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ABSTRACT 

In this paper we consider the Lavrentiev regularization method for obtaining stable approximate solution to nonlinear 

ill-posed operator equations ,)( yxF =  where XXFDF →⊂)(:  is a nonlinear monotone operator and X  is 

a real Hilbert space. Under the assumption that F  is Lipschitz continuous, the iteration )( ,

δ
αnx  converges to the 

unique solution 
δ
αx  of the equation )()( 0 xxyxF −+= αδ

. 
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------------------------------------------------------------------------------------------------------------------------------------------------ 

1. INTRODUCTION: 

 

In computational mathematics, an iterative method is a mathematical procedure that generates a sequence of improving 

approximate solutions for a class of problems. A specific implementation of an iterative method, including the 

termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the 

corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of 

an iterative method is usually performed; however, heuristic-based iterative methods are also common. 

 

Let XXFDF →⊂)(:  is a nonlinear monotone operator and X  is a real Hilbert space with inner product ⋅��⋅,  

and the corresponding norm . . Recall that F is monotone operator if it satisfies the relation 

 

).(,      0, ),()( FDyxyxyFxF ∈∀≥−−  

 

We are interested in obtaining a stable approximate solution for nonlinear ill-posed operator equation 

 

(1.1)                                                             ,)( yxF =  

 

when the data y  is not known exactly. Further we assume that: 

• Instead of an exact right-hand side y  we are given only its perturbation Xy ∈δ
, such that 

 

(1.2)                                                           ,δδ ≤− yy  

where δ is the known noise level. 

 

• The equation (1, 1) has a solution 
†x  (which need not be unique). 

 

• The operator F possesses a locally uniformly bounded Fr�chet-derivative )(⋅′F  

in XFDxBxB rr ⊆⊆ )()()( †

0 00
� , 

†

00 xxr −=  and 0x  is the initial guess for the solution. 

------------------------------------------------------------------------------------------------------------------------------------------------ 

����������	
���
�������Atef.  I. Elmahdy�������

���atefmahdy05@yahoo.com 



Atef.  I. Elmahdy*/ Convergence analysis of�an iterative method for nonlinear operator equations using a majorizing sequence/ 

IJMA- 2(6), June-2011, Page: 824-831 

© 2011, IJMA. All Rights Reserved                                                                                                                                                    825  

The numerical treatment of nonlinear ill-posed problems equation (1.1) in which the solution does not depend 

continuously on the data requires the application of special regularization methods. Again equation (1.1) is ill-posed, 

and then the problem of recovery of )(†
FDx ⊆ from a known noisy equation 

δyxF =)(  can cause large deviation 

in the solution. Since F is monotone, one can use the Lavrentiev regularization method for solving (1.1). (See [9]). In 

this method the regularized approximation 
δ
αx  is obtained by solving the operator equation 

 

(1.3)                                               ,)()( 0

δα yxxxF =−+  

 

It is known (cf. [9], Theorem 1.1) that the equation (1.3) has a unique solution for any ,0≥α  which called the 

regularization parameter. In practice one has to deal with some sequence )( ,

δ
αnx , converging to the solution 

δ
αx  of 

(1.3), (see [2], and [6]). In [2] Bakushinsky and Smirnova considered an iteratively regularized Lavrentiev method: 

 

(1.4)                     ))()(()( 0

1

1 xxyxFIAxx kkkkkk −+−+−= −
+

δδδ
δ

δδδ αα  

 

for ,,2,1,0 �=k  where )( δδ
kk xFA ′=  and )( kα  is a sequence of positive real numbers such that 0 lim =

→∞
k

k
α , as 

an approximate solution for (1.1). A general discrepancy principal has been considered in [2] for choosing the stopping 

index δk  and showed that 
†

xxk →δ

δ
 as 0→δ . However no error estimates for 

†
xxk −δ

δ
 has been given in 

[2]. Later in [7], Mahale and Nair considered the method (1.4) and obtained an error estimate for ,†
xxk −δ

 under 

weaker assumptions than the assumptions in [2] (see [7]). 

 

In [3], Elmahdy considered an iterative regularization method: 

 

(1.5)                                )),()(( 0,,,,1 xxyxFxx nnnn −+−−=+
δ

α
δδ

α
δ

α
δ

α αβ  

 

for solving the nonlinear equation (1,1) where 0>β and 
δ

α,00 : xx = is starting point of the iteration and proved that 

)( ,

δ
αnx  converges to the unique solution 

δ
αx  of (1.3) under the following Assumptions. 

 

Assumption: 1.1 There exists 00 >r  such that )()()( †

0 00
FDxBxB rr ⊆�  and F  is Fr�chet differentiable at all 

).()( †

0 00
xBxBx rr �∈  

 

Assumption: 1.2 There exists a constant 0>L  such that for every ).()(, †

0 00
xBxBux rr �∈  and Xv ∈  there 

exists an element Xvux ∈),,(φ satisfying 

 

.),,(          ),,,()()]()([ vLvuxvuxuFvuFxF ≤′=′−′ φφ  

 

Assumption: 1.3 There exists a continuous, strictly monotonically increasing function ),0(],0(: ∞→aϕ  

with )( †xFa ′≥ , satisfying 0)(lim
0

=
→

λϕ
λ

 and there exist  Xv ∈ with 1≤v  such that     

vxFxx ))(( ††

0
′=− ϕ      and      a].(0,           ),(

)(
sup

0

∈∀≤
+≥

λαϕ
αλ

λαϕ
ϕ

λ

c  

 

In this paper we use the following modified form of Assumption 1.2 

 

Assumption: 1.4 There exists a constant 00 >k  such that for every ).()(, †

0 00
xBxBux rr �∈  and Xv ∈  there 

exists an element Xvux ∈),,(φ satisfying 

 

.),,(          ),,,()()]()([ 0 uxvkvuxvuxuFvuFxF −≤′=′−′ φφ  
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Note that from Assumption 1.4 there follows Assumption 1.2 with uxkL −= 0 . Hence Assumption 1.4 is stronger 

than Assumption 1.2. We will give a new stopping rule δn for the iteration different of the stopping rule using in [3] 

and provide an optimal order error estimate under a general source condition on .†

0 xx −  Moreover we shall use the 

adaptive parameter selection procedure suggested by Pereverzev and Schock in [8], for choosing the regularization 

parameter α  in )( ,

δ
αnx . 

 

The plan of this paper is as follows. In Section 2, we introduce the convergence analysis of the method and in Section 

3, we give an error bounds under source conditions. Section 4 deals with starting points and algorithm. Finally, we give 

some concluding remarks in Section 5. 

 

2. CONVERGENCE ANALYSIS: 

 

Here we consider the method (1.5) for solving the nonlinear equation (1.1). The main goal of this section is to provide 

sufficient conditions for the convergence of method (1.5) to the unique solution 
δ
αx  of (1.3) by using a majorizing 

sequence and obtain an error estimate for
δ
α

δ
α xxn −, . Recall (see [1], Definition 1.3.11) that a nonnegative sequence 

)( nt  is said to be a majorizing sequence of a sequence )( nx  in X  if 

.0            11 ≥∀−≤− ++ nttxx nnnn  

 

During the convergence analysis we will be using the following Lemma on majorization, which is a reformulation of 

Lemma 1.3.12 in [1]. 

 

Lemma 2.1: Let )( nt  be a majorizing sequence for )( nx  in X . If 
*

n
 lim ttn =

∞→
, then nxx  lim

n

*

∞→
=  exists and 

                               (2.6)                                           .0        ** ≥∀−≤− nttxx nn
 

 

Proof: Note that 

(2.7)              ,  )( n1

11

1 ttttxxxx mnjj

mn

nj

mn

nj

jjnmn −=−≤−≤− ++

−+

=

−+

=

++ ��  

 

so )( nx  is a Cauchy sequence in X  and hence )( nx  converges to some .*
x  The error estimate in (2.6) follows from 

(2.7) as .∞→m  

 

The next Lemma on majorizing sequence is used to prove the convergence of the method (1.5), proof of which is 

analogous to the proof of Lemma 2.2 in [3]. 

 

Lemma: 2.2 Assume there exist nonnegative numbers )1,0( and ,,, ∈rR ηβ  such that for all 0≥n , 

 

(2.8)                                                     .)1( 222
rrR

n ≤+− ηββα  

 

Then the sequence 0  ),( ≥ntn , given by ,,0 10 η== tt  

 

(2.9)                                    )()1( 1

222

1 −+ −+−+= nnnn ttRtt ββα  

 

is increasing, bounded above by 
r

t
−

=
1

:** η
, and converges to some 

*
t  such that 

r
t

−
≤<

1
0 * η

.  Moreover, for 

0≥n ; 

(2.10)                                         ,)(0 11 ηnnnnn rttrtt ≤−≤−≤ −+  

and 

(2.11)                                                       .
1

* η
r

r
tt

n

n
−

≤−  
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To prove the convergence of the sequence )( ,

δ
αnx defined in (1.5) we introduce the following notations. 

• Suppose that the Lipschitz condition is satisfied for the operator F , namely there exists a constant 0>R  

such that 

(2.12)                                 ,  )()( D(F)x,yyxRyFxF ∈∀−≤−  

 

Let 

(2.13)                                                      ,  1)(: 0 β
ω δ ≤−= yxF  

with  .
)(

2
22

R+
<

α
αβ  

 

The following Lemma based on the Assumption 1.4 will be used in our proofs. 

 

Lemma: 2.3 ([5] Lemma 2.3) For )(, 00
xBvu r∈  

� −−+′=−′−−
1

0

.),),(()())(()()( dtvuuvutvuFvuuFvFuF φ  

 

Let 

 (2.14)                                                      )].()([:)( 0xxyxFxxG −+−−= αβ δ
 

Note that with the above notation, 
δ

α
δ

α ,1, )( += nn xxG . 

Theorem 2.4: Let 0

*
rt ≤  and suppose that the equations (2.12) and (2.13) hold. Let the assumptions in Lemma 2.2 are 

satisfied. Then the sequence )( ,

δ
αnx  defined in (1.5) is well defined and )( 0, * xBx

tn ∈δ
α  for all 0≥n . Further 

)( ,

δ
αnx  is a Cauchy sequence in )( 0* xB

t
 and hence converges to )()( 00 *** xBxBx

tt
⊂∈δ

α  and 

).()( 0

δ
α

δδ
α α xxyxF −+=  

 

Moreover, the following estimate hold for all 0≥n , 

2.15)(                                         ,1,,1 nnnn ttxx −≤− ++
δ

α
δ

α  

and 

2.16)(                                   .
1

*

,
r

r
ttxx

n

nn
−

≤−≤−
ηδ

α
δ

α  

 

Proof: Let G be as in (2.14). Then for )(, GDvu ∈ , 

 

)]()([)]()([)()( 00 xvyvFxuyuFvuvGuG −+−+−+−−−=− αβαβ δδ

)]()([))(1(                    vFuFvu −−−−= βαβ  

 

Also we have, 
22

)]()([))(1( )()( vFuFvuvGuG −−−−=− βαβ  

2222
)()(1                         vFuFvu −+−−≤ βαβ  

2222 ])1( [                        vuR −+−≤ βαβ  

 

The last equation by (2.12), so we have 

 

2.17)(                                   .)1( )()( 222
vuRvGuG −+−≤− βαβ  

Take 
)(

2
22

R+
<

α
αβ , this the first way to prove the convergence of the sequence.  
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On the other hand we shall prove that the sequence 0  ),( ≥ntn  defined in Lemma 2.2 is a majorizing sequence of the 

sequence )( ,

δ
αnx  and )( 0, * xBx

tn ∈δ
α  for all 0≥n . 

 

Note that 0100,1 1))(( ttyxFxx −==≤−=− ηβ δδ
α , assume that 

 

2.18)(                                               ,1,,1 kittxx iiii ≤∀−≤− ++
δ
α

δ
α  

 

for some k. Then 

                      0,1,1,,,10,1 xxxxxxxx kkkkk −++−+−≤− −++
δ

α
δ

α
δ

α
δ

α
δ

α
δ

α �  

                                         0111    tttttt kkkk −++−+−≤ −+ �  

                                         
*

1  ttk ≤≤ + . 

 

So (2.18), and (2.17)by  hence, and , allfor  )( 0,1 * kixBx
ti ≤∈+

δ
α  

 

  )()1()1( 121

222

,,1

222

,1,2 ++++++ −=−+−≤−+−≤− kkkkkkkk ttttRxxRxx βαββαβ δ
α

δ
α

δ
α

δ
α . 

 

Thus by induction  ,1,,1 nnnn ttxx −≤− ++
δ

α
δ

α for all 0≥n  and hence 0  ),( ≥ntn  is a majorizing sequence of the 

sequence )( ,

δ
αnx . In particular  ,*

0, ttxx nn ≤≤−δ
α i.e., )( 0, * xBx

tn ∈δ
α  for all 0≥n . So by Lemma 2.1, the 

sequence )( ,

δ
αnx , 0≥n  is a Cauchy sequence and converges to some )()( 00 *** xBxBx

tt
⊂∈δ

α  and 

 .
1

*

, ηδ
α

δ
α

r

r
ttxx

n

nn
−

≤−≤−  

 

Now by letting n�� in (1.5) we obtain ).()( 0

δ
α

δδ
α α xxyxF −+=  

 

3.  ERROR BOUNDS UNDER SOURCE CONDITIONS: 

 

To obtain an error estimate for 
†

, xxn −δ
α  it is enough to obtain an error estimate for .†xx −δ

α  To obtain an error 

estimate for 
†

xx −δ
α  we use the error estimate for α

δ
α xx −  and 

†
xx −α  where αx is the unique solution of 

the equation . )()( 0 yxxxF =−+ α  It is known  (cf. [9] Proposition 3.1) that 

(3.19)                                                                     
α

δ
α

δ
α ≤− xx  

and (cf. [5] Theorem 3.1) that 

(3.20)                                                    ).()1( 00

† αϕϕα crkxx +≤−  

 

Theorem: 3.1 Let 
δ
αx  be the unique solution of (1.3) and 

δ
α,nx  be as in (1.5). Let the assumptions in Theorem 2.4 and 

(3.19), (3.20) be satisfied. Then we have the following: 

                                                            
†

,

†

, xxxxxxxx nn −+−+−≤− αα
δ
α

δ
α

δ
α

δ
α  

                 (3.21)                                    ).()1(
1

00 αϕ
α

δη
ϕcrk

r

r
n

+++
−

≤  

Theorem: 3.2 Let 
δ

α,nx  be as in (1.5). Let the assumptions in Theorem 2.4 and Theorem 3.1 be satisfied. 

Let }
1

:min{:
α

δη
δ ≤

−
=

r

r
nn

n

. Then we have:  

(3.22)                                    ).)(}()1(,2max{ 00

†

,
α

δ
αϕϕ

δ
α ++≤− crkxxn  
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3.1. A PRIORI CHOICE OF THE PARAMETER: 

 

The error estimate 
α

δ
αϕ +)(  in (4.33) is of optimal order if δαα =:  satisfies, δααϕ δδ =)( . Now using the 

function )(:)( 1 λλϕλψ −= , a≤< λ0  we have ))(()( δδδ αϕψαϕαδ == , so that ))(( 11 δψϕαδ
−−= .  

 

Theorem: 3.3 Let )(:)( 1 λλϕλψ −=  for a≤< λ0  and assumptions in Theorem 3.2 holds. For 0>δ , let 

))(( 11 δψϕαδ
−−=  and let δn  }

1
:min{:

α

δη
δ ≤

−
=

r

r
nn

n

then  

 

 )).(( 1†

, δψδ
αδ

−=− Oxxn  

 

3.2. AN ADAPTIVE CHOICE OF THE PARAMETER: 

 

Now, we will present a parameter choice rule based on the adaptive method studied in [8]. 

 

In practice, the regularization parameter α  is often selected from some finite set 

 

(3.23)                             },,1,0,{:)( 0 MiD
i

iM �=== αµαα  

 

Where 1>µ , M is big enough but not too large and δα =0 . 

 

Let 

(3.24)                                    }.
1

:min{:
M

n

M
r

r
nn

α

δη
≤

−
=  

Then we have  

(3.25)                          10            ,, , M. , ,  ixx
i

n iiM
�=∀≤−

α

δδ
α

δ
α  

 

Let
δ

αiMni xx ,:= . The parameter choice strategy that we are going to consider in this paper, we select iαα =  from 

)(αMD  and operate only with corresponding ix , , M., ,  i �10=   

 

Theorem 3.4: Assume that there exists }10{ , M, , i �∈  such that

i

i
α

δ
αϕ ≤)( . Let assumptions of Theorem 3.3 

and equations (3.24), (3.25) hold and let 

Mil
i

i <≤= })(:max{:
α

δ
αϕ , 

(3.26)               }.,,1,0        , ))1(24(:max{: 00 ijcrkxxik
j

ji �=++≤−=
α

δ
ϕ  

and  klThen ≤  

                                                                   ),(1† δψ −≤− cxx k  

where .))1(2(3 00 µϕcrkc ++=  

Proof: To see that   kl ≤ , it is enough to show that, for each }1{ , M, i �∈ , 

 

.,,1,0        , ))1(24()( 00 ijcrkxx
j

ji

i

i �=∀++≤−�≤
α

δ

α

δ
αϕ ϕ  

 

For ij ≤ , by (3.24) and (3.26) we have 
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.))1(24(              

2)()1(2)()1(              

00

0000

††

j

j

j

i

i

jiji

crk

crkcrk

xxxxxx

α

δ

α

δ
αϕ

α

δ
αϕ

ϕ

ϕϕ

++≤

+++++≤

−+−≤−

 

 

Thus the relation   kl ≤  is proved. Next we observe that 

 

.))1(2(3              

))1(24(2)()1(              

00

0000

††

l

ll

l

kllk

crk

crkcrk

xxxxxx

α

δ

α

δ

α

δ
αϕ

ϕ

ϕϕ

++≤

+++++≤

−+−≤−

 

 

Now since ll µαααδ ≤≤ +1 , it follows that 

 

                                                                      ).()( 1 δµψαµϕ
α

δ
µ

α

δ
δ

δ

−==≤
l

 

).())1(2(3 1

00

† δµψϕ
−++≤− crkxx k  

This completes the proof of the theorem. 

 

4. IMPLEMENTATION OF ADAPTIVE CHOICE RULE: 

 

Here we provide an algorithm for the determination of a parameter fulfilling the balancing principle (3.26) and also 

provide a starting point for the iteration (1.5) approximating the unique solution 
δ
αx  of (1.3). The choice of the starting 

point involves the following steps: 

 

• Choose 10 0 << α  , 10 << r and .1>µ  

• Choose 0>η  such that .)1( 222

0 rR ≤+− ηββα  

• Choose )(0 FDx ∈  such that ,
1

)( 0
β

δ ≤− yxF with .
)(

2
22

0

0

R+
<

α
α

β  

The choice of the stopping index Mn  involves the following two steps: 

 

• Choose the parameter 0αµα M

M =  big enough with 1>µ , not too large. 

• Choose Mn  such that }.
1

:min{:
M

n

M
r

r
nn

α

δη
≤

−
=  

 

Finally the adaptive algorithm associated with the choice of the parameter specified in Theorem 3.4 involves the 

following steps: 

 

4.1. ALGORITHM: 

 

• Set 0←i  

• Solve 
δ

α iMni xx ,:=  by using the iteration (1.5). 

• If 1  then take,         ,))1(24( 00 −=≤++≥− ikijcrkxx
jji

µ

δ
ϕ . 

• Set 1+= ii  and return to step 2. 
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5. CONCLUDING REMARKS: 

 

In this paper we used the adaptive method considered by Pereverzev and Schock in [8] for choosing the regularization 

parameter α  in (1.3) and we provided a method for computing the unique solution 
δ
αx  of the equation (1.3). Here, an 

optimal error estimate has been obtained under a general source condition. We also provide a new stopping rule for the 

iteration index as (3.24). Note that our method always gives the optimal order ))(( 1 δψ −
O under a general source 

condition; vxFxx ))(( ††

0
′=− ϕ ,  Xv ∈  with 1≤v . Here ϕ  is a monotonically increasing function as in 

Assumption 1.3 and )(:)( 1 λλϕλψ −= . 
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