3d-ball in [3]. In this paper, we investigate some properties of
approximate identities and their Fourier coefficients with respect to some appropriate orthonormal bases of

L*(B - (0)) . Sufficient conditions for a function in L*(B 2 (0)X B, (0)) to be an approximate identity on L*(B - (0))
are also proved.

2. JACOBI POLYNOMIALS:

In this paper N denote the set of all positive integer, Where N :=NU{0} and R represent the set of all real

numbers. Here, we present definition and some properties of the Jacobi polynomials. For further details and proofs we
refer to [11] and [17].

The functions P'“? ), ne NO, with ¢, ,B > —1 fixed, are called Jacobi polynomials if they satisfy the following

n

properties for all n€ N, :

(i) F‘n(a’ﬂ ) is a polynomial of degree n, defined on [—1,1].
(ii) J.(:(l—x)“(l+ x)? PP ()PP (x)dx = 0 forall me N, \{n}.
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I'h+ta+l) (n+o)!

Th+D0(a+1) nla!

, where I represents the Gamma function.

i) PP (1) =

The Jacobi polynomials Pn(a‘ﬂ ), ne NO, with &, ﬁ > —1 fixed satisfy the following Rodriguez's formula:

D"

(1= 1+ PP (x) = —(i

2"n! \dx

j {a=xm1+x"*}.
Note that the Legendre polynomials P represent the special case of the Jacobi polynomials R,(a’ﬁ ) for each 1 with
a=p=0.
. . (a,B) ﬂ - .
The Jacobi polynomials P, for > -1, f>-1, X, = ————— have the following property
a+f+1

[n+q]: n? if q=max(a,,[)’)2—%,
(A) max [P“P (x)| =

—1<x<+1

-1

RO nt i q=max(@ )<

Here X is one of the two maximum points nearest X,,.

The Jacobi polynomials satisfies the following recurrence relation. For any &, ,3 > —1 and forall xe€ [—l R l]
o- 1
BP0 =1, B () == £ +(@+f+2)x

and for n > 2,

2n(a+ B+n)a+ f+2n—2)P P (x)

= [(0{+ B+2n=2)(a+B+2n-1)a+B+2n)x+ (&’ —ﬁz)] PP (x)

2(a+n-1)(B+n-1)(a+ B+2n)P%P (x).
3. SPHERICAL HARMONICS:
Spherical harmonics are the functions most commonly used to represent scalar fields on a spherical surface. In this

section we present definitions and some well-known facts from the theory of spherical harmonics. For further details
we refer to [6, 9, 14] and the references therein.

Let D  R? be open and connected. A function F € C*® (D) is called harmonic if and only if

3 2
V2F(x):= Za F

2
i=1 ax,'

(x)=0, forall x= ()cl,xz,)c3)T e D.

A polynomial P on R is called homogeneous of degree 1 if P(Ax)=A"P(x) forall A€ R, and all xe R”.

The set of all homogeneous harmonic polynomials on R with degree 1€ N, is denoted by Harm , (R, ie.
Harm, (R*):={Pe Hom,(R*)IV’P =0}, ne N,.

A spherical harmonic of degree n is the restriction of a homogeneous harmonic polynomial on R® with degree
ne N to the unit sphere 2. The collection of all spherical harmonics of degree n will be denoted by Harm , (£2),
ie.

Harm, (Q) ={F |,| F € Harm,(R*)}, ne N,.
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Theorem 3.1 (See [9], p. 38) For every Y, € Harm, (Q2),
|

2n+1)2
?:len({f)IS[ - ) IIYnIILz(Q).
In particular,
1
2
suplYnj(f)lﬁ(zn-’-lj j=1,..2n+1.
&eQ ’ 4

Theorem 3.2 If m # n then Harm , (S) is orthogonal to Harm , (2) in the sense of L*(Q), ie. if m# n, then for
all Y, € Harm () and all Y, € Harm (), <Ym,Yn >L2(Q) =0.

Theorem 3.3 The dimension of Harm , (Q),ne N0 is equal to 2n+1, i.e.
dim(Harm, (Q))=2n+1, ne N,.
By {Yn j} S — we will always denote a complete L () -orthonormal system in Harm, _() ,such
7P IneNg, J=" 1y beees

that Y, ; € Harm, () forall j =-n,...,n. Wecall n the degree of Y, ; and j the orderof ¥, ;. The evaluation

of sums with spherical harmonics can be essentially simplified by the following theorem.

Theorem 3.4 (Addition Theorem for Spherical Harmonics) For all £,11 € Q we have

HPn(f-n),
T

Sy, (E)Y, () =

j==n

2n
4
where P, is the Legendre polynomial of degree 71 .

4. COMPLETE ORTHONORMAL SYSTEM IN HILBERT SPACE L’ (B, (0)):

The following systems of orthogonal polynomials on a three-dimensional ball B, (0):={xe R*:IxIS R} are
known (see , for example [4], [7], [12], [18]).

Theorem: 4.1 Two complete orthonormal systems in the Hilbert space L* (B 2 (0)) are given by

4dm+2n+3 I xI [x!" X
G' (x)= |[FEIERTS poasim o XL Ay P )
n,],m( ) R3 m RZ R n,j |x|
n,meNy; j=1,....2n+1.

2m+3 [ x| X
G" (x :=,/— POP1 2= 11|y .| = |
"”’m( ) R’ " R I xl

x€ B,(0)\{0}; n,me N; j=1,..,2n+1. Inboth cases, {P,,(la’b)} represents the Jacobi polynomials (see

meN 0

Section 2 for further details) and {Y

. . stands for a spherical harmonics orthonormal basis (see, for
"’-/}neNO;J=1,...,2n+1 phert ! is (

instance, Section 3) in L (), where € is the unit sphere in R®.

. 18 written, then system I as well as II could be chosen.

If simply G, ;.
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The kernel ® ;€ L*(B 2 (0)X B,(0)) can be expressed in the form

o 2n+1 o 2n,+1
P (x,y)= z Z Z Z CI)g(nl’jl’ml’n2’j2’m2)Gﬂ1’jl’ml (X)G"2’j2’mz &2
namy=0  j=0 ny,my=0  j,=0

forall x,y€ B, (0), where the series converges in the 15 (B (0)X B, (0)) -sense, that is

oo 2n+1 oo 2n+1

Z Z Z z (CI)g(nl’jl’ml’nz’jz,mz))z<+oo,

nmy=0 ;=0 ny,my=0 j,=0
Here @5 (n,, j,,m,,n,, j,,m,) are the Fourier coefficients for @z defined as

N . . a
D5 (s Jys o1, o, o) = <CD‘9’ G”l’fl””l G”Z”Z””Z >L2(BR(0)><BR(0))

‘[BR(O)J‘BR(O)CD‘s(x’ y)Gnl’jl’ml (X)G”z’jz’mz (y)dxdy.

5. PROPERTIES OF THE FOURIER COEFFICIENTS OF THE APPROXIMATE IDENTITIES ON
L’ (B, (0)):

Lemma: 5.1 Ler @, € 15 (Bg(0)X B, (0)) be an approximate identity in 15y (Bg(0)) such that

JBR(O)
above, then

@3(0,1,0,0,1,0)=1.

Proof: Using the definition of ®%(n,, j,,m,,n,, j,,M,) and the addition theorem, we get

®50.1.0.0.1,0) = [ [ @55 )Gy0 ()G o (y)ddady

Yy
-[B (0)-[3 ©) P;s(x y)\/7 01[ j\/;Ym{mjdXdy

3 1 Xy
FJ.BR <oJBR<0)CD‘5(x’ y)EPO [m ‘ ?] dxdy.

Applying Fubini's theorem (see [16]) and the fact that P, (l_xl %j =1, we get
XLy
2(0.1.0,0.1,0) = —> j j @ (x, y)dydx
o sy My Uy dy 4]Z'R3 BR(()) BR(()) o ’

3
= T D!
because .[B (O)(I)(;(x, y)dy =1.
R

Theorem: 5.2 Let P ;€ 15 (B (0)X B, (0)) be an approximate identity in 15 (B (0)) then

. A .
}L%}rq)a(”nh’ My, Jo,My) = nl,n2§n1],m25jl,j2'

Proof: From the information given above, we can write

© 2011, IJMA. All Rights Reserved
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q)g(nwjl’ml’nz’ j27m )= S,

UL 5’”1 1, 511 oJp

:.[BR(O)IBR(O)(D&(X’y)G"l’jl’ml (X)G”z’fz’mz (y)dXdy_ G”1 Jpm (NG My dp My (x)dx

By (0) |
= By (0) ((@5 a G”zﬂfzﬂ"’z )(x) a G”z’jz””z (x)) G”l’jl oy (x)d.

Taking the absolute values of both hand sides, we have

D5, oo, J3,5) = ”1"2 myomy i
IBR(())((q)5a My s Jn iy )( )—G ny. jz,mz(x)) gy (x)dx
Jo (#5861 )0=G, 0 (0)Gy (0

Now using Holder's inequality (see [5]) we get

IA

dx.

‘q)g(”pjl’ml’nz’jz’mz) S,

Ny ml my s
<]
By (0)

(®,4G, .., )0-G

1 1
2 2 )
dx) [ LR IRIGRANEL dxj

ny, j2,m2
=POd. 4G . - P PG . P
§ A R] A R)] L2(BR(0)) - Jpm LZ(BR(()))
=P®. 4G . - P .
g My Jp 1y oy L2 (B (0)

Taking the limit 0 — 0+ and using the fact that @5 is an approximate identity in L*(B 2 (0)) we get

lim cDg(nls.jpmlang’jzamz) 5

S0+ "o ’”1 my s
< P®;aG P
}1_{& nysdgemy gy 12 (B (0)
=0.

This proves the result.

Lemma: 5.3 Let @, € LZ(BR (0)x B, (0)) be given such that JB 0 | Ps(x,y)ldy =1 forall xe By(0) and
R

o5 (ny, j,m,n,, j,,m,) beits Fourier coefficients as defined above. If the system G, ;, is used in the definition

of the Fourier coefficients then

‘q);(nl’jl’ml’nZ’jZ’mZ)‘ SI_InlmlI_Inzmz’ (1)
with
m,+n, +1/2
,/4ml+2nl+3[ e }/2n1+1
Hnlml - '\/5 b
and

m,+n,+1/2

‘/4m2+2n2+3( 2T J‘/2n2+1
_ m,

I—[nzm2 - \/5 s

where n,n,,m,m,e N, j =1,..,2n +1 and j, =1,...,2n, +1.

If the system Gn m is used in the definition of the Fourier coefficients then
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5 5 1 1
N . . 2m, +3)22m, +3)22n, +1)>(2n, +1)2
‘q)s(nl’]l’ml’nz’fz’mz)‘g 1 2 D 1 = , )

where n,n,,m,m,e Ny, j =1,..,2n +1 and j, =1,...,2n, +1.

Proof: Using the definition of @5 (n,, j,,m,,n,, j,,m,) , we get

|5 (ny, jiomyany, jyom,)| < jBR(O)jBR(O) @55, )G, ;0 (G, , .. ()| dxdy. N

Taking system I of Theorem 4.1 in Equation (3) we have

4m, +2n,+3 [4m, +2n, +3
R® \/ R IBR(O)JBR(0)|¢5(X’ y)|
X
Y"l’jl (m]

B &)

I<I>§(nl,j,,ml,n2,jz,m2)lé\/

2
X[ pOm+12) o13F
! R

Y
Yr12’j2 (I_ylj ]dXdy

By using equation (A) and Theorem 3.1 we get

2
Pygo,n2+1/2)[2%_lj
2 R

n . . 1
|5 (ny, im0y, jyam,) ISF\/4ml +2n, +3f4m, +2n, +3

BR(())
1 1
" m, +n,+1/2 (2nl+1j2 m,+n, +1/2 (2n2+1j2 dxdy.
m, 4r m, 4z

Applying Tonelli's theorem (see [16],) we get

m +n +1/2) [2n +1
I¢§(nl,jl,ml,n2,j2,mz)ls\/m(1 1 J "

m 4r
m, +n, +1/2 2n,+1 1
x.J4m, +2n, +3[ m 2 LR@ jBR(O)|cI>6(x, y)|dydsx.

After integrating we obtain

.[BR(O)|CD‘5(X’ y)|

A . .
I¢é‘(nl’.]l’ml’n2’-]2’m2) I< Hnln’llnnzmz'

Taking system II of Theorem 4.1 in Equation ((3)) we have

A . . 1
| DL (ny, j,my,n,, j,,m,)I< F\/2m1 +3\/2m2 +3 X

Y, (ij P(O’z)(2m—lj Y, . [Lj
P x| R 22 |yl

mz dxdy.
© 2011, IJMA. All Rights Reserved 915

0,2) 1 xI
By 7 Q=D

.[BR(O).[BR(O)|q)5(x’ y)|

By using equation (A) and Theorem 3.1, we get



M. Akram*/ Sufficient conditions for a function to be an approximate identity on 15 (B R (0))/IJMA- 2(6), June-2011,
Page: 901-918

|5 (y, ity 1y, iy, IS A2, +34/2m, +3

1 1
m+2) 2n +1\2(my+2)( 2n,+1)2
J.BmmJ.B © sl y)|( J( 4z j ( m, Arx dydx
2n, +14/2n, +1
gzmﬁmmﬁg<m1+2>2<m1+1><mz+2>2<m2+w o

5 5 1 1
1 2m, +3)*(2m, +3)2(2n, +1)* (2n, +1)?
FJ‘BR (()).[BR ) ! CI>5(x, ! dydx < 16zR? IB (o)dx
Finally, we obtain
5 5 1 1
2 2 2 2
B, oo, jyam,) IS 2m,; +3)*(2m, +3)12(2nl +1)2(2n, +1) .

Lemma: 5.4 Let ;€ L’ (Br(0)X B (0)) and let there exist an integrable function &35 defined on B, ,(0) such
that for each F € 12(B,(0)), ®;4 F =®,* F and jB o &, (y)ldy =1, then
2R

| D5 (ny, j,m,n,, j,,m)I<1.

Proof: As we know,

®50n, jioms s o) = [, [ (@55 0)Gy (G

iy 5 J 51y

(y)dxdy.

Applying Fubini's theorem, we get
A . .
505 ooty o) = [, [ @606, L, (DAY G, (ds

= J.BR(O)((I)J a G”z’fz”"z )(x) nysJpamy (x)dx
This implies
I<I>§(nl,j,,ml,n2,j2,m2)léJ.

BR(©)

(®;4G, , .. )®G, ;.. (x)‘dx

Using Holder's inequality, we have

A . .
‘(I)é(nl’.]l’ml’nZ’.]Z’mZ)‘

1
, 1

: (jBR(())‘(q>5 a G”z*jz*’"z ) dsz U.BR ©
1

S(.[B <o>‘(ci)‘5*G”2] "2 (X)‘ dxj ( r®

—P<I> *G,

2
Gy i (x)‘ dxj

1
N
dx)2

G”l’jl’ml (x)

PG . P .
fy:Jg My L2(B o) MM T12 (B 0)

After applying Young's inequality, we obtain
‘Cbg (g, jismy,ny, s mz)‘ Po; PLl

PG . P PG . P .
(By R (0) nysdpomy T12 (B (0) oy T2 (Bg (0)
Since G”1~ jiom and an Jymy belongs to an orthonormal system in L*(B . (0)), therefore their L? -norms are equal to

1. Also by hypothesis, P PL] o = 1. In view of the argument given above, we have
2R
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| D5 (ny, j,m,n,, j,,m,)I<1.

Next theorem gives the sufficient conditions for a function in L’ (Bg(0)X B, (0)) to be an approximate identity in
2
L (B (0)).

Theorem: 5.5 Ler P ; € L’ (B (0)X B (0)) and the Fourier coefficients ®(n,, j,,m,,n,, j,,m,) of ®5 have

the properties

@) 1 ®P5(n,, j,m,n,, j,,m)I<],
(”) hm¢ (nl’.]l’ml’nZ’]Z’mZ) . nz5m1 n12§/'1,j2’

@HD5(n,, j,,m,n,, j,,m,) =0 forn #n,,m #m,, j, # j,
then, @ is an approximate identity in 15y (B (0)).

Proof: Forany F in L’ (B(0)) we have
(@;8F)(x)=(Ps(x,.), F)

L* (B (0)

%) 2]’l+1 oo 2l’l+1

z z z Z CI)A(anvml’nZ’]Z’mz)Gﬁ /1’”1() "2j2’m2’F

npmy=0 =l nymy =0 jp =l

12 (B (0)

) 2]’1 +1 2n2+1

Z S S S @ jmn, jz,mz)Gnl,jl,ml(x)<an,j2,m2,F>

1l ny, m2—() j2:l

L? (B (0))

oo 2n1 +1
= P(n,, j,,m)G, <G , ,F> ,
nl§=0 ; ( 1 Jl ) n, Jl m ( ) s Jymy LZ(BR )

where @5 (n,, j,my):=DPs(n, j,,m,n, j,m).

Let us consider

oo 2n1+1
(;4F)-F = Z Z q)‘s(n"]l’m‘)G"l’fr"’l <G"l’jl’ml’F>L2(B O)
nl,ml=0 /l=l R
oo 2n1+l
- G, <F,G | >
nl% ; nl ,jl ,ml I‘ll "ll ,ml LZ(BR (0))
oo 271 +1
(@, jom)—1 <G | ,F> .
nl;l_o jlz_ n, ]I’ml( J\'" Jl 1 ) gy LZ(BR(O))
By Parseval's relation (see [19]), we have
P © 2n+1 2
P®, 4 F—F = ) (n,, jm,)—1 < F> .
S5 LZ(BR(O)) Z_O jlzzll ( ( 1 .]l ) ) ny, 12 my 2 L2(BR(0))
nymy =
Taking the limit & — 0+ on both hand sides, we get
oo 2n +1 )
P®, 4 F-FP, c1>n,,m1< .,F> .
}E& 1% (B (0) (sﬁr&n;o ? ( (s o) ) 22 12, o))

As it is given in (i) the bounds of D5 (n,, j,,m,) are independent of &, therefore we can take the limit inside the
© 2011, IJMA. All Rights Reserved 917
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sum. After simplifying, we obtain

) 2I’l +1 2
lim P®; & F— (BR(O)) n% z Jim (q) (y, jiomy) = 1) < "2 jZ""Z’F>L2<BR<O” -
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