International Journal of Mathematical Archive-5(3), 2014, 276-279 IMA Available online through www.ijma.info ISSN 2229-5046

ASSOCIATOR IDEAL IN SEMIPRIME WEAKLY STANDARD RINGS

K. Suvarna ${ }^{1}$ and K. Chennakesavulu*2
1Department of Mathematics, Sri Krishnadevaraya University, Anantapur - 515 003, AP, India.
${ }^{2}$ Department of Mathematics, Intel Engineering College, Anantapur, AP, India.

(Received on: 30-01-14; Revised \& Accepted on: 07-03-14)

Abstract

We prove that an associator ideal in a semiprime weakly standard Novikov ring R is anticommutative and alternative. We use this to prove that R is associative.

Key Words: Commutator, associator, semiprime ring, primering, weakly standard ring, alternative ring, flexible ring, characteristic of a ring.

1. INTRODUCTION

Kleinfeld and Smith [1] proved that simple finite dimensional weakly Novikov algebras over a field of characteristic zero must be associative. Kleinfeld proved that if R is a prime ring satisfying the Novikov identity $x(y z)=y(z x)$ such that $2 \mathrm{x}=0$ implies $\mathrm{x}=0$, then R must be commutative and associative. In [2] it is shown that a semiprime flexible ring with weak Novikov identity is associative. In this paper, we prove that in a weakly standard ring R of characteristic $\neq 2$, 3 with Novikov identity $(\mathrm{xy}) \mathrm{z}=(\mathrm{xz}) \mathrm{y}$, the associator ideal I is anticommutative and alternative. Using these results we prove that a semiprime weakly standard ring of characteristic $\neq 2,3$ is associative.

2. PRELIMINARIES

A weakly standard ring R is a nonassociative ring satisfying the identities

$$
\begin{aligned}
& (x, y, x)=0 \\
& ((w, x), y, z)=0 \\
& ((w, y, y), z)=0
\end{aligned}
$$

for all w, x, y, z in R, where the associator $(x, y, z)=(x y) z-x(y z)$ and the commutator $(x, y)=x y-y x$. We define a ring R to be of characteristic $\neq n$ if $n x=0$ implies $x=0$ for all x in R. A ring R is prime if whenever A and B are ideals of R such that $A B=0$, then either $A=0$ or $B=0$ and if ring R is semiprime for any ideal A of $R, A^{2}=0$ implies $A=0$.

We define an alternative ring R in which $(x x) y=x(x y)=x(x y), y(x x)=(y x) x$, for all x, y in R.
Throughout this section R denotes a weakly standard ring of characteristic $\neq 2$, 3 satisfying the Novikov identity $(x y) z=(x z) y$.

Using this identity we obtain

$$
\begin{align*}
(w, x, y, z) & =((w, x) y) z-(w x)(y z) \\
& =((w y) z) x-(w(y z)) x \\
& =(w, y, z) x . \tag{1}
\end{align*}
$$

Since the flexible identity $(\mathrm{x}, \mathrm{y}, \mathrm{x})=0$
holds in R, every commutator is in the nucleus of R and every associator commutes with every element of R . The above equation can be written as
$(\mathrm{w}, \mathrm{x}, \mathrm{yz})=\mathrm{y}(\mathrm{w}, \mathrm{x}, \mathrm{z})$,
which is the weak Novikov identity. The commutative center U of R is defined by $U=\{u \in R /(u, R)=0\}$. The associator ideal I consists of al finite sums of associators and left multiples of associators. As a consequence of (2) we observe that the associator ideal I of R consists of all finite sums of associators. We use the Teichmuller identity
$(w x . y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0$,
which is valid in every ring.
A linearization of (1) implies ($w x, y, z$) $=-(z, y, w x)$.
But use of (2) shows that $-(\mathrm{z}, \mathrm{y}, \mathrm{wx})=-\mathrm{w}(\mathrm{z}, \mathrm{y}, \mathrm{x})$. From the flexible identity we obtain
$(w x, y, z)=w(x, y, z)$.
Comparing (3) and (4) implies
$-(w, x y, z)+(w, x, y z)=(w, x, y) z$.
Now ($\mathrm{z}, \mathrm{x}, \mathrm{yz}$) $=\mathrm{y}(\mathrm{z}, \mathrm{x}, \mathrm{z})=0$, using (2) and then (1). By substituting $\mathrm{w}=\mathrm{z}$ in (5), we get
$(\mathrm{z}, \mathrm{x}, \mathrm{y}) \mathrm{z}=0$.
A linearization of (6) is $(w, x, y) z=-(z, x, y) w$.
For arbitrary elements $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ in R , we observe that
$p=(a, b,(x, y, z))=(a, b, x y \cdot z)-(a, b, x \cdot y z)=x y .(a, b, z)-x \cdot y(a, b, z)=(x, y,(a, b, z))$,
Using (2) several times.
Thus (a, b, (x, y, z) $)=(x, y,(z, b, z))$.
Let $\mathrm{x}=\mathrm{z}$ in (8). As a consequence of (1), it follows that
$(\mathrm{z}, \mathrm{y},(\mathrm{a}, \mathrm{b}, \mathrm{z}))=0$.
By linearization of (9) together with (1), we have
$\left(\left(w^{\pi}, y,\left(a^{\pi}, b, z^{\pi}\right)\right)=(\operatorname{sgn} \pi)(w, y,(a, b, z))\right.$,
where π is any permutation on the set $\{\mathrm{w}, \mathrm{a}, \mathrm{z}\}$. Combining (10) with (8) we obtain
$(a, b,(x, y, z))=-(x, b,(a, y, z))=-(a, y,(x, b, z))$.
Thus $\left(\mathrm{w}, \mathrm{y}^{\sigma},\left(\mathrm{a}, \mathrm{b}^{\sigma}, \mathrm{z}\right)\right)=(\mathrm{sgn} \sigma)(\mathrm{w}, \mathrm{y},(\mathrm{a}, \mathrm{b}, \mathrm{z}))$,
where σ is any permutation on the set $\{y, b\}$.
Now (x, y, z) (a, b, c) =-((a, b, c), y, z)x using (7). Then flexible implies
$-((a, b, c), y, z) x=(z, y,(a, b, c)) x$.
Let $\mathrm{c}=\mathrm{z}$. Since $(\mathrm{z}, \mathrm{y},(\mathrm{a}, \mathrm{b}, \mathrm{z})) \mathrm{x}=-(\mathrm{a}, \mathrm{y},(\mathrm{z}, \mathrm{b}, \mathrm{z})) \mathrm{x}=0$, using (10) and (1) it follows that
$(x, y, z)(a, b, z)=0$.
A linearization of (12) leads to
$(x, y, z)(a, b, c)=-(x, y, c)(a, b, z)$.
Now, (13) and (1) imply
$\left(x^{\alpha}, y, z^{\alpha}\right)\left(a^{\alpha}, b, c^{\alpha}\right)=(\operatorname{sgn} \alpha)(x, y, z)(a, b, c)$,

K. Suvarna ${ }^{1}$ and K. Chennakesavulu*2² Associator Ideal In Semiprime Weakly Standard Rings/ IJMA-5(3), March-2014.

where α stands for any permutation on the set $\{\mathrm{x}, \mathrm{z}, \mathrm{a}, \mathrm{c}\}$. Also we note that
$q=(x, b, z)(a, b, c)=-((a, b, c), b, z) x=(z, b,(a, b, c)) x$,
By combining (7) with the flexible identity. But then $\mathrm{q}=(\mathrm{z}, \mathrm{b},(\mathrm{a}, \mathrm{b}, \mathrm{c})) \mathrm{x}=-(\mathrm{z}, \mathrm{b},(\mathrm{a}, \mathrm{b}, \mathrm{c})) \mathrm{x}$, using (11). Thus $2 \mathrm{q}=0$.
Using characteristic different from 2, we get $\mathrm{q}=0$, so that
$(\mathrm{x}, \mathrm{b}, \mathrm{z})(\mathrm{a}, \mathrm{b}, \mathrm{c})=0$.
By linearization of (15) we have
$(x, y, z)(a, b, c)=-(x, b, z)(a, y, c)$.
Then the combination of (16) and (14) gives
$(x, y, z)(a, b, c)=-(a, b, c)(x, y, z)$.
This implies the following result.
Lemma: $1 A$ is anticommutative.

MAIN RESULTS

Now we prove the main results.
Lemma: 2 A is alternative.
Proof: Let q be an arbitrary element in A and $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ arbitrary elements in R. Then ($\mathrm{z}, \mathrm{x}, \mathrm{y}) . \mathrm{qw}=-(\mathrm{qw}, \mathrm{x}, \mathrm{y}) \mathrm{z}$ using (7). But - (qw, x, y) $\mathrm{z}=-\mathrm{q}(\mathrm{w}, \mathrm{x}, \mathrm{y}) . \mathrm{z}$, using (4). Then (2) implies $-\mathrm{q}(\mathrm{w}, \mathrm{x}, \mathrm{y}) . \mathrm{z}=-(\mathrm{w}, \mathrm{x}, \mathrm{qy}) \mathrm{z}$. Again (7) implies

- (w, x, qy)z = (z, x, qy) and (2)

Implies (z, x, qy) w = q(z, x, y).w. Then
Lemma (1) yields $q(z, x, y) . w=-(z, x, y) q . w$.
By taking these equalities together we obtain (z, x, y).qw $=-(\mathrm{z}, \mathrm{x}, \mathrm{y}) \mathrm{q} . \mathrm{w}$.
In other words p.qw $=-$ pq.w
for all $p, q \in A$ and all w in R. We also assume that r is an element of A.
Then $(p, q, r)+(p, r, q)=p q . r-p . q r+p r . q-p . r q=-2 p . q r-2 p . r q$,
Using (18). However $-2 p . q r-2 p . r q=-2 p(q r+2 q)$.
Then lemma (1) implies that $\mathrm{qr}+\mathrm{rq}=0$, so that $(\mathrm{p}, \mathrm{q}, \mathrm{r})+(\mathrm{p}, \mathrm{r}, \mathrm{q})=0$. At this point I is both flexible and right alternative, hence alternative.

Lemma: 3 If S is an anti-commutative alternative ring of characteristic $\neq 2$ then $\left(S^{2}\right)\left(S^{2}\right)=0$.
Proof: For arbitrary elements w, x, y, z in S, we have $(x y)(z x)=x(y z) x=x^{2}(y z)=0$, using alternative identities and anti-commutativity.

By linearizing this identity, we get $(\mathrm{wy})(\mathrm{zx})=-(\mathrm{xy})(\mathrm{zw})$. Applying this in conjunction with anti-commutativity leads to $(\mathrm{wy})(\mathrm{zx})=(\mathrm{zx})(\mathrm{wy})$. However wy also anti-commutes with zx , so that $2(\mathrm{wy})(\mathrm{zx})=0$. Since R is of characteristic $\neq 2$, we have $(\mathrm{wy})(\mathrm{zx})=0$. So that $\left(\mathrm{S}^{2}\right)\left(\mathrm{S}^{2}\right)=0$.

Using the above results, we prove the following:
Theorem: 1 A semiprime weakly standard Novikov ring R of characteristic $\neq 2$ is associative.

Proof: Let p, q be arbitrary elements of R , I the associative ideal of R , and z an arbitrary element of R . Then $\mathrm{pq} . \mathrm{z}=-\mathrm{p} . \mathrm{qz}$, using (18). Thus I^{2} is a right ideal of R . Also $(\mathrm{z}, \mathrm{p}, \mathrm{q})=-(\mathrm{q}, \mathrm{p}, \mathrm{z})=-\mathrm{qp} . \mathrm{z}+\mathrm{q} \cdot \mathrm{pz}$ is an element of I^{2}. But $\mathrm{zp} . \mathrm{q}$ is in I^{2}. Hence z.pq $=-(\mathrm{z}, \mathrm{p}, \mathrm{q})+\mathrm{zp} . q$ is also in I^{2}. Thus I^{2} is an ideal of R. Then lemmas (1), (2) and (3) imply that the ideal I^{2} of R squares to 0 . Since R is semiprime, it follows that $\mathrm{I}=0$. So R must be associative.

REFERENCES

[1] Kleinfeld, E and Smith, H.F. "A Generalization of Novikov rings", Nonassociative Algebra and its applications (1994), 219 - 222.
[2] Kleinfeld, E and Smith, H.F. "Semiprime flexible weakly Novikov rings are associative", Comm. In Algebra, 23(13) (1995), 5077-5083

Source of support: Nil, Conflict of interest: None Declared

