

$ON \delta$ - H CONTINUOUS FUNCTIONS IN GTS WITH HEREDITARY CLASSES

K. Karuppayi*

Department of Mathematics, Bharathiar University Arts and Science College, Gudalur, The Nilgiris -643212, Tamilnadu, India.

(Received on: 28-02-14; Revised & Accepted on: 28-03-14)

ABSTRACT

In this paper, We introduce a new class of functions called δ -H continuous function. We Obtain several characterization and some of their properties. Also, we investigate its relationship with other types of functions.

Keywords: δ -*H* cluster points, *R*-*H*-open set, θ -*H* -continuous, strongly δ *H*- continuous, almost-*H*-continuous, SH-*R* space, AH - *R* space with hereditary classes.

Mathematics Subject Classification 2010: 54A05, 54A10.

1. INTRODUCTION

In 2007, Csæzár [3] defined a nonempty class of subsets of a nonempty set, called hereditary class and studied modification of generalized topology via hereditary classes. Also it is studied in [8]. The aim of the paper is to extend the study of the properties of the generalized topologies via hereditary classes. A subfamily μ of $\mathfrak{P}(X)$ is called a generalized topology (GT) [2] if $\emptyset \in \mu$ and μ is closed under arbitrary union. The pair (X,μ) is called a generalized topological space (GTS). Members of μ are called μ -open sets and its complement is called a μ -closed set. The largest μ - open set contained in a subset A of X is denoted by $i_{\mu}(A)$ [1] and is called the μ - interior of A. The smallest μ - closed set containing A is called the μ - closure of A and is denoted by $c_{\mu}(A)$ [1].

A generalized topology μ is said to be a quasi-topology if μ is closed under finite intersection. Let X be a nonempty set. A hereditary class H of X is a nonempty collection of subset of X such that ACB, BEH implies AEH [3].

A hereditary class of X is an ideal [8] if $A \cup B \in H$ whenever $A \in H$ and $B \in H$.

An ideal I in a topological space (X,τ) is said to be codense if $\tau \cap I = \{\emptyset\}$. With respect to the generalized topology μ of all μ - open sets and a hereditary class H, for each subset A of X, a subset A^* (H) or simply A^* of X is defined by $A^* = \{x \in X | M \cap A \notin H \text{ for every } M \in \mu \text{ such that } x \in M \}$ [3].

In this paper, we introduce the notions of δ -H-open sets and δ -H-continuous functions in GTS with hereditary classes. We obtain several characterizations and some properties of δ -H-continuous functions. Also, we investigate the relationships with other related functions.

Corresponding author: K. Karuppayi* Department of Mathematics, Bharathiar University Arts and Science College, Gudalur, The Nilgiris -643212, Tamilnadu, India. E-mail: karuppayimutharasu@yahoo.com

2. δ-H-sets

In this section, we introduce δ -H-open sets and the δ -H-closure of a set in a GTS with hereditary class and investigate their basic properties. It turns out that they have similar properties with δ – open and the δ – closure [11].

A subset A of a GTS (X,μ) with hereditary class H is said to be an R-H-open set (resp. regular open set) if $i_{\mu}(c_{\mu} * (A)) = A$ (resp. $i_{\mu}(c_{\mu} * (A)) = A$. We call a subset A of X is R-H-closed if its complement is R-H - open. Let A be a subset of a GTS (X,μ) with a hereditary class H. A point x of X is called a δ -H-cluster point of A if $A \cap i_{\mu}(c^{*}(U)) \neq \emptyset$ for each μ - open neighborhood U of x. The family of all δ -H-cluster points of A is called the δ -H-closure of A and is denoted by [A] δ -H and a subset A of X is said to be δ -H-closed if [A] δ -H = A. The complement of a δ -H-closed set of X is said to be δ -H-open.

Lemma: 2.1 Let A and B be subsets of a quasi topological space (X, μ) with a hereditary class H. Then, the following properties hold,

(a) $i_{\mu}(c^{*}_{\mu}(A))$ is R-H-open,

(b) If A and B are R-H-open, then $A \cap B$ is R-H-open,

(c) If A is regular open, then A is R-H- open,

(d) If A is R-H-open, then A is delta-H-open,

(e) Every delta-H-open set is the union of a family of R-H- open sets.

Proof:

(a) Let A be a subset of X and $V = i_{\mu} (c^*_{\mu} (A))$. Then, we have $i_{\mu} (c^*_{\mu} (V)) = i_{\mu} (c^*_{\mu} (i_{\mu} (c^*_{\mu} (A)))) \subset i_{\mu} (c^*_{\mu} (c^*_{\mu} (A))) = i_{\mu} (c^*_{\mu} (A)) = V$ and also $V = i_{\mu} (V) \subset i_{\mu} (c^*_{\mu} (V))$.

Therefore, $i_{\mu} (c^*_{\mu} (V)) = V$.

(b) Let A and B be R-H open. Then, $A \cap B = i_{\mu} (c^{*}_{\mu} (A)) \cap i_{\mu} (c^{*}_{\mu} (B)) = i_{\mu} (c^{*}_{\mu} (A) \cap c^{*}_{\mu} (B)) \supset i_{\mu} (c^{*}_{\mu} (A \cap B)) = A \cap B.$

Therefore $A \cap B$ is R - H- open.

(c) Let A be regular open. Since $\mu_{\mu}^* \supset \mu$, we have $A = i_{\mu}(A) \subset i_{\mu}(c^*(A)) \subset i_{\mu}(c_{\mu}(A)) = A$ and hence $i_{\mu}(c^*_{\mu}(A)) = A$. Therefore, A is R-H- open.

(d) Let A be any R-H- open set. For each $x \in A$, $(X - A) \cap A = \emptyset$ and A is R-H- open. Hence $x \notin [X - A] \delta - H$ for each $x \in A$. Therefore $x \notin (X - A)$ implies $x \notin [X - A] \delta - H$. Therefore, $[X - A] \delta - H \subset (X - A)$. Since, $S \subset [S] \delta - H$ for any subset S of X, $[X - A] \delta - H = (X - A)$ and hence A is delta-H-open.

(e) Let A be a δ -H-open set. Then X-A is δ -H-closed and hence $[X-A]\delta$ -H = (X-A). For each $x \in A, x \notin [X-A]\delta$ -H and there exists an μ -open neighborhood V_X such that $i_{\mu}(c^*_{\mu}(V_X) \cap (X - A) = \emptyset$.

Therefore, $x \in V_X \subset i_\mu (c^*_\mu (V_X)) \subset A$, hence $A = \cup \{i_\mu (c^*_\mu (V_X)) \mid x \in A\}$. By (a), $i_\mu (c^*_\mu (V_X))$ is R-H- open for each $x \in A$.

Lemma: 2.2 Let A and B be subsets of a quasi topological space (X, μ) with a hereditary class H. Then, the following properties hold:

(a) $A \subset [A] \delta - H$;

- (b) If $A \subset B$, then $[A] \delta H \subset [B] \delta H$;
- (c) [A] $\delta H = \bigcap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta H \text{closed} \};$
- (d) If A is a δ –H-closed set of X for each $\alpha \in \Delta$, then $\cap \{A_{\alpha} | \alpha \in \Delta\}$ is δ H-closed;
- (e) [A] δ -H is δ -H-closed.

© 2014, IJMA. All Rights Reserved

Proof:

(a) For any x \in A and any μ -open neighbourhood V of x, we have $\emptyset \neq A \cap V \subset A \cap i_{\mu}(c_{\mu}^{*}(V))$ and hence $x \in [A] \delta - H$

Therefore, $A \subset [A] \delta - H$.

(b) Suppose that $x \notin [B] \delta - H$. There exists a μ - open neighborhood V of x such $\emptyset = i_{\mu} (c_{\mu}^{*}(V)) \cap B$, Hence $i_{\mu} (c_{\mu}^{*}(V)) \cap A = \emptyset$. Therefore, $x \notin [A] \delta - H$.

(c) Suppose that $x \in [A]_{\delta}-H$. For any μ - open neighborhood V of x and any δ – H-closed set F containing A, $\emptyset \neq A \cap i_{\mu} (c_{\mu}^{*}(V)) \subset F \cap i_{\mu} (c_{\mu}^{*}(V))$ and hence $x \in [F]_{\delta}-H = F$. Therefore $x \in \cap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta - H - \text{closed}\}$. Conversely, suppose that $x \notin [A]_{\delta}-H$. There exists a μ - open neighborhood V of x such that $i_{\mu} (c_{\mu}^{*}(V)) \cap A = \emptyset$. By

Lemma 2.1, $X - i_{\mu}(c_{\mu}^{*}(V))$ is a δ -H-closed set which contains A and does not contain x. Therefore, $x \notin \cap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta$ -H-closed $\}$.

(d) For each $\alpha \in \Delta$, $[\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H} \subset [A_{\alpha}]_{\delta-H} = A_{\alpha}$ and hence $[\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H} \subset [\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H}$. By (a) $[\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H} = [\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H} = [\bigcap_{\alpha \in \Delta A_{\alpha}}]_{\delta-H}$.

(e) This follows immediately from (c) and (d).

A point x of a quasi topological space (X,μ) with a hereditary class H is called a δ -cluster point of a subset A of X if $i_{\mu}(c_{\mu}(V)) \cap A \neq \emptyset$ for every μ - open set V containing x. The set of all δ -cluster points of A is called the δ - closure of A and is denoted by $c_{\delta}(A)$. If $c_{\delta}(A) = A$, then A is said to be δ - closed [6]. The complement of a δ - closed set is said to be δ - open. It is well-known that the family of all regular open sets of (X,μ) with a hereditary class H is a basis for a quasi topological space which is weaker than μ . This is called the semi-regularization of μ and is denoted by μ_s is the same as the family of δ - open sets of (X,μ) with a hereditary class H.

Theorem: 2.3 Let (X,μ) be a quasi topological space with a hereditary class H and $\mu\delta$ -H={A $\subset X$ | A is a δ -H-open set of (X,μ) }. Then $\mu\delta$ -H is a topology such that μ S \subset $\mu\delta$ -H \subset μ .

Proof: By Lemma 2.1, $\mu S \subset \mu \delta - H \subset \mu$. Next we show that $\mu \delta - H$ is a topology.

(1) It is obvious that \emptyset , $X \in \mu \delta - H$.

(2) Let $V_{\alpha} \in \mu_{\delta} - H$ for each $\alpha \in \Delta$. Then $X - V_{\alpha}$ is δ -H-closed for each $\alpha \in \Delta$. By Lemma 2.2, $\bigcap_{\alpha \in \Delta} (X - V_{\alpha})$ is a δ -H-closed and $\bigcap_{\alpha \in \Delta} (X - V_{\alpha}) = X - U_{\alpha} \in \Delta V_{\alpha}$. Hence $U_{\alpha} \in \Delta V_{\alpha}$ is δ -H-open.

(3) Let A, $B \in \mu \delta - H$. By Lemma 2.1, $A = U_{\alpha} \in \Delta_1$ A_{α} and $B = U_{\beta} \in \Delta_2$ B_{β} , where A_{α} and B_{β} , are R-H-open sets for each $\alpha \in \Delta_1$ and $\beta \in \Delta_2$. Thus $A \cap B = U\{A_{\alpha} \cap B_{\beta} \mid \alpha \in \Delta_1, \beta \in \Delta_2\}$. Since $A_{\alpha} \cap B_{\beta}$ is R-H-open, $A \cap B$ is δ -H-open set by Lemma 2.1.

The following Example 2.4 shows that the δ-H-open set need not be a R-H-open set.

Example: 2.4 Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{d\}, \{b, c, d\}\}$ and $H = \{\emptyset, \{c\}\}$. If $A = \{b, d\}$. Then $i_{\mu} c_{\mu}^{*}(A) = \{b, c, d\}$ and so $c_{\mu}^{*}(i_{\mu}(A)) = \{b, c, d\}$ which implies that A is δ -H-open. But A is not R-H-open, since $i_{\mu} c_{\mu}^{*}(A) = \{b, c, d\}$.

Proposition: 2.5 Let (X,μ) be a quasi topological space with a hereditary class H. (a) If $H = \{\emptyset\}$ or the hereditary class N of nowhere dense set of (X,μ) , then $\mu\delta-H = \mu S$. (b) If H = P(X), then $\mu\delta-H = \mu$.

Proof: Let $H = \{\emptyset\}$, then $S^* = c\mu(S)$ for every subset S of X. Let A be R-H -open. Then $A = i\mu(c\mu^{(*)}(A)) = i\mu(A \cup A^{(*)}) = i\mu(c\mu(A))$ and hence A is regular open. Therefore, every δ – H-open set is δ -open and we obtain $\mu\delta$ -H $\subset \mu S$. By Theorem 2.1, $\mu\delta$ -H = μ S. Next, let H = N.It is well know that $S^* = c_\mu (i_\mu (c_\mu (S)))$ for every subset S of X. Let A be any \odot 2014, IJMA. All Rights Reserved 347

K. Karuppayi*/On δ-H continuous functions in GTS with hereditary classes / IJMA- 5(4), April-2014.

R-H-open set. Then A is μ -open A = $i_{\mu}(c_{\mu}^{*}(A)) = i_{\mu}(A \cup A^{*}) = i_{\mu}(A \cup c_{\mu}(i_{\mu}(c_{\mu}(A)))) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A)))) = i_{\mu}(c_{\mu}(A))$. Hence A is regular open. Similarly to the case of H = {Ø}, hence μ_{δ} -H = μ_{S} .

(b) Let H = P(X). Then $S^* = \emptyset$ for every subset S of X. Now, let A be any μ -open set of X. Then $A = i_{\mu}(A) = -i_{\mu}(A \cup A^*) = i_{\mu}(c_{\mu}^*(A))$ and hence A is R-H-open. By Theorem 2.1, thus $\mu \delta - H = \mu$.

3. δ-H- continuous functions

A function f: $(X,\mu_1,H) \rightarrow (Y,\mu_2,I)$ is said to be δ -H-continuous if for each $x \in X$ and each μ -open neighborhood V of f(x), there exists a μ -open neighborhood U of x such that $f(i_{\mu}(c^*_{\mu}(U))) \subset i_{\mu}(c^*_{\mu}(V))$.

Theorem: 3.1 For a function f: $(X,\mu_1,H) \rightarrow (Y,\mu_2,I)$, the following properties are equivalent:

(a) f is $\delta - H -$ continuous,

(b) For each $x \in X$ and each R-H-open set V containing f(x), there exists an R-H-open set containing x such that $f(U) \subset V$,

(c) $f([A]_{\delta}-H) \subset [f(A)]_{\delta}-H$ for every $A \subset X$,

(d) $[\mathbf{f}^{-1}(\mathbf{B})]_{\delta-\mathbf{H}} \subset \mathbf{f}^{-1}([\mathbf{B}]_{\delta-\mathbf{H}})$ for every $\mathbf{B} \subset \mathbf{Y}$,

(e) For every δ -H- closed set F of Y, f⁻¹ (F) is δ -H-closed in X,

(f) For every δ – H-open set V of Y, f⁻¹ (V) is δ – H-open in X;

(g) For every R-H-open set V of Y, $f^{-1}(V)$ is R-H-open in X;

(h) For every R – H-closed set F of Y, f⁻¹ (F) is R – H-closed in X.

Proof:

(a) \Rightarrow (b): The proof is obvious.

(b) \Rightarrow (c): Let $x \in X$ and $A \subset X$ such that $f(x) \in f([A] \delta - H)$. Suppose that $f(x) \notin [f(A)] \delta - H$. Then, there exists an R-H-open neighborhood V of f(x) such that $f(A) \cap V = \emptyset$. By (b), there exists an R-H-open neighborhood U of x such that $f(U) \subset V$. Since $f(A) \cap f(U) \subset f(A) \cap V = \emptyset$, $f(A) \cap f(U) = \emptyset$.

Hence $U \cap A \subset f^{-1}(f(U)) \cap f^{-1}(f(A)) = f^{-1}(f(U) \cap f(A)) = \emptyset$. Hence $U \cap A = \emptyset$ and $x \notin [A]_{\delta - H}$.

Therefore $f(x) \notin f([A] \delta - H)$. This is a contradiction.

Therefore $f(x) \in [f(A)] \delta - H$.

(c) ⇒ (d): Let B ⊂ Y such that A = f⁻¹ (B). By (c), f([f⁻¹ (B)] δ -H)⊂[f(f⁻¹ (B)] δ -H) ⊂ [B] δ -H. Therefore [f⁻¹ (B)] δ -H ⊂ f⁻¹ [f(f⁻¹ (B))] δ -H ⊂ f⁻¹ ([B] δ -H). Thus [f⁻¹ (B)] δ -H ⊂ f⁻¹ ([B] δ -H).

(d) \Rightarrow (e): Let $F \subset Y$ be δ -H-closed. BY (d), $[f^{-1}(F)]_{\delta-H} \subset f^{-1}([F]_{\delta-H} = f^{-1}(F)$. Therefore $f^{-1}(F)$ is δ -H-closed.

(e) \Rightarrow (f): Let $V \subset Y$ be δ – H-open. Then Y - V is δ – H-closed. By (e) $f^{-1}(Y - V) = X - f^{-1}(V)$ is δ – H -closed. Therefore, $f^{-1}(V)$ is δ – H - open.

(f) \Rightarrow (g): Let $V \subset Y$ be R-H-open. Since every R-H- open set is δ -H-open, V is δ -H- open, by (f), f⁻¹ (V) is δ -H- open.

(g) \Rightarrow (h): Let $F \subset Y$ be R - H- closed. Then Y - F is R - H- open. By (g) $f^{-1}(Y - F) = X - f^{-1}(F)$ is R - H-open. Therefore $X - f^{-1}(F)$ is $\delta - H$ - open. Therefore, $f^{-1}(F)$ is $\delta - H$ - closed.

(h) \Rightarrow (a): Let $x \in X$ and V be a μ -open set containing f(x). Now, $V_0 = i_{\mu}(c^*(V))$, then by Lemma 2.1 Y $-V_0$ is an R-H-closed set. By (8), $f^{-1}(Y - V_0) = X - f^{-1}(V_0)$ is $\delta - H$ -closed set. Therefore, $f^{-1}(V_0)$ is $\delta - H^-$ open. Since $x \in f^{-1}(V_0)$, by Lemma 2.1 there exists a μ -open neighborhood U of x such that $x \in U \subset i_{\mu}(c^*(U)) \subset f^{-1}(V_0)$. Hence $f(i_{\mu}(c^*_{\mu}(U))) \subset i_{\mu}(c^*_{\mu}(V))$. Hence f is a $\delta - H^-$ continuous function.

Corollary: 3.2 A function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is δ -H-continuous if and only if $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is continuous.

Proof: This is an immediate consequence of Theorem 2.3.

Theorem: 3.3 If f: $(X,\mu_1,H) \rightarrow (Y,\mu_2,I)$ and g: $(Y,\mu_2,I) \rightarrow (Z,\mu_3,J)$ are δ -H- continuous, then so is g°f: $(X,\mu_1,H) \rightarrow (Z,\mu_3,J)$.

Proof: It follows immediately from Corollary 3.1.

A function f: $(X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ from one GTS (X, μ_1) with a hereditary class H to another (Y, μ_2) with a hereditary class I is said to be strongly θ -H-continuous (resp. θ -H-continuous, almost-H-continuous) if for each $x \in X$ and each μ -open neighborhood V of f(x), there exists a μ -open neighborhood U of x such that $f(c_{\mu}^*(U)) \subset V$ (resp. $f(c^*_{\mu}(U)) \subset c^*_{\mu}(V), f(U) \subset i_{\mu}(c_{\mu}^*(V)))$. A function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is said to be almost-H-open if for each R-H-open set U of X, f(U) is μ -open in Y.

Theorem: 3.4

- (a) If $\mathbf{f}: (X,\mu_1,H) \to (Y,\mu_2,I)$ is strongly θ -thermal-continuous and $g: (Y,\mu_2,I) \to (Z,\mu_3,J)$ almost-H-continuous, then $g^{\circ}\mathbf{f}: (X,\mu_1,H) \to (Z,\mu_3,J)$ is δ -H-continuous.
- (b) The following implications hold:

strongly θ -H-continuous $\Rightarrow \delta$ -H-continuous \Rightarrow almost-H-continuous.

Proof:

(a) Let $x \in X$ and W be any μ -open set of Z containing $(g^{\circ}f)(x)$.

Since g is almost-H-continuous, there exists a μ -open neighborhood $V \subset Y$ of f(x) such that $g(V) \subset i_{\mu}(c_{\mu}^{*}(W))$. Since f is strongly θ -H-continuous, there exists a μ -open neighborhood $U \subset X$ of x such that $f(c_{\mu}^{*}(U)) \subset V$. Hence $g(f(c_{\mu}^{*}(U))) \subset g(V)$ and $g(f(i_{\mu}(c_{\mu}^{*}(U)))) \subset g(f(c_{\mu}^{*}(U))) \subset g(V) \subset i_{\mu}(e_{\mu}^{*}(W))$. Hence, $g^{\circ}f:(X,\mu_{1},H) \to (Z,\mu_{3},J)$ is δ -H-continuous.

(b) Let f be strongly θ -H-continuous. Let $x \in X$ and V be any μ -open neighborhood of f(x). Then, there exists a μ -open neighborhood $U \subset X$ of x such that $f(c^*_{\mu}(U)) \subset V$. Also $f(i_{\mu}(c^*_{\mu}(U))) \subset f(c^*_{\mu}(U)) \subset V$. Since V is μ -open, $f(i_{\mu}(c^*_{\mu}(U))) \subset i_{\mu}(c^*_{\mu}(V))$. Thus f is δ -H-continuous. Let f be δ -H-continuous.

Now we prove that f is almost H-continuous. Then, for each $x \in X$ and each μ -open neighborhood $V \subset Y$ of f(x), there exists a μ -open neighborhood $U \subset X$ of x such that $f(i_{\mu}(c^*_{\mu}(U))) \subset i_{\mu}(c^*_{\mu}(V))$. Since $U \subset i_{\mu}(c^*_{\mu}(U))$, $f(U) \subset i_{\mu}(c^*_{\mu}(V))$.

Hence f is almost H-continuous. A GTS (X,μ) with a hereditary class H is said to be SI-R space if for each $x \in X$ and each μ -open neighborhood V of x, there exists a μ -open neighborhood U of x such that $x \in U \subset i_{\mu}$ ($c^*_{\mu}(U)$) $\subset V$. **Theorem:** 3.5 For a function f: $(X,\mu_1,H) \rightarrow (Y,\mu_2,I)$, the following are true:

- (a) If Y is an SH-R space and f is δ -H-continuous, then f is continuous.
- (b) If X is an SH-R space and f is almost H-continuous, then f is δ -H-continuous.

Proof:

(a) Let Y be an SH-R space. Then, for each μ -open neighborhood V of f(x), there exists a μ -open neighborhood V_o of f(x) such that $f(x) \in V \subset i_{\mu}(c^*_{\mu}(V)) \subset V$. Since f is δ -H-continuous, there exists a μ -open neighborhood U_o of x such that $f(i_{\mu}(c^*_{\mu}(U_{\circ}))) \subset i_{\mu}(c^*_{\mu}(V_{\circ}))$. Thus $f(U_{\circ}) \subset V$, hence f is continuous.

(b) Let $x \in X$ and V be a μ -open neighborhood of f(x). Since f is almost- H continuous, there exists a μ -open neighborhood U of x such that $f(U) \subset i_{\mu}(c^{*}(V))$. Since X is an SH-R space, there exists a μ -open neighborhood U_{1} of x such that $i_{\mu}(c_{\mu}^{*}(U_{1})) \subset U$. Thus $f(i_{\mu}(c_{\mu}^{*}(U_{1}))) \subset f(U) \subset i_{\mu}(c_{\mu}^{*}(V))$. Therefore f is δ -H- continuous.

Corollary: 3.6 If (X,μ_1) with hereditary class H and (Y,μ_2) with hereditary class I are SH-R spaces, then the following concepts on μ^{μ} function $f : (X,\mu_1,H) \rightarrow (Y,\mu_2,I)$: δ -H-continuity, continuity, almost-H-continuity are equivalent.

Proof: The proof follows from Theorem 3.7. A quasi topological space (X,μ) with a hereditary class H is said to be an AH-R space if for each R-H-closed set $F \subset X$ and each $x \notin F$, there exist disjoint μ -open sets U and V in X such that $x \in U$ and $F \subset V$.

Theorem: 3.7 A quasi topological space (X,μ) with a hereditary class H is an AH-R space if and only if each $x \in X$ and each RH- open neighborhood V of x, there exists an R-H- open neighborhood U of x such that $x \in U \subset c^*(U) \subset c_{\mu}(U) \subset V$.

Proof: Suppose (X,μ) with a hereditary class H is an AI-R space. Let $x \in V$ and V be R-H- open. Then $\{x\} \cap (X-V) = \emptyset$. Since X is an AI-R space, there exist μ -open sets U_1 and U_2 containing x and X-V respectively, such that $U_1 \cap$

 $U_2 = \emptyset$. Then $c_{\mu}(U_1) \cap U_2 = \emptyset$. and hence $c_{\mu}^*(U_1) \subset c_{\mu}(U_1) \subset (X - U_2) \subset V$. Thus $x \in U_1 \subset c^*(U_1) \subset c_{\mu}(U_1) \subset V$ and we have $U_1 \subset i_{\mu}(c_{\mu}^*(U_1)) \subset c_{\mu}^*(U_1)$.

Let $i_{\mu}(c_{\mu}^{*}(U_{1})) = U$. Thus $c_{\mu}(U_{1}) = c_{\mu}(i_{\mu}(c_{\mu}^{*}(U_{1}))) \subset c_{\mu}(c_{\mu}^{*}(U_{1})) = c_{\mu}(U_{1}) \subseteq c_{\mu}(U)$ and $U_{1} \subset U \subset c_{\mu}^{*}(U) \subset c_{\mu}^{*}(U_{1}) \subset c_{\mu}(U_{1}) \subset V$. Therefore, there exists an R-H-open set U such that $x \in U \subset c^{*}(U) \subset c_{\mu}(U) \subset V$. Conversely, let $x \in X$ and an R-H- closed set F such that $x \in F$. Then, X-F is an R-H-open neighborhood of x.

By hypothesis, there exists an R-H-open neighborhood V of x such that $x \notin V \subset c^*(V) \subset c_{\mu}(V) \subset X - F$. Thus $F \subset X - c_{\mu}(V) \subset (X - c^*(V)) \subset$, where $X - c_{\mu}(V)$ is a μ -open set.

Also, we have $V \cap (X - c_{\mu}(V)) = \emptyset$ and V is μ -open. Therefore, X is an AH-R space.

Theorem: 3.8 For a function f: $(X,\mu_1,H) \rightarrow (Y,\mu_2,I)$, the following are hold:

(a) If Y is an AI-R space and f is θ -H-continuous, then f is δ -H-continuous.

(b) If X is an AI-R space, Y is an SH-R space and f is δ -H-continuous, then f is strongly θ -H-continuous.

Proof:

(a) Let Y be an AH-R space. Then for each $x \in X$ and each R-H- open neighborhood V of f(x), there exists an R-H-open neighborhood V₀ of f(x) such that $f(x)\in V \subset c^*(V)\subset V$. Since f is θ -H-continuous, there exists a μ -open

neighborhood U of x such that $f(c\mu U) \subset c_{\mu}(V_{\circ})$. Hence $f(i(c\mu^{*}(U))) \subset f(c\mu^{*}(U)) \subset c\mu^{*}(V_{\circ}) \subset V$ and thus $f(i_{\mu}(c\mu^{*}(U))) \subset V$. By Theorem 3.1, f is $\delta - H$ - continuous.

K. Karuppayi*/On δ -H continuous functions in GTS with hereditary classes / IJMA-5(4), April-2014.

(b) Let X be an AHR space, Y an SH-R space. For each $x \in X$ and each μ -open neighborhood V of f(x), there exists a μ -open set V_o such that $f(x) \in V_o \subset i_{\mu}(c_{\mu}^*(V_o) \subset V', \text{ since Y is an SH} - R \text{ space. Since f is } \delta - H - \text{ continuous, there}$ exists a μ -open set U of x such that $f(i_{\mu}(c_{\mu}^*(U))) \subset i_{\mu}(c_{\mu}^*(V_o))$. By Lemma 2.1, $i_{\mu}(c_{\mu}^*(U))$ is R-H-open and since X is an AI-R space, by Theorem 3.7. there exists an R-H-open set U_o such that $x \in V_o \subset c_{\mu}^*(U_o) \subset i_{\mu}(c_{\mu}^*(U))$. But every R-H-open set is μ -open, hence U is μ -open. Also, $f(c^*(U)) \subset V$ Hence f is strongly θ -H- continuous.

Theorem: 3.9 If a function f: $(X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is θ -H-continuous and almost-H-open, then f is δ -H-continuous.

Proof: Let $x \in X$ and V be a μ - open neighborhood of f(x). Since f is θ – H-continuous, there exists a μ -open neighborhood U of x such that $f(c\mu^*(U)) \subset c\mu^*(V)$. Hence $f(i\mu(c^*(U))) \subset c\mu^*(V)$. Since f is almost-H-open, $f(i\mu(c\mu^*(U))) \subset i\mu(c\mu^*(V))$. This shows f is strongly θ – H-continuous.

REFERENCES

- [1] A.Császár, Generalized open sets., Acta Math. Hungar., 1997, (1-2): 65-87.
- [2] A.Császár, Generalized open sets in generalized topologies., Acta Math. Hungar., 2005, 106: 351-357, doi: 10.1007/s10474-005-0005-5.
- [3] A.Császár, Modification of Generalized topologies via hereditary classes., Acta Math. Hungar., 2007, 115: 29-36.
- [4] A.Császár, Remarks on quasi-topologies., Acta Math. Hungar., 2008, 119 (1-2): 197-200.
- [5] D.Jankovic, T.R. Hamlett. New topologies from old via ideals., Amer. Math. Monthly, 1990, 97(4): 295-310.
- [6] D.Jankovic, T.R. Hamlett, Compatible extensions of ideals., Boll. U.M.I., (7)6-B (1992), 453-465.
- [7] K.Kuratowski. Topology I. Academic Press, New York, 1996.
- [8] V.Renukadevi, K.Karuppayi. On modifications of generalized topologies via hereditary classes., J. Adv. Res. Pure. Math., 2010, 2(2): 14-20.
- [9] P.Sivagami. Remarks on γ-interior, Acta Math. Hungar., 2008, 119: 81-94.
- [10] Sheena Scaria, V.Renukadevi. On hereditary classes in generalized topological spaces., J. Adv. Res. Pure. Math., 2011, 3(2): 21-30.
- [11] N.V.Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(2) (1998), 103-118.

Source of support: Nil, Conflict of interest: None Declared