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ABSTRACT 

Various parameters that influence the flow entities in the case of mixed convection flow of a visco elastic fluid in an 

inclined channel under the influence of acceleration due to gravity has been examined in detail in this paper. It is 

observed that, as the cross flow Reynolds number increases, the temperature decreases.  Further, for higher values of 

such cross flow Reynolds Number, it is seen that the temperature remains constant and only after considerable distance 

away from the boundary, the temperature increases. Further, it has been noticed that, as the cross flow Reynold’s 

number increases, the velocity decreases.  Also, for the higher values of cross flow Reynold’s number a backward flow 

is also noticed and as the angle of inclination increases, the velocity increases. Further, the Prandtl number is 

observed to be inversely related to the temperature.  In contrast with the earlier conclusion, it is seen that for larger 

values of the Prandtl number, the change in temperature is not that significant at the initial stages but at very far 

distance from the boundary, appreciable change is noticed.  It has been noticed that, as the Reynolds number 

increases,  a decreasing trend in the velocity of the fluid has been  seen. Further, the angle of inclination appears to 

have a profound effect on the velocity field.  Though the velocity increases when the plate is inclined, the profiles are 

found to be distinct and are widely dispersed when the bounding surface is held horizontal. Also, the visco elasticity of 

the fluid and the velocity are inversely related to each other while, the Grashoff number and the velocity of the fluid are 

directly proportional. 

 

Key words: Visco elasticity, cross flow Reynolds Number, Darcy Number, Second grade fluid. 

------------------------------------------------------------------------------------------------------------------------------------------------ 

INTRODUCTION: 

 

Non-Newtonian Fluid Mechanics has made significant strides in recent years and there is a fast growing belief that the 

many provocative experimental phenomena and dilemmas now have a realistic possibility of being explained 

theoretically. An attempt is being made in this paper to illustrate such an optimistic thought in advocating heat transfer 

problems that occur in several industrial applications. 

 

Non-Newtonian fluid mechanics has had to be point of concern with the development of general constitutive equations 

for viscoelastic fluids. These constitutive equations should in principle lead to the definition of flow properties that 

need to be measured to define the viscoelastic fluid (rheometry) and to the development of the equivalent Navier Stokes 

equations for the solution of all possible boundary value along with initial value problems that arises in several 

situations wherein heat and mass transfer takes place. The process is completed by solution of the appropriate 

equations, where the methods of computational fluid mechanics have been required as a last resort.  However, some of 

the analytical methods for complex flows of viscoelastic fluids generally predict the nature of flow field and gives rise 

to more or less accurate solution though not perfect solution.  In all such situations, the methodology various strands of 

activity and it will be necessary to consider. For example, we shall need to be quite specific about the experimental 

conditions pertaining to the relevant phenomena. The flows are invariably complex and the ‘experimental dilemmas 

clearly refer to complex flows, where the flow domain  sometimes often involves abrupt changes in geometry, and 

where the flow strength is high enough to permit a terminology which majors on ‘high Weissenburg numbers’ and 

‘high Deborah numbers’. This is of course reasonable and not unrealistic, but it nevertheless needs to be stated. 
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Therefore now the question that arises is to address the  situation “How do elastic liquids behave in complex flows?” 

and it is immediately apparent that the answer must involve a consideration of how the same liquids behave in simple 

flows, so that obtaining rheometrical data on the test liquids is an essential part of the exercise. Such data, when 

available, serve more than one useful purpose; they certainly provide a foundation set of data, which must be 

accommodated in the associated mathematical model for the test liquids. That is to define a perfect constitutive 

equation, which is an essential ingredient in any theoretical resolution of the experimental dilemmas, has to be 

consistent with the rheometrical data. Indeed, if the model cannot simulate behaviour in simple flows, what chance 

does it have in complex flows?! Clearly, the choice of constitutive equation is central to the whole operation and this 

choice is far from trivial or obvious. Indeed, a constitutive model which satisfies the dual constraints of tractability and 

quantitative (or even semi quantitative) prediction may not exist! But that shouldn’t and doesn’t prevent a search for 

this missing link’; but it is wise to be aware of the possibility of disappointment. 

 

The constitutive relation that has been proposed for the fluid under consideration needs to be solved in conjunction with 

the stress equations of motion and the equation of continuity and then to predict and explain the experimental 

phenomena and dilemmas. Analytic solutions are out of the question so far as complex flows are concerned and 

Computational Rheology is now an established, if fairly recent science, which seeks theoretical, answers to provocative 

experiments and phenomena. 

 

The model that has been considered herein this paper is of second order fluid whose constitutive relation has been 

proposed by Noll. The relation involves viscoelasticity and also covers the concept of cross viscosity. 

 

Flow through porous media has been the subject of considerable research activity in recent years because of its several 

important applications notably in the flow of oil through porous rock, the extraction of geothermal energy from the 

deep interior of the earth to the shallow layers, the evaluation of the capability of heat removal from particulate nuclear 

fuel debris that may result from a hypothetical accident in a nuclear reactor, the filtration of solids from liquids, flow of 

liquids through ion-exchange beds, drug permeation through human skin, chemical reactor for economical separation or 

purification of mixtures and so on. 

 

Due to wide ranging applications in the fields of Physics, Chemistry, and Chemical Technology and in situations 

demanding efficient transfer of mass over inclined beds, the viscous drainage over an inclined rigid plane has been the 

subject of considerable interest to both theoretical and experimental investigators during the last several years. In all 

experiments, where the transfer of viscous liquid from one container to another is involved, the rate at which the 

transfer takes place and the thin film adhering to the surfaces of the container is to be taken into account for the purpose 

of chemical calculations. Failure to do so leads to experimental error. Hence there is need for such analysis. The most 

important concept is that of skin friction which affects the boundaries which normally occur in situations of chemical 

reactors and material transfer from one reactor to another reactor. 

 

In many chemical processing industries generally slurry adheres to the reactor vessels and gets consolidated. As a result 

of this, the chemical compounds within the reactor vessel percolates through the boundaries causing loss of production 

and then consuming more reaction time. The slurry thus formed inside the reactor vessel often acts as a porous 

boundary for the next cycle of chemical processing.  

 

Flow in a porous medium can be considered as an ordered flow in a disordered geometry. The transport process of fluid 

through a porous medium involves two substances, the fluid and the porous matrix, and therefore it will be 

characterized by specific properties of these two substances. A porous medium usually consists of a large number of 

interconnected pores each of which is saturated with the fluid. The exact form of the structure, however, is highly 

complicated and differs from medium to medium. A porous medium may be either an aggregate of a large number of 

particles such as sand or gravel or solid containing many capillaries such as a porous rock. When the fluid percolates 

through a porous material, because of the complexity of microscopic flow in the pores, the actual path of an individual 

fluid particle cannot be followed analytically. In all such cases, one has to consider the gross effect of the phenomena 

represented by a macroscopic view applied to the masses of fluid, large compared to the dimensions of the pore 

structure of the medium. The process can be described in terms of equilibrium of forces. The driving force necessary to 

move a specific volume of fluid at a certain speed through a porous medium is in equilibrium with the resistance force 

generated by internal friction between the fluid and the pore structure. This resistance force is characterized by Darcy’s 

semi-empirical law established by Darcy [1]. The simplest model for flow through a porous medium is the one 

dimensional model derived by Darcy [1]. Obtained from empirical evidence, Darcy’s law indicates that for an 

incompressible fluid flowing through a channel filled with a fixed, uniform and isotropic porous matrix, the flow speed 

varies linearly with longitudinal pressure variation. Subsequently, Dupuit and Frochheimer presented empirical 

evidence that, the Darcy law, or the linearity between speed and pressure variation, breaks down for large enough flow 

speed (a compilation of several experimental results) is presented by MacDonald et al. [2]. This was emphasized later 

by Joseph et al [3] who stressed force modeled by the Frochheimer acts in a direction opposite to the velocity vector. It 

follows that, in multidimensional flow, the momentum equations for each velocity component derived using the 

Frochheimer extended Darcy equation is at least speculative. Later,  Knupp and Lage [4] analyzed the theoretical 
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generalization to the tensor permeability case (anisotropic medium) of the empirically obtained Frochheimer extended 

Darcy unidirectional flow model. 

 

A numerical and experimental investigation of the effects of the presence of a solid boundary and initial forces on mass 

transfer in porous media was presented by Vafai and Tien [5]. The local volume averaging technique has been used to 

establish the governing equations. The numerical solution of the governing equations is used to investigate the mass 

concentration field inside a porous media close to an impermeable boundary. In conjunction with the numerical 

solution, a transient mass transfer experiment has been conducted to demonstrate the boundary and inertia effects on 

mass transfer. This was accomplished by measuring the time and space averaged mass flux through a porous medium. 

The results clearly indicate the presence of these effects on mass transfer through porous media. 

 

Heat transfer in porous medium is gaining utmost importance due to its applicability in geothermal energy extraction, 

nuclear waste disposal, fossil fuels detection, regenerator bed etc. Understanding the development of hydro dynamic 

and thermal boundary layers along with the heat transfer characteristics is the basic requirement to further investigate 

the problem. In 1997 Cheng and Minkowycz [6] had analyzed the steady free convection about a vertical plate 

embedded in porous dynamics in the form of dissipative inequality (Clausius – Duhem) and commonly accepted the 

idea that the specific Helmholtz free energy should be a minimum in equilibrium.  From the pont of medium applied to 

heat transfer from dike. Murthy and Singh [7] using method of similarity solution studied the influence of lateral mass 

flux and thermal dispersion on non - Darcy natural convection over a vertical plate in porous medium. They have 

discussed the combined effect of thermal dispersion and fluid injection on heat stratification on non - Darcy mixed 

transfer. Hassain et al  [8] had studied the effects of thermal dispersion and dissipation effects on    non – Darcy mixed 

convection problems and established the trend of heat transfer rate convection from a vertical plate in porous medium 

and investigated the flow and temperature fields. Subsequently, Murthy [9] had examined the dispersion while, 

Kuznetsov [10] investigated the effect of transverse thermal dispersion on forced convection in porous media and 

identified the situations favorable to heat transfer under dispersion effects. Mohammadien and El-Amin [11] studied the 

dispersion and radiation effects in fluid saturated porous medium on heat transfer rate for both Darcy and non-Darcy 

medium. Chamka and Quadri [12] examined the heat and mass transfer characteristics under mixed convective 

conditions with thermal dispersion without taking MHD into consideration. Cheng and Lin [13] in their observation 

pointed out that rate of unsteady heat transfer can be accelerated by thermal dispersion.  Wang et al [14] applied an 

explicit analytical technique namely homotopy analysis to solve the non-Darcy natural convection over a horizontal 

plate with surface mass flux and thermal dispersion and obtained a totally analytic and uniformly valid solution. 

   

We consider the laminar mixed convection flow of a viscoelastic fluid through a porous medium in a vertical 

permeable channel, the space between the plates being h ,  as shown in Fig.  

 

 
Geometry of the flow field 

 

It is assumed that the rate of injection at one wall is equal to the rate of suction at the other wall.  A rectangular 

coordinate system ( )yx,    is chosen such that the x  axis is parallel to the gravitational acceleration vector g , but with 

opposite direction and the y - axis is transverse to the channel walls.  The left wall (i.e. at 0=y ) is maintained at 

constant temperature 1T  and the right wall (i.e. at hy = ) is maintained at constant temperature 2T  , where 21 TT >  . 

The flow is assumed be laminar, steady and is fully developed, i.e. the transverse velocity is zero.  Then, the continuity 

equation drops to 0=
∂

∂

x

u
. 
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The fluid under consideration is assumed to be of Rivlin-Ericksen type whose constitutive equation is proposed as 

 
2

12211 AAApIS ααµ +++−=
                                                                                                                             (1) 

Where S  is the Cauchy stress tensor, p  is the scalar pressure, µ , 1α  and 2α  are the material constants, customarily 

known as the coefficients of viscosity, elasticity  and cross - viscosity, respectively. These material constants can be 

determined from viscometric flows for any real fluid. 1A  and 2A  are Rivlin-Ericksen tensors and they denote, 

respectively, the rate of strain and acceleration.  1A  and 2A  are defined by  

 
T

VVA )(1 ∇+∇=                                                                                                                                                        (2) 

 

11
1

2 )( AVVA
dt

dA
A

T∇+∇+=                                                                                                                     (3) 

 

where 
dt

d
is the material time derivative and ∇ gradient operator and (  

T) transpose operator. The viscoelastic fluids 

when modeled by Rivlin-Ericksen constitutive equation are termed as second grade fluids.  A detailed account of the 

characteristics of second – grade fluids is well documented by Dunn and Rajagopal [15]. Later, Rajagopal and Gupta 

[16] had studied  the thermodynamics consideration and it is assumed that:     

           

0≥µ  , 01 >α
 
and 021 =+ αα

                                                                                                                          
(4) 

 

The basic equations of momentum and energy governing such a flow, subject to the Boussinesq approximation, are  

 

)( 0

0

3

3

012

2

0 TTgu
kdy

ud

dy

ud

dx

dp

dy

du
−+−++−= βρ

µ
ναµρν                                   (5) 

 
2

2

0
dy

Td

dy

dT
αν =                                                                                                                         (6) 

 

where p is the pressure, ρ is the  density, µ  is the dynamic viscosity of the fluid, g  is acceleration due to gravity, 

β  coefficient of thermal expansion, 1α  is the viscoelastic parameter, 0k  is the permeability of the porous  medium 

and 0ν  is the transpiration  cross flow velocity. Further, here 
dx

dp
 is a constant. 

 

The boundary conditions are given by  

 

0)()0( == huu , 1)0( TT =     and 2)( ThT =                       (7) 

 

Introducing the following non-dimensional variables  

_

y =
h

y
, 

_

u =
2

h

u
 and θ  = 

02

0

TT

TT

−

−

 
 

into the equations (5) and (6), we obtain 

 

0
Re

1
2

2

3

3

=+++−−+ φθ GSinA
Gr

u
Dady

du
R

dy

ud

dy

ud
kR                     (8)   

 

 

0Pr
2

2

=−
dy

d
R

dy

d θθ
                                                                                                                         (9) 
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where 
2

1

h
k

ρ

α
= is the viscoelastic parameter, 

µ

ρν h
R 0=

 

is the cross flow Reynolds number, 

2

3

12 )(

ν

β hTTg
Gr

−
=  is the Grashof number, 

µ

ρ hU0Re =
 

is the Reynolds number, 
α

ν
=Pr is the Prandtl 

number, 
02

01

TT

TT
rT

−

−
=   is the wall temperature parameter and   

2

0)(
h

U

dx

dp
A

ν
−=  is the constant pressure gradient. 

 

The corresponding dimensionless boundary conditions are given by 

  

0)1()0( == uu ,  

 

Tr=)0(θ
 
and 1)1( =θ

 
                                                                                                                                             (10)  

       

Solution: We consider the first – order perturbation solution of the BVP (4) – (6) for small k.  Since the constitute 

equation (1) has been derived up to only the first – order of smallness of k, therefore, the perturbation solution obtained 

by retaining the terms up to the same order of smallness of k must be quite logical and reasonable.  We write  

    

 10 kuuu +=                                                                                                                    (11) 

 

and 10 θθθ k+=                                                                                                                    (12) 

 

Substituting equations (11) and (12) into equations (8) and (9) and boundary conditions (10) and then equating the like 

powers of k , we obtain 

 

Zeroth-order system )( 0
k : 

 

φθ GSinA
Gr

u
Dady

du
R

dy

ud
−−−=−− 00

0

2

0

2

Re

1

  

                                (13)  

 

0Pr 0

2

0

2

=−
dy

d
R

dy

d θθ
                                                                                                                    (14) 

 

Together with boundary conditions  

 

0)1()0( 00 == uu  ,  

 

Tr=)0(0θ
 
and  1)1(0 =θ

   
                                                                                                                                (15)

 
 

First-order system )( 1
k   : 

 

13

0

3

1
1

2

1

2

Re

1
θ

Gr

dy

ud
Ru

Dady

du
R

dy

ud
−−=−−  

                                                                                                                 (16)                

0Pr 1

2

1

2

=−
dy

d
R

dy

d θθ
                                                                                                                                               (17) 

 

Together with boundary conditions  

 

0)1()0( 11 == uu   

  

and      0)1()0( 11 == θθ                                                                                                                    (18) 
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Zeroth-order solution (or Solution for a Newtonian fluid): 

 

Solving equations (13) and (14) using the boundary conditions (15), we get 

 

)1(

)1()1(
Pr

PrPr

0 R

yR

T

R

T

e

erer

−

−+−
=θ

                                  (19)               

ADaeff
Gr

ececu yRbyay +−++= )(
Re

Pr

2110 2 φGDaSin+                                                           (20) 

 

where

 

2

/42
DaRR

a
++

= ,
2

/42
DaRR
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+−

= ,
)1(

)1(
Pr

Pr

1 R

R

T

e
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f

−

−
=

,
)/1PrPr)(1(

)1(
222Pr2

DaRRe

r
f

R

T
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−
= ,)(

Re
213 φDaGSinADaff

Gr
f ++−=  

φDaGSinADaeff
Gr

f
R ++−= )(

Re

Pr

214 ,
ab

b

ee

eff
c

−

−
= 34

1 , 
ab

a

ee

fef
c

−

−
= 43

2 . 

 

First-order solution (or Solution for a second-grade fluid) : 

 

Solving equation (17) with corresponding boundary conditions, we obtain 

 

                  01 =θ                                                                                                                                (21) 

Substituting the equations (20) and (21) into the Eq. (16) and then solving the resulting equation with the corresponding 

conditions, we get  

 
yRbyaybyay

efyefyefececu
Pr

576431 +−−+=
 

 

  where 
)/1PrPr(

Pr

Re 222

34

2
5

DaRR

RfGr
f

−−
= ,

Ra

aRc
f

−
=

2

3

1
6

Rb

bRc
f

−
=

2

3

2
7 , ,76

Pr

58

baR
efefeff −−=

      

,58

3 ab

b

ee

eff
c

−

−
=    .85

4 ab

a

ee

fef
c

−

−
=

 
  

It can be verified that when 0=k , 0=R and ∞→Da our results reduces to those given by Aung and Worku  

(1986). 
 

RESULTS AND CONCLUSIONS: 

 

The effect of cross flow Reynolds number over the temperature distribution has been illustrated in Fig - 1.  It is 

observed that, as the Reynolds number increases, the temperature decreases.  Further, for higher values of Reynolds 

Number, it is seen that the temperature remains constant and only after considerable distance away from the boundary, 

the temperature increases. 
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Fig - 1: Effect of Cross Flow Reynolds Number on temperature distribution 
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The influence of Prandtl number over the temperature distribution has been illustrated in Fig – 2. It is observed that as 

the Prandtl number increases, a decreasing trend in temperature is observed.  In contrast with the earlier conclusion, it 

is observed that for very large value of the Prandtl number, the change in temperature is not that significant at the initial 

stages.  However, at very far distance from the boundary, appreciable change is noticed. 
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Fig - 2: Effect of Prandtl number on temperature distribution 

 

Fig - 3 and Fig - 4 depicts the influence of wall temperature parameter on the temperature distribution in the fluid 

medium.  It is observed that as the wall temperature parameter increases, the temperature increases.  Further, it is seen 

that as we move away from the lower boundary, the increase in temperature is found to be more steep. 
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Fig - 3: Influence of wall temperature parameter on temperature distribution when R = 1 
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Fig - 4: Influence of wall temperature parameter on temperature distribution when R = 5 

 

The influence of cross flow Reynolds number on the velocity profiles has been illustrated in Fig - 5, Fig - 6, Fig - 7, Fig 

- 8 and Fig - 9 when the bounding surface is held at different angles of inclination.  In each of these illustrations, it has 

been noticed that, as the Cross flow Reynold’s number increases, the velocity decreases.  Further, as the Cross flow 

Reynold’s number is at high values, backward flow is also noticed. Also, as the angle of inclination increases, the 

velocity increases however the flow pattern for the velocity profiles remains unchanged. Increase in the velocity due to 

the variation in the angle of inclination can also be attributed to the gravitational force that acts on the system.  The 

mathematical model so developed is in agreement with the realistic situation 
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Fig - 5: Contribution of Cross flow Reynolds No. on the velocity profiles 
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Fig - 6: Contribution of Cross flow Reynolds No. on the velocity profiles 
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Fig - 7: Effect of Cross flow Reynolds No. on the velocity profiles 
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Fig - 8: Influence of Cross flow Reynolds No. on the velocity profiles 
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Fig - 9: Contribution of Cross flow Reynolds No. on the velocity profiles 

 

Fig - 10 and Fig - 11 illustrates the influence of  Reynolds number on the velocity profiles when the bounding surface is 

held horizontal and inclined.  In each of such situations, it has been noticed that, as the Reynolds number increases,  a 

decreasing trend in the velocity of the fluid has been  seen. Further, the angle of inclination appears to have a profound 

effect on the velocity field.  Though the velocity increases when the plate is inclined, the profiles are found to be 

distinct and are widely dispersed when the bounding surface is held horizontal. 
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Fig - 10: Influence of Reynolds No. on the velocity profiles 
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Fig - 11: Effect of Reynolds No. on the velocity profiles 

 

The effect of visco elasticity of the fluid medium over the velocity profiles has been illustrated in Fig - 12, Fig - 13, Fig 

- 14, Fig - 15 and Fig - 16 when the bounding surface has been held at different angles of inclination.  A brief review of 

the overall situation shows that the angle of inclination has profound effect on the velocity of the fluid medium.  It has 

been noticed that as the angle of inclination increases, the fluid velocity increases which is in conformation with the 

realistic situation. Also, when examined in each of the situations independently, it is seen that the viscoelasticity of the 

fluid medium plays an important role.  As the viscoelasticity of the fluid increases, the fluid velocity decreases.  Such a 

decrease can be attributed to the strong intra molecular force that is holds the neighboring fluid elements together from  
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draining along the bounding surface. The interesting feature in all the illustrations stated so far is that, the influence of 

viscoelasticity is not being felt in the initial stages, but at later stage, the dispersion in the velocity profiles in found to 

be more distinct and profiles are more dispersed. 
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Fig - 12: Influence of Viscoelastic parameter on the velocity profiles 
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Fig - 13: Contribution of Viscoelastic parameter on the velocity profiles 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

V
E

L
O

C
IT

Y

 

 

k = 0.00

k = 0.01

k = 0.02

k = 0.03

 Phi=45

 
Fig - 14: Effect of Viscoelastic parameter on the velocity profiles 
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Fig - 15: Influence of Viscoelastic parameter on the velocity profiles 
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Fig - 16: Contribution of Viscoelastic parameter on the velocity profiles 

 

The effect of the wall temperature parameter on the flow field at different angles of inclination of the bounding surface 

has been illustrated in Fig. - 17 and Fig - 18.  In both the illustrations, the bounding surface has been considered to be 

horizontal and inclined. When the cases are analyzed independently, it has been noted that, the fluid velocity increases 

as the wall temperature is increased.  Obviously, such a phenomenon is anticipated even in a real life situation.  

Increase in the wall temperature causes the fluid to become more hot .  As a result of this, the intra molecular forces  

gets weakened and due to such a situation, the fluid tends to drain along the boundary at a faster rate. Also, when the 

channel is inclined, obviously the gravitational pull acts over the system resulting in the increase of the fluid velocity.   
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Fig - 17: Effect of wall temperature parameter on the velocity profiles 
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Fig - 18: Influence of wall temperature parameter on the velocity profiles 

 

The consolidated influence of Grashoff number with respect to the angle of inclination of the fluid boundary has been 

studied in Fig - 19, Fig - 20, Fig - 21 and Fig - 22.  An overall situation shows that the flow pattern of velocity profiles 

though in general remains same, but in realistic terms of numerical values differ.  But the pattern in each of the 

situations remains unaltered.  In each of the situation, it is observed that as the Grashoff number increases, the velocity 

of the fluid medium increases. Such an increase is observed to be more predominant when the angle of inclination of 

the fluid bed is considered as the gravitational pull also contributes on the entire system.   In each of the cases, it is seen 

that the pattern of the profiles does not change qualitatively but a quantitative change has been noticed.  As the angle of 

inclination increases, the dispersion in velocity profiles appears to be diminishing. Such a diminishing is partly due to 

the presence of the gravitational pull. 
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Fig - 19: Effect of Grashoff number on the velocity profiles 
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Fig - 20: Influence of Grashoff number on the velocity profiles 
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Fig - 21: Contribution of Grashoff number on the velocity profiles 
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Fig - 22: Effect of Grashoff number on the velocity profiles 
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The influence of Darcy’s parameter with respect to the angle of inclination has illustrated in Fig – 23, Fig – 24, Fig – 

25, Fig – 26, and Fig - 27. In each of the representations, it is noted that the increase in Darcy’s value is proportional to 

the velocity.  Further, as the fluid bed is inclined, the velocity also increases which is in confirmation with the realistic 

situation. 
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Fig - 23: Influence of Darcy number on the velocity profiles 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y

V
E

L
O

C
IT

Y

 

 

Da = 0.01

Da = 0.03

Da = 0.04

Da = 0.10

Phi = 30

 
 

Fig - 24: Effect of Darcy Number on the velocity profiles 
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Fig - 25: Contribution of Darcy Number on the velocity profiles 
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Fig - 26: Effect of Darcy Number on the velocity profiles 
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Fig - 27: Influence of Darcy Number on the velocity profiles 
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