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ABSTRACT 

The purpose of this research article is to explain the meaning of α-open sets, which would be more understandable to 

the readers. 

------------------------------------------------------------------------------------------------------------------------------------------------ 

I. TOPOLOGICAL SPACE: 

 

Let X be a non-empty set. A class ���� of subsets of X is a topology on X, iff ���� satisfies the following axioms, 

 

(i) X and φ belong to ����. 

 

(ii) The union of any numbers of sets in ����  belongs to ���� 

 

(iii) The interaction of any two sets in ����  belongs to ����. 

 

The members of ���� are then called ���� -open sets (or open sets) and pair (X, ��������) is called a topological space. 

 

II. INTERIOR OF SET: 

 

Let A be a subset of a topological space X. Any point p∈A is said to be interior of A, if p belongs to an open set G 

contained in A, i.e. p∈G⊂ A. The set of interior points of A is denoted by int (A) or A°, which is called the interior of A. 

 

III. CLOUSER OF SET: 

 

Let A be a subset of a topological space X. The closure of A is defined as the interaction of all closed super sets of A. 

The Closure of A is denoted by Cl(A) or A . 

 

IV. αααα-OPEN SET (AND αααα-CLOSED SET): 

 

Let A be a subset of a topological space (X, ��������), then A is said to be α-open set if A ⊆ A°–°. Complement of α-open set 

is called α-closed set, such that, A–°– ⊆ A. 

 

Now, Let  X = {a, b, c, d, e} be a non-empty set and 

 

������������������������������������������������������������������������������������������������ = {φ, X, {a, b, c}, {d, e, c}, {d, e}, {c}} 

 

is a collection of subset of X. 
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A. SHOW THAT ����   IS A TOPOLOGY DEFINED ON X. 

 

(i) φ, X∈���� 

 

(ii) φ∪X = X∈���� 

X∪{a, b, c} = X∈���� 

{a, b, c}∪{d, e} = {a, b, c, d, e} = X∈���� 

{d, e}∪{c} = {d, e, c}∈���� 

{c}∪{d, e, c} = {d, e, c}∈��������

 

(iii) φ∩X = φ∈���� 

X∩{a, b, c} = {a, b, c}∈���� 

{a, b, c}∩{d, e}= φ∈���� 

{d, e}∩{c} = φ∈���� 

{c}∩{d, e, c} = {c}∈����  

 

Here, we see that all three conditions for topological space are satisfied, it means that ����  is a topology on X. 

 

Now, we have all possible subsets of X = 25 = 2 × 2 × 2 × 2 × 2 = 32, which are given below. 

X, φ, {a}, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {c, d}, {d, e}, {a, e}, {a, c}, {a, d}, {b, d}, {b, e}, {c, e}, {a, b, c}, {a, b, 

d}, {a, b, e}, {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}, {c, d, e}, {d, e, a}, {d, e, b}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {c, 

e, d, a}, {d, e, a, b} 

 

B. VERIFICATIONS OF αααα-OPEN SETS: 

 

As given,  X = {a, b, c, d, e} 

And   ���� = {φ, X, {a, b, c}, {d, e}, {c}, {d, e, c}} 

 

So that we have 

 

Open sets: φ, X, {a, b, c}, {d, e}, {c}, {d, e, c} 

 

Closes sets: X, φ, {d, e}, {a, b, c}, (a, b, d, e}, {a, b} 

 

Now as per definition of α-open set, here we are verifying for all (32) subsets of X. Let A be a subset of a topological 

space (X, ��������), then 

����

(i) Let A = φ, so that A°–°= φ°–° = φ 

Hence A⊆A°–° (i.e. α-open set). 

 

(ii) Let A = X, so that X°–° = X 

Hence A⊆A°–° (i.e. α-open set) 

 

(iii) Let A = {a}, so that A°–° = {a}°–° = φ–° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(iv) Let A = {b}, so that A°–°= {b}°–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(v) Let A = {c}, so that A°–° = {c}°–° = {c}–° = {c}°= {c} 

Hence A⊆A°–° (i.e. α-open set). 

 

(vi) Let A = {d}, so that A°–° = {d}°–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(vii) Let A = {e}, so that A°–° = {e}°–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(viii) Let A = {a, b}, so that A°–° = {a, b}°–° = φ–° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 
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(ix) Let A = {b, c}, so that A°–° = {b, c}°–° = φ–° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(x) Let A = {c, d}, so that A°–° ={c, d}°–° = {c}–° = {c}° = {c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xi) Let A = {d, e}, so that A°–° = {d, e}°–° = {d, e}–° = {d, e}° = {d, e} 

Hence A ⊆ A°–° (i.e. α-open set). 

 

(xii) Let A = {a, e}, so that A°–° = {a, e}°–° = φ–° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xiii) Let A = {a, c}, so that A°–° = {a, c}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. α-open set). 

 

(xiv) Let A = {a, d}, so that A°–° = {a, d}°–° = φ–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xv) Let A = {b, d}, so that A°–° = {b, d}°–° = φ–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xvi) Let A = {b, e}, so that A°–° = {b, e}°–° = φ–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xvii) Let A = {c, e}, so that A°–° ={c, e}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xviii) Let A = {a, b, c}, so that A°–° = {a, b, c}°–° = {a, b, c}–° = {a, b, c}° ={a, b, c} 

Hence A ⊆ A°–° (i.e. α-open set). 

  

(xix) Let A = {a, b, d}, so that A°–° = {a, b, d}°–° = φ–° = φ° = φ 

Hence A ⊆/  A°–° (i.e. NOT α-open set). 

 

(xx) Let A = {a, b, e}, so that A°–° = {a, b, e}°–° = φ–° = φ° = φ 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxi) Let A = {a, c, d}, so that A°–° = {a, c, d}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxii) Let A = {a, c, e}, so that A°–° ={a, c, e}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxiii) Let A = {b, c, d}, so that A°–° = {b, c, d}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxiv) Let A = {b, c, e}, so that A°–° = {b, c, e}°–° = {c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxv) Let A = {c, d, e}, so that A°–° ={c, d, e}°–° = {c, d, e}–° = X° = X 

Hence A ⊆ A°–° (i.e. α-open set). 

 

(xxvi) Let A = {d, e, a}, so that A°–° = {d, e, a}°–° ={d, e}–° = {d, e}° = {d, e} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxvii) Let A = {d, e, b}, so that A°–° = {d, e, b}°–° ={d, e}–° = {d, e}° = {d, e} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxviii) Let A = {a, b, c, d},  
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so that A°–° ={a, b, c, d}°–° ={a, b, c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxix) Let A = {a, b, c, e},  

so that A°–° ={a, b, c, e}°–° ={a, b, c}–° = {a, b, c}° = {a, b, c} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

(xxx) Let A = {b, c, d, e},  

so that A°–° ={b, c, d, e}°–° ={d, e, c}–° = X° = X 

Hence A ⊆ A°–° (i.e. α-open set). 

 

(xxxi) Let A = {c, e, d, a},  

so that A°–° ={c, e, d, a}°–° ={d, e, c}–° = X° = X 

Hence A⊆A°–° (i.e. α-open set). 

 

(xxxii) Let A = {d, e, a, b},  

so that A°–° ={d, e, a, b}°–° ={d, e}–° = {d, e}° = {d, e} 

Hence A ⊆/ A°–° (i.e. NOT α-open set). 

 

Therefore, we have 9, α-open sets, which are the subsets of the set X = {a, b, c, d, e} 

 

V. CONCLUSION: 

 

Here we find 9, α-open sets out of 32 subsets of X = {a, b, c, d, e} with ���� ={φ, X, {a, b, c}, {d, e}, {c}, {d, e, c}} as 

given below: 

 

φ, X, {c}, {a, c}, {d, e}, {a, b, c}, {c, d, e} {b, c, d, e}, {c, e, d, a}, Total: 09. 

 

Also, it is easy to understand that other 23 subsets of X, are NOT α-open sets of the topological space (X, ����). 
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