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ABSTRACT 
In this paper we introduce the concept of T-fuzzy bi-ideals using t-norm in zero-symmetric Г-near-rings and 
investigate some of their properties. 
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1. INTRODUCTION 
 
The concept of fuzzy sets was introduced by Zadeh [7] in his classic paper in 1965. Nobuaki kurokic is the pioneer of 
fuzzy ideal theory of semigroups. Gamma near-rings were defined by Bh.Satyanarayana [5] and G.L.Booth [2]. Fuzzy 
ideals in gamma near-rings were introduced by Y. B. Jun, K. H. Kim and M. AOzturk [3]. Fuzzy bi-ideals in gamma 
near-rings were introduced by N. Meenakumari and T.Tamizh chelvam [4]. The notion of fuzzy ideals of a Г-near-ring 
with respect to t-norm was introduced by T.Srinivas and T.Nagaiah [6]. In this paper we introduce the concept of T-
fuzzy bi-ideals using t-norm in zero-symmetric Г-near-rings and investigate some of their properties. 

 
2. PRELIMINARIES   
 
We first recall some basic concepts for the sake of completeness. 
 
Definition 2.1: A Г-near-ring [5] is a triple (M, +, Г) where  
(i) (M, +) is a group. 
(ii) Г is non-empty set of binary operations on M such that for each α Є Г, (M, +, α) is a near-ring. 
(iii) 𝓍𝓍 α (y β z) = (𝓍𝓍αy) β z  for all 𝓍𝓍, y, z  M and  for all α, β  Г. 
 
Definition 2.2: A Г- near-ring M is said to be zero-symmetric if m 𝛾𝛾 0 = 0 for all m Є M and for all 𝛾𝛾 ∈ Г.  
 
Throughout this paper, we assume that M is a zero-symmetric Г- near-ring.  
 
Definition 2.3: A subgroup B of M is said to be a bi-ideal if BΓMΓB ⊆ B.  
 
Definition 2.4: A fuzzy set on M is a function µ: M → [0 , 1].  
 
Definition 2.5: A fuzzy set µ in M is called a fuzzy bi-ideal of M if   
(i) µ (x-y) ≥ min {µ (x), µ (y)} for all x, y Є M 
(ii) µ (x α y β z) ≥ min {µ (x), µ (z)} for all x, y, z Є M and α, β Є Г. 
 
Definition 2.6: ([1]) A t-norm is a function T: [0, 1] x [0, 1] → [0, 1] that satisfies the following conditions: 
(i) T(x, 1) = x 
(ii) T(x, y) = T(y, x) 
(iii) T(x, T(y, z) = T(T(x, y), z) 
(iv) T(x, y) ≤ T(x, z) whenever y ≤ z  
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Definition 2.7: Let A and B be fuzzy subsets of a non-empty set X. A fuzzy subset A ⋀ B is defined by  
(A ⋀ B) (x) = T(A(x), B(x)) for all x Є X. 
 
Definition 2.8: Let M and M′ be Г-near-rings. A mapping f: M → M′ is called a Г-near-ring homomorphism if  
(i) f(x + y) = f(x) + f(y) 
(ii) f(x γ y) = f(x) γ f(y) 
 
Definition 2.9: Let µ be a fuzzy set defined on M and f be a function defined on M then the fuzzy set µf in f(M) is 
defined by µf(y)  = sup x Є f-1 

(y) µ(x) for all y Є f(M) and is called the image of µ under f. Similarly if  ν  is a fuzzy set in 
f(M), then µ = ν ∘ f   in M is defined as µ (x) = ν (f(x)) for all x Є M and is called the pre-image of ν under f. 
 
Definition 2.10: A fuzzy set µ of M has the Sup property if for any subset N of M, there exists a0 Є N such that  
µ(a0) = sup a Є N µ(a) 
 
3. T-FUZZY BI-IDEALS IN Γ-NEAR-RINGS 
 
Definition 3.1: A fuzzy set µ in a Г-near-ring M is called a T-fuzzy bi-ideal of M if 
(i) µ(x-y) ≥ T(µ (x), µ (y) )for all x, y Є M 
(ii) µ(x α y β z) ≥ T(µ (x), µ (z)) for all x, y, z Є M and α, β Є Г. 
 
Proposition 3.2: If µ and λ are T-fuzzy bi-ideals of M then µ ⋀ λ is a T-fuzzy bi-ideal of M. 
 
Proof: Let µ and λ be T-fuzzy bi-ideals of M. Let x, y, z ЄM and α, β Є Г. Then  
(i) µ ⋀ λ(x – y) = T(µ (x-y), λ(x-y)) 
                         ≥ T(T(µ(x), µ(y)), T(λ(x), λ (y))) 
                         = T(T(T(µ(x), µ(y)), λ(x)), λ (y)) 
                         = T(T(T(µ(x), λ(x)), µ(y)), λ (y)) 
                         = T(T(µ(x), λ(x)), T(µ(y), λ(y)) 
                         = T(µ ⋀ λ(x), µ ⋀ λ(y)) 
 
(ii) µ ⋀ λ(x α y β z) = T(µ (x α y β z), λ (x α y β z)) 
                                ≥ T(T(µ (x), µ (z)), T(λ(x), λ(z))) 
                                = T(T(T(µ(x), µ(z)), λ(x)), λ(z)) 
                                = T(T(T(µ(x), λ(x))), µ(z)), λ(z)) 
                                = T(T(µ(x), λ(x)), T(µ(z)), λ(z)) 
                                = T(µ ⋀ λ(x), µ ⋀ λ(z)) 
 
Thus µ ⋀ λ is a T-fuzzy bi-ideal of M. 
 
Proposition 3.3: A fuzzy set µ in a Г-near-ring M is a T-fuzzy bi-ideal then the level set U(µ, t) ={x Є M / µ(x) ≥ t} is 
a bi-ideal of M when it is non-empty. 
 
Proof: Let µ be a T-fuzzy bi-ideal of M. Let x, y Є U(µ, t). Then µ(x) ≥ t & µ(y) ≥ t. 
 
Consider µ(x-y) ≥ T(µ(x), µ(y)) ≥ T(t, t) = t which implies x – y Є U(µ, t). 
 
Now µ(x α y β z) ≥ T(µ(x), µ(z)) ≥ T(t, t) = t which implies x α y β z Є U(µ, t). 
 
Hence U(µ, t) is a bi-ideal of M. 
 
Theorem 3.4: Let f: M → M′ be an onto homomorphism of Г -near-rings. If µ is a T-fuzzy bi-ideal of M then f(µ) is a  
T-fuzzy bi-ideal of M′. 
 
Proof: Let µ be a T-fuzzy bi-ideal of M. Then {x / x Є f-1 (y1 – y2)}⊇{x1 – x2 / x1 Є f-1 (y1),  x2 Є f-1 (y2)}. 
f(µ) (y1 – y2)  = sup {µ(x) / x Є  f-1 (y1 – y2)} 
                       ≥ sup {µ(x1 – x2) / x1 Є f-1 (y1), x2 Є f-1 (y2)} 
                       ≥ sup {T(µ(x1), µ(x2)) / x1 Є f-1 (y1),  x2 Є f-1 (y2)} 
                       = T(sup{µ(x1) / x1 Є f-1 (y1)}, sup{µ(x2) / x2 Є f-1 (y2)} 
                       = T(f(µ) (y1), f(µ) (y2)) 
 
 
 



1N. Meenakumari* and 2J. Muthu Erulappan/T-fuzzy Bi-ideals in Γ-near-rings with respect to t-norm/ IJMA- 5(7), July-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                    179   

 
f(µ) (y1 α y2 βy3) = sup{µ(x) / x Є  f-1(y1 α y2 βy3)} 
                           ≥ sup{µ (x1 α x2 β x3) / x1 Є f-1 (y1),  x2 Є f-1 (y2), x3 Є f-1 (y3)} 
                           = sup{T(µ(x1), µ(x3)) / x1 Є f-1 (y1),  x3 Є f-1 (y3)} 
                           = T(sup{µ(x1) / x1 Є f-1 (y1), sup{µ(x3) / x3 Є f-1 (y3)}) 
 
Hence f(µ) is a  T-fuzzy bi-ideal of M′. 
 
Theorem 3.5: An onto homomorphic image of a T-fuzzy bi-ideal with Sup property is a T-fuzzy bi-ideal. 
 
Proof:  Let M and M′ be Г -near-rings. Let f: M → M′ be an epimorphism and µ be a T -fuzzy bi-ideal of M with Sup 
property. Let x, y Є M′, x0 Є f-1 (x), y0Є f-1 (y) and z0Є f-1 (z) be such that µ(x0) = sup t Є f

-1
 (x) µ(t);  

µ(y0) = sup t Є f
-1

 (y) µ(t) and µ(z0) =  sup t Є f
-1

 (z) µ(t) respectively. Then we have  
µf (x – y) = sup z Є f

-1
(x – y) µ(z) 

               ≥ µ(x0 – y0) 
               ≥ T(µ(x0), µ(y0)) 
               = T(sup t Є f

-1
 (x) µ(t), sup t Є f

-1
 (y) µ(t)) 

               = T(µf (x), µf (y)) 
 
Let x, y, z Є M′ and α, β Є Г. 
 
µf (x α y β z) = sup t Є f

-1
 (x α y β z) µ(t) 

                     ≥ µ(x0 α y0 β z0) 
                     ≥ T(µ(x0), µ(z0)) 
                     = T( sup s Є f-1 (x) µ(s), sup s Є f-1 (z) 
                     = T(µf (x), µf (z)) 
 
Theorem 3.6: An epimorphic preimage of a T-fuzzy bi-ideal of a Г-near-ring is a T-fuzzy bi-ideal. 
 
Proof: Let M and M′ be Г-near-rings. Let f: M → M′ be an epimorphism. Then we have  
µ (x-y) = (ν ∘ f) (x – y) 
            = ν(f(x – y)) 
            = ν (f(x) – f(y)) 
            ≥ T(ν (f(x)), ν (f(y))) 
            = T((ν ∘ f) (x), (ν ∘ f) (y)) 
            = T(µ (x), µ (y) ) 
 
µ(x α y β z) = (ν ∘ f) (x α y β z) 
                    = ν (f(x α y β z)) 
                    = ν (f(x) α f(y) β f(z))        
                    ≥ T(ν (f(x)), ν (f(z))) 
                    = T((ν ∘ f) (x), (ν ∘ f) (z)) 
                    = T(µ (x), µ (z) ) 
 
Hence µ is a T-fuzzy bi-ideal of M. 
 
Definition 3.7: Let µ and γ be T-fuzzy bi-ideals of a Г-near-ring M. Then the direct product of T-fuzzy bi-ideals is 
defined by (µ x γ) (x, y) = T(µ (x), γ(y)) for all x, y Є M. 
 
Theorem 3.8 Let M and M′ be Г -near-rings. If µ and γ are T-fuzzy bi-ideals of M and M′ respectively then µ x γ is a  
T-fuzzy bi-ideal of the direct product M x M′. 
 
Proof: Let µ and γ be T-fuzzy bi-ideals of M and M′ respectively. Let (x1, y1), (x2, y2) Є M x M′.  
(µ x γ)((x1, y1) - (x2, y2)) = (µ x γ) ((x1 - x2, y1 - y2)) 
                                        = T(µ(x1- x2), γ(y1 - y2)) 
                                        ≥T(T(µ (x1), µ (x2) ), T(γ(y1), γ (y2))) 
                                        = T(T(T(µ(x1), µ(x2)), γ(y1), γ (y2)) 
                                        = T(T(T(µ(x1),γ(y1)), µ (x2)), γ (y2)) 
                                        = T(T(µ(x1), γ(y1)), T(µ(x2), γ (y2)) 
                                        = T((µ x γ)((x1, y1), (µ x γ) (x2, y2)) 
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Let (x1, y1), (x2, y2) & (x3, y3) Є M x M′ and α, β Є Г.  
 
(µ x γ)((x1, y1)α (x2, y2)  β (x3, y3)) = (µ x γ) (x1 α x2 β x3, y1 α y2 β y3) 
                                                        = T(µ(x1 α x2 β x3), γ( y1 α y2 β y3)) 
                                                        ≥ T (T (µ(x1), µ (x3)), T(γ(y1)), γ(y3)) 
                                                        = T(T(T(µ(x1), µ (x3)), γ(y1)), γ (y3)) 
                                                        = T(T(T(µ(x1), γ(y1)), µ (x3)), γ (y3)) 
                                                        = T(T(µ(x1), γ(y1)),  T(µ(x3), γ (y3)) 
                                                        = T((µ x γ) (x1, y1), (µ x γ) (x3, y3) 
 
Hence µ x γ is a T-fuzzy bi-ideal of the direct product M x M′. 
 
Theorem 3.9: Let µ be a T-fuzzy bi-ideal of M. Then the set M/µ of all fuzzy cosets of µ is a Γ- near-ring w.r.to the 
operations defined by (x+µ) +(y+µ) = x + y + µ and (x+µ) α (y+µ) = x α y + µ for all x, y Є M and α Є Γ 
 
Theorem 3.10: Let I be a bi-ideal of M. If µ is a T-fuzzy bi-ideal of M then the fuzzy set µ�  of M / I defined by              
µ� (a + I) = sup x Є I µ (a + x) is a T-fuzzy bi-ideal of M / I 
 
Proof: Let M be a Г-near-ring and µ be a T-fuzzy bi-ideal of M. Let x, y Є M such that x + I = y + I. Then y = x + z for 
some z Є I.  
 
Thus 
µ� (y + I) = Sup a Є I µ (y + a) = sup a Є I µ (x + z + a) = Sup z +a = t Є I µ (x + t) = µ� (x + I)  
 
which implies that µ� is well defined. 
 
Now µ� ((x + I) – (y + I)) = µ� (x – y + I) 
                                        = sup u - v Є I µ((x – y) + (u – v)) 
                                        = sup u, v Є I µ((x + u) – (y + v)) 
                                        ≥ sup u, v Є I T(µ(x + u), µ(y + v)) 
                                        = T(sup u Є I µ(x + u),  sup  v Є I µ(y + v)) 
                                        = T(µ� ((x + I), µ� ((y + I)) 
 
µ� ((x + I) α (y + I) β (z + I)) = µ� (x α y β z + I) 
                                              = sup i Є I µ(x α y β z + i)   
                                              = sup i Є I µ((x + i) α (y + i) β (z + i)) 
                                              = sup i Є I T(µ(x + i), µ(z + i)) 
                                              = T(sup i Є I µ(x + i),  sup  i Є I µ(z + i)) 
                                              = T(µ� (x + I), µ� (z + I)) 
 
Hence µ� is a T-fuzzy bi-ideal of M / I. 
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