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ABSTRACT 

The present paper focuses on function approximation using Fourier Transform and Wavelet Transform. We have used 

three functions i.e., Continuous Exponential Function (Case-1), Continuous Periodic Function (Case-2) and Piecewise 

continuous function (Case-3).  The equations generating the functions and the respective plots are given below. 

 

Key words: Function Approximation, Fourier transform, Wavelet Transform 

------------------------------------------------------------------------------------------------------------------------------------------------ 

 

INTRODUCTION: 

 

In Fourier transform (FT) we represent a function in terms of signals. FT provides a function which is localized only in 

the frequency domain. It does not give any information of the function in the time domain. Basis functions of the 

wavelet transform (WT) are small waves located in different times. They are obtained using scaling and translation of a 

scaling function and wavelet function. Therefore, the WT is localized in both time and frequency. In addition, the WT 

provides a multiresolution system.Multiresolution is useful in several applications. For instance, image communications 

and image data base are such applications. If a function has a discontinuity, FT produces many coefficients with large 

magnitude (significant coefficients) 

 

But WT generates a few significant coefficients around the discontinuity. Nonlinear approximation is a method to 

benchmark the approximation power of a transform. In nonlinear approximation we keep only a few significant 

coefficients of a function and set the rest to zero. Then we reconstruct the function using the significant 

coefficients.WT produces a few significant coefficients for the functions with discontinuities. Thus, we obtain better 

results for WT nonlinear approximation when compared with the FT.Most natural functions are smooth with a few 

discontinuities (are piecewise continuous function).Speech and natural images are such functions. Hence, WT has better 

capability for representing this function when compared with the FT.  

 

DISCRETE WAVELET TRANSFORM: 

 

Wavelet transform decomposes a signal into a set of basis functions. These basis functions are called wavelets. 

Wavelets are obtained from a single prototype wavelet y(t) called mother wavelet by dilations and shifting: 

 

 

 
 

where a is the scaling parameter and b is the shifting parameter 
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The wavelet transform is computed separately for different segments of the time

Multi-resolution analysis: analyzes the signal at different frequencies giving different resolutions.MRA is designed to 

give good time resolution and poor frequency resolution at high frequencies and good frequency resolution 

time resolution at low frequencies. Good for signal having high frequency components for short durations and low 

frequency components for long duration.e.g. Images and video frames.
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The 1-D wavelet transform is given by:

 

The inverse 1

 

Discrete wavelets transform (DWT), which transforms a discrete time signal to a discrete wavelet representation. 
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The continuous periodic function used in in this study is given by

The plot of function is shown in Fig. 9.2
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(c) Piecewise Continuous Function (Case 3): 

 

A piecewise continuous function is generated  
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Figure 9.3 Piecewise Continuous function Simulation result for Case 3 

 

These functions have been evaluated for 2000 data points and sampled uniformly for 100 points. These 100 points have 

been used for Fourier approximations.  The using result of Fourier approximation formula we have reevaluated for 200 

points. The analysis of 95% confidence interval. The accuracy of the function approximation can be seen from the 

relative RMSE (Root Mean Square Error) of 100 and 200 point approximation and evaluation. 

 

PERFORMANCE COMPARISON OF WAVELET APPROXIMATIONS:  

     

Names of wavelets Exponential function  Periodic function Piecewise 

continuous function 

Haar 4.5092e-016   3.3559e-018 �������	�
��

db 4.6624e-014 2.7361e-015 
��
���	�
��

sym 4.8542e-015 6.0941e-017 �������	�
��

coif 1.6384e-010 2.8961e-012 ������	�
�

bior 4.8283e-016 3.4384e-018 ��
�
��	�
��

 

COMPARISON BETWEEN FOURIER TRANSFORM AND WAVELET TRANSFORM: 

 

The numerical experiments have revealed that the RMSE of Fourier approximations are higher then the wavelet 

approximations. Only the continuous periodic function has the RMSE of 0.1584 for the Fourier approximation .The 

exponential function is the highest in its approximation error and  similar high RMSE   2.769 is seen for piecewise 

continuous function .In contrast  Fourier all the wavelet functions have shown approximation error in the power of 10-10 

to 10-18 . It establishes that the wavelet approximation is superior to the Fourier method.  

 

RESULTS AND CONCLUSION: 

 

The Fourier Transform (FT) and the discrete wavelet transform (DWT) are both linear operations that generate a data 

structure which may contain data segments of various lengths. These approximating functions usually perform filling 

and transforming functions into a different data vectors. The mathematical properties of the matrices involved in the 

transforms are similar as well. The inverse transform matrix for both the FT and the DWT is the transpose of the 

original. As a result, both transforms can be viewed as a rotation in function space to a different domain. For the FT, 

this new domain contains basis functions that are sines and cosines����� �� ����� 	 ��
 � ���� � �� �	 ��
 � ����� �

��� For the wavelet transform, this new domain contains more complicated basis functions called wavelets, mother 

wavelets, or analyzing wavelets  

 

Both transforms have another similarity. The basis functions are localized in frequency, making mathematical tools 

such as power spectra useful at picking out frequencies and calculating power distributions. The most interesting 
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dissimilarity between these two kinds of transforms is that individual wavelet functions are localized in space. Fourier 

sine and cosine functions are not. This localization feature, along with wavelets' localization of frequency, makes many 

functions and operators using wavelets "sparse" when transformed into the wavelet domain. This sparseness, in turn, 

results in a number of useful applications such as data compression, detecting features in images, and removing noise 

from time series. One way to see the time-frequency resolution differences between the Fourier transform and the 

wavelet transform is to look at the basis function coverage of the time-frequency plane. Fourier is confined to a fixed 

window whereas the wavelet has advantage of the windows that vary. In order to isolate signal discontinuities, one 

would like to have some very short basis functions. At the same time, in order to obtain detailed frequency analysis, 

one would like to have some very long basis functions. A way to achieve this is to have short high-frequency basis 

functions and long low-frequency ones. Wavelet transforms do not have a single set of basis functions like the Fourier 

transform, which utilizes just the sine and cosine functions. Instead, wavelet transforms have an infinite set of possible 

basis functions. Thus wavelet analysis provides immediate access to information that can be obscured by other time-

frequency methods such as Fourier analysis. 

 

The thesis focuses on approximation of continuous exponential, periodic, piecewise continuous function using Fourier 

transform and wavelet transform. The main aim has been to compare and contrast the FT and Wavelet transform in 

function approximation.  Five wavelet forms (Haar, db4, symlet, coif5, bio3.3) have been used in this study. The 

approximation has been compare with the original and RMSE‘s have been computed for each approximations. The 

results unequivocally establish the superiority of wavelets over Fourier transforms.   
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