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ABSTRACT

This paper presents a branch and bound (BAB) algorithm for minimizing the sum of total tardiness and total late work
within the single machine problem. Late work for job i is the amount of processing performed on i after its due date
d;. Branch and bound (BAB) is proposed. This BAB proposes two lower bounds one is based on the decomposition
property of the bi-criteria problem the other one based on relaxation of objective .and two dominance rules with
special cases. Based on results of computational experiments, conclusions are formulated on the efficiency of the BAB
algorithm.
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1. INTRODUCTION

The late work criterion estimates the quality of a solution on the basis of the duration of late parts of particular jobs.
Late work combines the features of two parameters: tardiness and the number of tardy jobs. Formally speaking, in the
non-preemptive case the late work parameter (V;) for job j in a given schedule is defined as

Vj=min{max{0,Cj-dj},pj}=min{Tj, pj} or, in a more extensive way, as

0 Ci<dj i=1,2,...n
Vi= |Tj dj<Cj<dj+pj  j=1.2,....n
bj Ci=dj+pj j=1,2,....n

The parameter Vj was first introduced by Blazewicz [5], who called it "information loss", referring to a possible
application of the performance measures based on it. The phrase "late work" was proposed by Potts and Van
Wassenhove [9].

Applications of the late work minimization problems arise in control systems ([5], [9]), where the accuracy of control
procedures depends on the amount of information provided as their input. Leung [7] pointed out another application of
late work scheduling in computerized control systems, where data are collected and processed periodically, for late
worksee{[1],[2].[31}-

The tardiness T; and late work V;appears to be very important in production planning for both customers and managers.
Suppose the customers' orders as job to be executed, then minimizing total cost is equivalent to minimize total tardiness
and total parts of orders which are not executed on time:

Interesting applications of the late work criteria arise in agriculture, where performance measures based on due-dates
are especially useful [4]. Late work criteria can be applied in any situation where a perishable commodity is involved

[a].

{In this paper the bicriteria on single machine scheduling that deal with the sum of total tardiness (Z?Ti) and total

late work (ZT Vi)}.

Corresponding author: Ali A. Al-Maliky*
International Journal of Mathematical Archive- 5(7), July — 2014 79



http://www.ijma.info/�

Tariq S. Abdul-Razaq and Ali A. Al-Maliky*/
Exact Algorithm for Minimizing the Sum of Total Tardiness and Total Late Work Problem / IIMA- 5(7), July-2014.

The organization of this paper is as follows. Section 2 presents the problem formulation. Section 3 provides special
cases section 4 incorporating solution techniques to calculate upper and lower bounds of the multicriteria value. Section
5 presented dominance rules section 6 summarizes results of computational experiments and it is followed by a
conclusions is given in section 7.

2. FORMULATION OF THE 1// (Z:Tl + Z';V,) PROBLEM

Our scheduling problems can be described as follows: We are given a set of jobs N={1,...,n} which are to be processed
on single — machine, and available for processing at a time zero ,no precedence relationship exists between jobs and
preemption is not allowed. Each job requires an integer processing time p; on the machine, and ideally should be

[}
completed at its due date d; if a schedule is given o= (1,...,n) then a completion time C; =ZPJ. for each job i and
j=1
consequently tardiness Ti=mac{C;-d;,0} and late work V;= min{T;, P} is calculated .The object is to find a processing
order of the jobs on single machine to minimize the multi criteria (Z T + Z V) This problem can be stated more

precisely as follows:

Given a schedule (1,..., n) then we can compute( total cost) total tardiness Z?Ti and total late work Z?Vi.

This problem denote by ( Pl) can be written as follows:

~

M= MingsTio) +X;Vi(o)}

s.t.

Torn = 0 i=1l.n » (P1)
Tt 2Catn- datn) t=1.n

Voo = Min{Ty00,Poto} =1.n

J

where o(i) denoted the position of job i in the ordering ¢ and (S) denotes the set of all enumerated schedules if such
schedule exists.

3. SPECIAL CASES FOR THE PROBLEM (P,)

For the problem (p;) we will state some special cases as follows:

Case- (1): For 1// (Z?;Ti+ Z?Vi) problem (p,) if di=d \v4 i=1,...,n then (SPT) rule is optimal.

Proof : First1 if di=d \v4 i, and order the jobs in SPT rule, then the jobs become in EDD and SPT order, hence we have
minimum X T; [8].

Second if di=d \V/ i, then any order of the jobs gives minimum 2V; [9].

Hence the SPT rule is optimal for problem (p;).

Case - (2): If the EDD schedule gives Tre(EDD)= 3 V{(EDD) and Tre(EDD) =3 T(EDD) then this schedule is an
optimal for the 1// 2T+ 2.V;) problem(p,).

Proof: It is well known that T,,,(EDD) is a lower bound for Z?Vi ,i.e., Tha(EDD) < Z?Vi(EDD). Hence if
Tmax(EDD)= Z?Vi(EDD) ,this means that Z?Vi(EDD) is minmum for 2V; . Also it is well known that

T nex(EDD) < X T(EDD) .Hence if Tre(EDD) =X, T(EDD), this means that ; T,(EDD) is minimum for ¥ T; .

Consequently the EDD schedule is an optimal for the
VIS, Ti+ 2.V problem.
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Case - (3): If T .« (EDD) = 0 then there exists optimal solution for problem (P;)
Proof: It is clear.
4. THE SOLUTION TECHNIQUES FOR THE PROBLEM (P,)

It not easy to find optimal solution for the problem (P,) since both problems 1// Z?Ti and 1// Z?Vi are NP_hard [9].
Hence we solved this problem by using BAB method to get an optimal solution.

4.1. Heuristics to Calculate Upper Bound (UB) for| P, |

For the problem (P,) we proposed heuristic method The heuristic H1 with value UB; is simply obtained as follows:
Step-(0):Let N={1,...,n}, K=1, t=C,=0 and set ¢ = (¢).

Step-(1): Calculate X;,7iEN as follows:
Xi = Max {pi, d; _ Cr.1}(Ck.1is completion time at position k-1)

Step-(2): Find a job j*EN, such that
X;*= Min{Xj} then assign job j* in position K of ¢ =(¢ ,6(K)).

Step-(3): Set t= t+p;, N =N-{j*}, K=K+1, if K< n go to step (2), otherwise go to step (4).
Step-(4): Compute UB,= (3T + XV;) (o) for the resulting sequence jobs ¢ = (o(1) ,..., o(n)
Step-(5): Stop

Example: We illustrate our first heuristic H; in five jobs for the problem {Py) Data for the processing times and due
dates are.

pi=(2,3,4,5,2) di=(3,4,7,6,8) ,i=(1,...,5)
Hence we get the sequence (1, 2, 5, 3, 4) and for this sequence we have

UB=X, T+ X, V=25

4.2. Derivation of Lower Bound (LB) for the problem(p,)

Deriving a lower bound for a problem that has a multicriteria function is very difficult since it is not easy to find a
sequence that gives the minimum for the two objectives. Since our problem (P,) is NP-hard we may find a sequence
that does well on both criteria and find lower bound (LB). Now we will derive lower bounds for the problem (P,).

4.2.1, Decomposition of Problem (P,) to Derive first Lower Bound(LB,)

In this subsection we decompose the problem (P,) into two subproblems with a simpler structure.

As shown in the previous section the problem (P,) has an objective function:
M= Mings ' T(o)+ 1 Vi(o)}

The problem (p;)can be decomposed into two subproblem (SP;) and (SP,)

M=min ¥72, Tor

s.t.
Tots) 2Cat- doty 1=1,..,n [ ... (SP1)
Ton =0 i=1,...n
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My=min %72q Vats) w

s.t.

Vot € Coty-doty =1 .um ... (SP2)
Vo = 0 i=1,..,

Voy < Poro =1,

Theorem 4.1: [3] My+M; <M where M;&M, and M are the minimum objective function values of (SP1),(SP2), and
(P1) respectively.

The first lower bound(LB;) is based on decomposing (P,) into two subproblem (SP,) and (SP,) as above, then calculate
a lower bound for (SP,) and calculate a lower bound for (SP,) then applying theorem (4.1) to get a lower bound LB,
for our problem (P,) as follows:

For the subproblem (SP;) we calculate a lower bound by sequencing the n jObS in EDD order (sequencing the n jobs in
non decreasing order of d;) to find the maximum tardiness Tma (EDD) < Z T; (opt)[ 8]. For the subproblem (SP,) we

calculate a lower bound by the same technique to find maximum tardiness T.x (EDD) < Z:-Vi [ 9], then we apply the
lower bound theorem(4.1) to get initial lower LB = Ty (EDD)+T s (EDD) < M;j+M,

Hence ILB = 2T .« (EDD)

Let T be a partial sequence for K jobs have been assigned to the first K positions the lower bound LB, is given by

LB;(T)=Exact cost of (d)+cost of (S),
where S is the set of unsequence jobs (n-k). for each job j in @ its actual tardiness and late work is determined as:

T;= max{c;.djo}and V;=min{T}, P},j=1,...k . for unscheduled jobs (j €S, j=k+1,...,n) sequencing in EDD, order to
calculate T,.x (EDD), and using theorem (4.1) to get

LBy(0)=Exact cost of (G)+ 2T, (EDD)

4.2.2. Deriving a second lower bound (LB,)

To construct the second lower bound (LB,). We use here the fowllowing results:

1. An optimal schedule for problem1/d;=d/ Z?;Ti with equal due date can be obtained by SPT rule. [8]

2. An optimal schedule for problem1/d;=d/ Z?;Vi with equal due date can be obtained by any schedule with value of
Z?;Vi:Cmax'd-[Q]

Let @ be a partial sequence for K jobs have been assigned to the first K positions.

Jobs: j1 j2 ....... jk 2 jz ?

Cj:

0 le Cj2 e Cjk complation time

LB, (o)=Exact cost of (7)+cost of (s), where @ the partial sequence for k jobs and s is the set of unsequence jobs .

For the jobs of @, their actual tardiness and late work is determined as
T,",'»-_:max{ CJ'.."'. - d.-'-."'.’o} and 1"2"‘ :min{ T_I-'.-,._ , P:,'»- }' h=1,...... k
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For any unsecheduled job jj its tardinessT;_ cannot be less than max{C;, -d,0}, where d is the maximum due date

among the unscheduled jobs:

T;, 2max{C;, -d;; 0}, g=k+1,....... n

g

Also its late work ‘{.-_ﬁ cannot less than max{Cs-d,0}.
Vi >max{Cnax-d}, g=k+1,...... N

Now consider the relaxed problem where the unscheduled jobs have common due date d,

d:max{dj k+1 ,dj K2y ,dj n}

The minimum total tardiness and total late work with respect to common clue date d can be found by sequencing the
jobs in SPT order .In this case the SPT order is optimal for both Z':-‘Ti and Z':-‘Vi. Thus completion C; of the unscheduled

jobs with their tardiness Tj; and late work V;; can be applying the SPT rule.

LB(o)=[ T, +Vi,+...+ TtV T+ T;, +V,

T
pee ot T_-"r.+1"';"r.]

LB,(T)=Exact cost of (T)+cost of (S)

Hence sequencing the unscheduled jobs in the SPT order and replacing their original due date d;, by a large artificial
due date d is done temporarily in order to determine (LB,) the lower bound for the current partial schedule o.

5. DOMINANCE RULES (DR)

If it can be shown that an optimal solution can always be generated without branching from a particular node of the
search tree, then that node is dominated and can be eliminated. The main goal of (DR) usually specify whether a node
can be eliminated before its (LB) is calculated. It is clear that (DR) are particularly useful when a node can be
eliminated which has a (LB) that is less than the optimal solution [6]. The first result for (DR) is given by next.

Lemma 5.1: If dj > t, where t:Z?; P; then there exists an optimal sequence in which job j is sequenced last.

The second result is a consequence of dynamic programing (DP) .If the final two jobs of a partial sequence can be
interchange without increasing the time at which the machine become available to process the next unsequence job,
then this partial sequence is dominated.

Let o be an initial partial sequence of jobs, let s be the set of jobs not sequenced in o and let C(c) denoted the
completion time of the last job of c. Also assumed that o= o,i, whenever o is not empty. The next of our dominance
rules is based on (DP)

Lemma 5.2: For job j= 5, if we have two initial partial sequence of jobs o3ji and o,ij such that C(o4ji) < C(oij) then

04ij is dominated.

Notes:

1. Ifin lemma (5.2) C( o4ji)=C(o4ij) then either o,ji or o;ij (but not both) is discarded.

2. For all nodes that remain after we apply the (DR), we can use the procedure described in section (2.4) to comput
(LB).

6. COMPUTATIONAL EXPERIENCE WITH BRANCH AND BOUND (BAB) ALGORITHM

An intensive work of numerical experimentations has been performed. We first present below how instances (test
problems) can be randomly generated.

6.1. Test Problems

Test problems were generated as follows: for each job j, an integer processing time p; generated from the uniform
distribution [1, 10]. Also, for each job j, an integer due date d; is generated from the uniform distribution
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[p(1-TF-RDD/2) , p(1-TF+RDD/2)], where p= XZp;, i=1,...,n, depending on the relative range of due date(RDD) and on
the average tardiness factor (TF). For both parameters, the values 0.2, 0.4, 0.6, 0.8, 1.0 are considered. For each
selected value of n, two problems were generated for each of the five values of parameters producing 10 problems for
each value of n.

6.2 Computational Experience with the Lower and Upper Bounds of BAB Algorithm

The BAB algorithm was tested by coding it in Matlab 7.9.0 (R2008b) and implemented on Intel | Core | i3 CPU M380
@ 2.53 GHZ, with RAM 4.00 GB personal computer.

In the branch and bound algorithm, we proposed two lower bounds at root node of search tree we calculated LB; and
LB, and set

ILB=Max{ LB;, LB, } as an initial lower bound.Obviously it is possible to apply the two lower bounds (LB,,LB,) at
each node of the search tree of the BAB algorithm.Since in either case, the computational requirement for both lower
bounds are comparable , the LB, method computationally much faster and therefore we adopt this approach at each
node.

In table (3.1), we give the comparative of computational results of BAB algorithm for the problem (P,). We list 5
problems for each value of n={4,5,6,7,8,9},and also 10 problems of n ©{10,14}. The optimal value was computed,

upper bound (UB), initial lower bound (ILB), the number of generated nodes (Nodes), the computational time (Time),
and the number of unsolved problems (Status).

We determined a condition for stopping the BAB algorithm and consider that the problem is unsolved (state is 1), that
the BAB algorithm is stopped after a fixed period of time, here after 1800 second (i.e. after 30 minutes).This means a
problem remained unsolved within the time limit of 30 minutes , computation was abandoned for that problem .

It is well known that the number of jobs (size of the problem) are likely to affect the efficiency of BAB algorithm.

Table (1): $hows the performance of, initial lower boond, vpper boend, number of nodes and
computational time in seconds of BAEB alzorithm without special cases and donminance rules.
n={4,5,...,9,10,14].

n | EX CEM |Optimal | UB LB | Nodes Time Status
1 10 |10 10 10 i3 01 D
2 21 |2 21 12 14 0.01 0

4 3 9 [0 19 30 12 0.007 0
4 422 |2 £ 20 11 0.007 0
5 39 |30 30 33 13 0.009 0
BEIEREL ¥ 73 ] 01 0
5 14 |74 74 1 23 0.02 0

53 3 3 31 3 73 0.02 0
PR 6 3 FE 0.03 D
5 49 |49 51 35 38 0.02 0
1 43 |43 FE 34 30 0.1 0
2 50 |50 50 30 £ 0.05 0

6 3 60 |60 61 18 73 0.07 0
4 9 |00 102 M 101 0.1 0
5 122 |1 122 107 34 0.04 0
1 61 |67 39 80 74 024 0
2 2 |82 84 66 136 0.25 0

73 113 [113 123 % m 0.66 0
3 131 |13 BE] 109 73 033 0
5 101 |[101 101 81 102 0.14 0
1 121|121 129 108 708 0.58 0
3 120 |12 138 103 620 14 0

g 3 168 |168 175 144 1177 312 0
3 2 |2 3 57 780 03 i)
5 114 |114 124 103 806 13 0
1 162 | 162 172 137 1027 6.67 0
2 134 134 144 109 5311 4237 0

o[ 3 100 [190 100 174 297 0.7 0
7 131 |13 BN 13 73 03502 0
5 180 |[180 180 145 907 267 0
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n EX | Optimal UB ILB Nodes Time Status
P PEE 17 96766 | 9.1 0
> 200 210 163 5978 |54 0
3 [0 344 193 7551 |26 0
4 136 187 168 6792 06 0
s | 277 277 252 2742 0.2 0
10 ¢ |21 201 265 3435 0.7 0
7 |254 260 25 14667 |13 0
g | 261 261 180 187267 | 18.05 "
0 29 pE] 317 T35 06 0
10 | 200 A1 153 181579 176 0
WEE 304 379 106138 | 198 0
B 339 7% 17372435 | 1800.001 1
3 |40 459 414 4321823 | 4881 0
4 |50 556 493 5086123 | 3874 0
5 | 361 361 201 15770121 |1800.0000 |
41 s | 436 41 02602 | 413 9
7 | 478 478 403 3503851 | 36222 0
T 508 Fra WA 507 0
R Fyi FEy 5433607 | 6040 0
TREE 53 30 1976177 | 2101 0

Table (2): $hows The performance of imtial lower bovnd, uppar bound, mumber of nodes and
computational ime in seconds of BAB algorithm with spacial cases and dominance rul=s(DR)
ns{4.5,.. .5, 10,14 20}

n|EX CEM Optimal UB ILB  Nodes | Time | Stats
] 10 10 10 0 3 01 0
7 21 2 21 12 10 0.008 0
4| 3 ¥ = £ 0 7 0.003 0
4 2 B 2 20 7 0.003 0
B 39 35 3 0.003 0
BEE 34 25 24 0.1 0
2 4 A gz 7 15 0.01 0
5| 3 51 5 51 18 16 0.01 0
4 23 0B 26 6 15 0.01 0
5 40 4 51 35 10 0,01 0
| 43 43 43 ;71 21 0.1 0
7 50 30 30 39 n 0.02 0
6| 3 60 60 61 48 28 0.02 0
T 102 T} 35 0.02 0
5 12 12 122 107 14 0.007 0
1 61 67 69 80 6 01 0
5 B2 @ 84 66 48 0.03 0
7| 3 14 114 123 9 73 0.05 0
g 121 121 124 109 0 .02 0
s 101 101 101 81 n 0.01 0
] 121 1 130 108 EE; i 0
7 120 120 138 103 161 0.1 0
g [ 3 188 168 175 141 250 02 0
4 2 M 73 57 39 0.04 0
s 114 114 124 103 157 0124 0
] 182 182 172 147 110 04 0
7 134 134 ET] 109 352 03 0
o[ 3 @ 1@ 150 (7! 3l .05 0
4 232 1M 232 215 79 0.1 0
5 180 180 150 EG a1 407 0
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n | EX |Optimal  UB ILB | Nodes Time  Stafus
3 M 1 3] 0
> (200 200 T 5 01 0
3 |20 24 193 E5T 036 0
4 |16 187 168 177 0.16 0
s [ 2 252 82 0.068 0
10 ¢ 21 201 265 109 0.00 0
7 [5¢ 240 225 591 0.76 0
g |61 261 180 1443 467 0
o |38 239 217 B 0032 0
10 |200 211 153 627 0735 0
1 %3 4o 379 563 095 0
B 256 6545 394 0
3 (B8 39 EjE) 305 23 0
4 |59 556 493 22 87 0
5 361 361 291 017 147 0
41 e 4 4s6 441 1199 2154 0
7 |43 478 403 444 0.49 0
g |49 508 464 1180 169 0
o [ 47 EES) 3 128 0
10 [508 339 0 981 M8 0
T (780 7% i 19568 3827 0
7 (28 132 |11 1688 1B 0
3 [ o 93 37 T W) 0
4 |90 1007 |15 11885 869.663 0
5 53¢ 540 517 12552 6537 0
201 o |g03 303 768 3370 11379 0
7 [o0  om 363 6076 12443 0
g [1248 1261|143 [s60 12375 0
o %40 o8 363 36089 393.56 0
TR T D64 8797 0

In table (1) and (2) we have:
EX=The number of the test problem.
CEM=Complete enumeration method
Optimal=The optimal value obtained by BAB method.
UB=Upper bound
ILB=Initial lower bound
Nodes = The number of generated nodes
Time=Computational time in seconds
0 if the example is solved
States =
1 ow.
From table (1) we observe that the lower bound (LB), even though it is quickly computed, such a weak lower bound is
clearly unable to effectively restrict the search in a branch and bound algorithm. And we see the effect of dominance

rules in table (2) on the results,especially for the unsolved problems and computational time.
The following table summarize table (1)
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Table - 3: Summary of the table (1) of BAB algorithm.

n | Av nodes | Av time Eﬁ;::'
4 13.6 0,0234 0
3 236 0.023 0
6 382 0.033 0
7 1932 0.042 0
8 6482 0.134 0
o 17354 0.19 0
10 306123 3163 0
14 | 5275974 3712 2

Table - 4: Summary of the table (2) of BAB algorithm

n | Av. nodes | Av. time | Unsolved problem
4 TR 00234 L]
5 15 0.028 L]
& 24 0,033 L]
) 41.6 0.042 L]
2 134 0.118 L]
o 1486 0,184 L]
10 L 0.735 L]
14 | 27831 11.47 [
20 | 15B44% | 47404 [

Table(3)and (4) shows the average number of nodes, computational time in seconds and the unsolved problems for the
5 problem of each n= 4,5,6,7,8,9 , and 10 problems of each n=10,14.1t is clear from table (1)and (2) that whenever n
increases, the number of nodes and the computational time increase. Hence, the BAB algorithm can solve the problem

1//2?;Ti +Z?Vi of size less than or equal to 14 jobs and with special cases and dominance rules can solve 20 jobs with
reasonable time.

7. CONCLUSIONS

In this paper a branch and bound (BAB) algorithm is proposed to find an optimal solution for the problem of
minimizing a bi-criteria. A computational experiment for the branch and bound (BAB) algorithm on a large set of test
problems are given.

The main conclusion to be drawn for our computational results are:
1. That the upper bound (UB1) is more effective.
2. The second lower bound (LB;) is mor effective than first lower bound (LB,)
3. The special cases and dominance rules are p help in solving roblem up to 20 job.

An interesting future research topic would involve experimentation with the approximation algorithms for the
following bi-criteria problems:

1 U/Lex(S; Ti, X, Vi),
2. UIF(S, Ti, 3, Vi)
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