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ABSTRACT 

In this study we give some explicit expressions and recurrence relations satisfied by single and product moments of 

−k th lower record values from exponentiated Log-logistic distribution. Further, using a recurrence relation for 

single moments we obtain characterization of exponentiated Log-logistic distribution. 
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1. INTRODUCTION: 

 

The model of record statistics defined by Chandler (1952) as a model for successive extremes in a sequence of 

independent and identically distributed )(iid  random variables. This model takes a certain dependence structure into 

consideration. That is, the life-length distribution of the components in the system may change after each failure of the 

components. For this type of model, we consider the lower record statistics. If various voltages of equipment are 

considered, only the voltages less than the previous one can be recorded. These recorded voltages are the lower record 

value sequence. 

 

Let �,, 21 XX  be a sequence of iid  random variables with distribution function )(df  )(xF  and probability 

density function )( pdf  )(xf . Suppose =nY min },,,{ 21 nXXX �  for 1≥n . We say jX , 1≥j  is a lower 

record value of this sequence, if 1−< jj YY  for 1>j . And we suppose that 1X  is a first lower record value. The 

indices at which the lower record values occur are given by record times }1),({ ≥nnL , where 

=)(nL min }),1(|{ )1( −<−> nLj XXnLjj , 1>n , with 1)1( =L . For more details and references, see 

Ahsanullah (1995) and Arnold et al. (1998). 

 

For a fixed  1≥k  we define the sequence }1,{ )( ≥nL
k

n of −k th lower record times of }1,{ ≥nX n  as follows 
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For 1=k and ,,2,1 �=n  we write nn LL =)1(
. Then }1,{ ≥nLn is the sequence of record times of }1,{ ≥nX n . 

The sequence }1,{ )( ≥nY
k

n , where )(
)(

k
nL

k
n XY = is called the sequence of −k th lower record values of 

}1,{ ≥nX n . For convenience, we shall also take 0
)(

0 =
k

Y . Note that 1=k  we have 1,)1( ≥= nXY
nLn , which 

are record value of }1,{ ≥nX n . Moreover =
)(

1
k

Y min kk XXXX :121 },,,{ =� . For more details and 

references, see Nagaraja (1988), Ahsanullah (1995) and Arnold et al. (1998). 
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Let }1,{ )( ≥nX
k

n  be the sequence of −k th lower record values from (1.1). Then the pdf  of 
)(

)(
k

nL
X , 1≥n is  

given by 
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and the joint pdf  of 
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k

mL
X  and 

)(
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k
nL

X , nm <≤1 , 2>n  is given by 
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We shall denote 
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Recurrence relations for single and product moments of record values from generalized Pareto, lomax, exponential and 

generalized extreme value distribution are derived by Balakrishnan and Ahsanullah (1994a, 1994b, and 1995) and 

Balakrishnan et al. (1993) respectively. Pawlas and Szynal (1998, 2000) and Saran and Singh (2008) have established 

recurrence relations for single and product moments of −k th record values from Weibull, Gumbel and linear 

exponential distribution.  

 

Kamps (1998) investigated the importance of recurrence relations of order statistics in characterization. 

 

In the present study, we established some explicit expressions and recurrence relations satisfied by the single and 

product moments of −k th lower record values from the exponentiated Log-logistic distribution. A characterization of 

this distribution has also been obtained on using a recurrence relation for single moments.  

 

A random variable X  is said to have exponentiated Log-logistic distribution if its pdf  is given by 
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and the corresponding df  is 
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The log-logistic distribution is considered as special cases of the exponentiated Log-logistic distribution when 1=θ  

and 1=σ . More details on this distribution and their applications can be found in Rosaiah et al. (2006, 2007). 
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2. RELATIONS FOR SINGLE MOMENTS: 

 

Note that for exponentiated Log-logistic distribution defined in (1.1) 
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The relation in (2.1) will be exploited in this paper to derive recurrence relations for the moments of record values from 

the exponentiated Log-logistic distribution. 

We shall first establish the explicit expression for the single moment of −k th lower record values 
)(

:)(
r

knLµ . Using 

(1.1), we have 
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on using the transformation 
θ/1)]([ xFz =  in (2.2), we get 
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Again by setting zw ln−=  in (2.3) and simplifying the resulting equation, we get 
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where 
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Remark: 2.1  Setting 1=k in (2.4) we deduce the explicit expression for single moments of lower record values from 

the exponentiated Log-logistic distribution. 

 

Recurrence relations for single moments of −k th lower record values from  df  (1.1) can be derived in the following 

theorem. 

 

Theorem: 2.1 For a positive integer 1≥k  and for 1≥n  and �,2,1=r , 
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Proof   From (1.1), we have  
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Integrating by parts taking )()]([ 1
xfxF

k−
 as the part to be integrated and the rest of the integrand for 

differentiation, we get  
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the constant of integration vanishes since the integral considered in (2.6) is a definite integral. On using (2.1), we obtain 
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and hence the result. 

 

Remark: 2.2  Setting 1=k in (2.5) we deduce the recurrence relation for single moments of lower record values from 

the exponentiated Log-logistic distribution. 

 

3. RELATIONS FOR PRODUCT MOMENTS: 

 

On using (1.2), the explicit expression for the product moments of −k th  lower record values 
),(

:),(
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knmL
µ  can be 

obtained 

 

dxxI
xF

xf
xFx

mnm

k mr
n

sr
knmL

)(
)(

)(
))]((ln[

)!1()!1(

1

0

),(
:),(

−∞
−

−−−
= �µ                                                (3.1) 

 

where, 

dyyfyFyFxFyxI
kmnx s )()]([))]((ln))(([ln)( 11

0

−−−−= �                                                                           (3.2) 

 

By setting )(ln)(ln yFxFw −=  in (3.2), we obtain 
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On substituting the above expression of )(xI  in (3.1) and simplifying the resulting equation, we obtain 
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Remark: 3.1 Setting 1=k in (3.3) we deduce the explicit expression for product moments of lower record values from 

the exponentiated Log-logistic distribution. 

 

Making use of (1.1), we can drive recurrence relations for product moments of −k th lower record values from (1.4). 

 

Theorem: 3.1 For 21 −≤≤ nm  and �,2,1, =sr  
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Proof: From equation (1.2) for 11 −≤≤ nm , �,2,1,0, =sr   
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where  
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Integrating )(xI  by parts treating )()]([ 1
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and substituting the resulting expression in (3.3), we get 
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obtain 

 

	


� −

−−−
−= � �

∞ −
− 0 0

1),(
:)1,(

),(
:),(

))](ln([
)!1()!1(

x msr
n

sr
knmL

sr
knmL

xFyx
mnmkb

ks

θ
µµ  

            � �
∞ +−−− +−×
0 0

11 1

)(

)(
)]([))]((ln))(([ln

x bsr

b

kmn
yxdxdy

xF

xf
yFyFxF

σ
 

       

�


�

−−× −−−−
dxdy

xF

xf
yFyFxFxF

kmnm

)(

)(
)]([))]((ln))(([ln))](ln([ 111

 

and hence the result. 

 

Remark: 3.1 Setting 1=k  in (3.3), we deduce the recurrence relation for product moments of lower record values 

from the exponentiated Log-logistic distribution. 

 

4. CHARACTERIZATION: 

 

Theorem 4.1    Let X  be a non-negative random variable having an absolutely continuous distribution function )(xF  

with 0)0( =F  and 1)(0 << xF  for all 0>x , 
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if and only if  
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Proof: The necessary part follows immediately from equation (2.5). On the other hand if the recurrence relation in 

equation (4.1) is satisfied, then on using equations (1.2), we have 
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Integrating the first integral on the right hand side of equation (4.2), by parts, we get 
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Now applying a generalization of the Müntz-Szász Theorem (Hwang and Lin, 1984) to equation (4.3), we get 
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5. CONCLUSION: 

 

In this study some explicit expression and recurrence relations for single and product moments of −k th lower record 

values from the exponentiated Log-logistic distribution have been established. Further, characterization of this 

distribution has also been obtained on using a recurrence relation for single moments. 
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