International Journal of Mathematical Archive-5(3), 2014, 266-270 IMA Available online through www.ijma.info ISSN 2229-5046

(α, β) DERIVATIONS AND COMMUTATIVITY IN σ-PRIME RING

D. Bharathi* and P.V. Rama Krishna
Department of mathematics, Sri Venkateswara University, Tirupati-517502, (A.P.), India.

(Received on: 21-02-14; Revised \& Accepted on: 12-03-14)

Abstract

Let R be a σ-prime ring with characterstic $\neq 2$ and d be a nonzero (α, β) derivation of R commuting with σ. It is prove that a non-zero (α, β)-derivation d associated with be a non-zero σ-ideal I of R which commutes σ and i) if $[d(x), x]=0$ $\forall x \in I$ then R is commutative ii) If $d^{2}(I)=0$ then $d=0$. Also we prove that R must be commutative under some suitable conditions.

Keywords: σ-prime ring, σ-ideals, (α, β) derivations.

1. INTRODUCTION

Through out the present paper all rings will be associative. A ring R equipped with an involution σ is said to be σ-prime if $a R b=a R \sigma(b)=0$ implies that $a=0$ or $b=0$. Recall that a ring R is prime if $a R b=0$ implies that $a=0$ or $b=0$. Obviously, every prime ring with involution σ is σ-prime but the converse is in general not true. An ideal I of R is a σ-ideal if I is invariant under σ i.e, $\sigma(I)=I$. Set of all symmetric and skew-symmetric elements of R is defined as $S a_{\sigma}(R)=\{x \in R /$ $\sigma(x)= \pm x)$. we shall use the basic commutator identities: $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+x[y, z]$.An additive mapping d from R to itself is a derivation if $d(x y)=d(x) y+x d(y)$. holds for all pairs $x, y \in R$. An additive mapping d from R to itself said to be (α, β) derivation if $d(x y)=d(x) \alpha(y)+\beta(x) d(y)$ hold for all $x, y \in R$. A mapping $F: R \rightarrow R$ is said to be centralizing on a subset S of R if $[F(s), s] \in Z(R)$ for all $s \in S$, where $Z(R)$ denotes the center of R;. In the special case where $[\mathrm{F}(\mathrm{s}), \mathrm{s}]=0$ for all s in S , the mapping F is said to be commuting on S .

The history of commuting and centralizing mapping goes back to 1955 when Divinsky[1] prove that simple artinian ring is commutative if it has commuting non-trivial automorphism. Two years later Posner [2] have proved that the existence of non-zero centralizing derivation on a prime ring forces Ring to be commutative (Posner's second theorem).Mayne [3] prove the analogous result for centralizing automorphisms. P. H. Lee and T.K. Lee [4] have shown that if a prime ring of characterstic different from two has a noz-zero derivation d satisfying $[d(R), d(R)]$ then R is commutative. Joso Vukman [5] have shown that a prime ring of characterstic not two possessing a non-zero derivation D from R to itself such that $x \rightarrow[D(x), x]$ is commuting on R then R is commutative. M. Bresar [6] describe the structure of arbitrary additive mapping which is centralizing on a prime ring. Later L. oukhtite and S. Salhi proved some conditions under which derivations of σ-prime ring are commutative(Refer[7], [8]).These results are motivation for our results.

We prove the following results

3. MAIN RESULTS

Lemma: 1 Let I be a non-zero σ-ideal of σ-prime ring R and $0 \neq \mathrm{d}$ be a (α, β) derivation on R which commutes with σ, If $[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0 . \forall \mathrm{x} \in \mathrm{I}$ then R is commutative.

Proof: By Hypothesis [d(x), x] = 0

[^0]Linearizing equation (1) we get
$[\mathrm{d}(\mathrm{x}+\mathrm{y}), \mathrm{x}+\mathrm{y}]=0$.
$[d(x)+d(y), x+y]=0$.
$[d(x), y)+[d(y), x]=0$.
Replace y by yx and $\mathrm{d} \neq 0$ be a (α, β) derivation.
$[\mathrm{d}(\mathrm{x}), \mathrm{yx}]+[\mathrm{d}(\mathrm{yx}), \mathrm{x}]=0$.
$[d(x), y] x+y[d(x), x]+[d(y) \alpha(x)+\beta(y) d(x), x]=0$.
$[d(x), y] x+[d(y) \alpha(x), x]+[\beta(y) d(x), x]=0$.
$[d(x), y] x+d(y)[\alpha(x), x]+[d(y), x] \alpha(x)+\beta(y)[d(x), x]+[\beta(y), x] d(x)$.
Replace $\alpha(\mathrm{x})$ by x in (3) and using (2) we obtain
$[\beta(y), x] d(x)=0$.
For any $r \in R$, Replacing y by ry in above equation
$[\beta(r y), x] d(x)=0$.
$\Rightarrow[\beta(\mathrm{r}) \beta \mathrm{y}), \mathrm{x}] \mathrm{d}(\mathrm{x})=0$.
$\Rightarrow \beta(r)[\beta y), x] d(x)+[\beta(r), x] \beta(y) d(x)=0$
$\Rightarrow[\beta(\mathrm{r}), \mathrm{x}] \beta(\mathrm{y}) \mathrm{d}(\mathrm{x})=0 \forall \mathrm{r} \in \mathrm{R}, \mathrm{x}, \mathrm{y} \in \mathrm{I}$. (By (4))
$\Rightarrow 0=\beta^{-1}([\beta(r), x]) I \beta^{-1}(d(x)=0 . \forall x \in I, r \in R$.
Since d commutes with σ and I is σ-ideal of R we have
$0=\beta^{-1}([\beta(r), x]) I \beta^{-1}\left(d(x)=\beta^{-1}([\beta(r), x]) I \beta^{-1}(\sigma(d(x))\right.$.
By Lemma 1 of [7] we obtain $\beta^{-1}[\beta(r), x]=0$ or $\beta^{-1}(d(x))=0$.
Case -1: if $\beta^{-1}[\beta(r), x]=0 \quad \forall x \in I, r \in R$.
Then $[\beta(r), x]=0$ (since β is automorphism).
Since β is automorphism, this implies that I central and hence R is commutative.
Lemma: 2 Let d be a (α, β)-derivation of σ-prime ring R satisfies $d \sigma= \pm \sigma d$ and let I be a non-zero σ-ideal of R. If $\mathrm{d}^{2}(\mathrm{I})=0$ then $\mathrm{d}=0$.

Proof: for any $x \in \mathrm{Id}^{2}(\mathrm{x})=0$.
Replacing x by $x y$ we obtain

$$
\mathrm{d}^{2}(\mathrm{xy})=0 \text { that is } \mathrm{d}(\mathrm{~d}(\mathrm{xy})=0 .
$$

$\Rightarrow \mathrm{d}(\mathrm{d}(\mathrm{x}) \alpha(\mathrm{y})+\beta(\mathrm{x}) \mathrm{d}(\mathrm{y}))=0$.
$\Rightarrow d^{2}(x) \alpha^{2}(y)+\beta(d(x)) d(\alpha(y))+d(\beta(x)) \alpha(d(y))+\beta^{2}(x) d^{2}(y)=0$.
The fact that $\mathrm{d}^{2}(\mathrm{I})=0$ we get
$\beta(\mathrm{d}(\mathrm{x})) \mathrm{d}(\alpha(\mathrm{y}))+\mathrm{d}(\beta(\mathrm{x})) \alpha(\mathrm{d}(\mathrm{y}))=0$.

If we assume that $\beta \mathrm{d}=\mathrm{d} \beta, \mathrm{d} \alpha=\alpha \mathrm{d}$. Then (5) is reduced to
$2 \beta(\mathrm{~d}(\mathrm{x})) \mathrm{d}(\alpha(\mathrm{y}))=0$ implie that $\beta(\mathrm{d}(\mathrm{x})) \mathrm{d}(\alpha(\mathrm{y}))=0$ (since char $\mathrm{R} \neq 2$)
Replacing x by $x z$ in (6) where $z \in I$ then we have
$\beta(\mathrm{d}(\mathrm{xz})) \alpha(\mathrm{d}(\mathrm{y}))=0 .(\mathrm{d}$ commutes with $\alpha)$

$$
\begin{aligned}
& =\beta(\mathrm{d}(\mathrm{x}) \alpha(\mathrm{z})+\beta(\mathrm{x}) \mathrm{d}(\mathrm{z})) \alpha(\mathrm{d}(\mathrm{y})) \\
& =\beta(\mathrm{d}(\mathrm{x})) \beta(\alpha(\mathrm{z})) \alpha(\mathrm{d}(\mathrm{y}))+\beta^{2}(\mathrm{x}) \beta(\mathrm{d}(\mathrm{z})) \alpha(\mathrm{d}(\mathrm{y})
\end{aligned}
$$

Replacing z by d(z) we get
$\Rightarrow \beta(\mathrm{d}(\mathrm{x})) \beta(\alpha(\mathrm{d}(\mathrm{z}))) \alpha(\mathrm{d}(\mathrm{y}))+\beta^{2}(\mathrm{x}) \beta\left(\mathrm{d}^{2}(\mathrm{z})\right) \alpha(\mathrm{d}(\mathrm{y})=0$.
$\Rightarrow \beta(\mathrm{d}(\mathrm{x})) \beta(\alpha(\mathrm{d}(\mathrm{z}))) \alpha(\mathrm{d}(\mathrm{y}))=0$. $\left(\right.$ since $\left.\mathrm{d}^{2}(\mathrm{z})=0\right)$
$\Rightarrow \beta^{-1}(\beta(\mathrm{~d}(\mathrm{x}) \beta(\alpha(\mathrm{d}(\mathrm{z}))) \alpha(\mathrm{d}(\mathrm{y}))=0$.
$\Rightarrow \mathrm{d}(\mathrm{x}) \alpha(\mathrm{d}(\mathrm{z})) \beta^{-1}(\alpha(\mathrm{~d}(\mathrm{y})))=0 . \forall \mathrm{x} \in \mathrm{U}$.
$\Rightarrow \mathrm{d}(\mathrm{U}) \alpha\left(\mathrm{d}(\mathrm{z}) \beta^{-1}(\alpha(\mathrm{~d}(\mathrm{y})))=0\right.$
Now we use the following lemma without proof
Let d be a non-zero derivation of 2-torsion free σ-prime ring R which commutes with σ and $\mathrm{U} \not \subset \mathrm{Z}(\mathrm{R})$ be a σ-Lie ideal of R. If $t \in R$ verifies $\operatorname{td}(U)=0$. $\operatorname{Or} d(u) t=0$ then $t=0$. and hence
$\alpha(\mathrm{d}(\mathrm{z})) \beta^{-1}(\alpha(\mathrm{~d}(\mathrm{y})))=0$.
$\Rightarrow \beta(\alpha(\mathrm{d}(\mathrm{z}))) R \alpha(\mathrm{~d}(\mathrm{y}))=0$.
since d commutes with σ and I is σ - ideal we have $\beta(\alpha(\mathrm{d}(\mathrm{z}))) \mathrm{R} \alpha(\mathrm{d}(\mathrm{y}))=\beta(\alpha(\mathrm{d}(\mathrm{z})) \mathrm{R} \alpha(\sigma(\mathrm{d}(\mathrm{y})))=0$.
By the definition of σ-prime ring we have either $\beta(\alpha(\mathrm{d}(\mathrm{z}))=0$. Or $\alpha(\mathrm{d}(\mathrm{y})=0$.
If $\alpha(\mathrm{d}(\mathrm{y})=0$ then $\mathrm{d}(\mathrm{y})=0 \forall \mathrm{y} \in \mathrm{I}$ (since α is automorphism)
Replace y by yr we have then

$$
\mathrm{d}(\mathrm{yr})=0 .
$$

$\Rightarrow \mathrm{d}(\mathrm{y}) \alpha(\mathrm{r})+\beta(\mathrm{y}) \mathrm{d}(\mathrm{r})=0$.
$\Rightarrow \beta(\mathrm{y}) \mathrm{d}(\mathrm{r})=0 .(\mathrm{d}(\mathrm{y})=0)$
$\Rightarrow \beta^{-1}(\beta(y) d(r)=0$.
$\Rightarrow \operatorname{IRd}(\mathrm{r})=0 . \forall \mathrm{r} \in \mathrm{R}$.
$\Rightarrow d(r)=0 . \forall r \in R$. This implies $d=0$.
Lemma: 3 Let d_{1} and d_{2} be (α, β)-derivations of R such that $d_{1} \sigma= \pm \sigma d_{1}$ and $d_{2} \sigma= \pm \sigma d_{2}$.and d_{1} commutes with β. If $\mathrm{I} \neq 0$ is a σ - ideal of R such that $\mathrm{d}_{2}(\mathrm{I}) \subset \mathrm{I}$ and $\mathrm{d}_{1} \mathrm{~d}_{2}(\mathrm{I})=0$ then $\mathrm{d}_{1}=0$ or $\mathrm{d}_{2}=0$.

Proof: Let $u, v \in I$ then
$0=\mathrm{d}_{1} \mathrm{~d}_{2}(\mathrm{uv})=\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{u}) \alpha(\mathrm{v})+\beta(\mathrm{u}) \mathrm{d}_{2}(\mathrm{v})\right)$

Again applying (α, β)-derivation d_{1} then
$=d_{1}\left(d_{2}(\mathrm{u})\right) \alpha^{2}(\mathrm{v})+\beta\left(\mathrm{d}_{2}(\mathrm{u})\right) \mathrm{d}_{1}(\alpha(\mathrm{v}))+\mathrm{d}_{1}(\beta(\mathrm{u})) \alpha\left(\mathrm{d}_{2}(\mathrm{v})\right)+\beta^{2}(\mathrm{u}) \mathrm{d}_{1} \mathrm{~d}_{2}(\mathrm{v})$.
Using the hypothesis the above equation can be written as
$\beta\left(d_{2}(u)\right) d_{1}(\alpha(v))+d_{1}(\beta(u)) \alpha\left(d_{2}(v)\right)=0$.
Replacing $\alpha(\mathrm{v})$ by $\mathrm{d}_{2}(\mathrm{v})$ in the above equation we get $\mathrm{d}_{1}(\beta(\mathrm{u})) \alpha\left(\mathrm{d}_{2}(\mathrm{v})\right)=0$
Replacing v by vw where $w \in I$ in equation (7) we get
$\Rightarrow \mathrm{d}_{1}(\beta(\mathrm{u})) \alpha\left(\mathrm{d}_{2}(\mathrm{vw})\right)=0$.
$\Rightarrow \mathrm{d}_{1}(\beta(\mathrm{u})) \alpha\left(\mathrm{d}_{2}(\mathrm{v}) \alpha(\mathrm{w})+\beta(\mathrm{v}) \mathrm{d}_{2}(\mathrm{w})\right)=0$.
$\Rightarrow \mathrm{d}_{1}(\beta(\mathrm{u})) \alpha\left(\mathrm{d}_{2}(\mathrm{v})\right) \alpha^{2}(\mathrm{w})+\mathrm{d}_{1}\left(\beta(\mathrm{u}) \alpha\left(\beta(\mathrm{v}) \mathrm{d}_{2}(\mathrm{w})\right)=0\right.$.
$\Rightarrow \mathrm{d}_{1}(\beta(\mathrm{u})) \alpha(\beta(\mathrm{v})) \alpha\left(\mathrm{d}_{2}(\mathrm{w})\right)=0 . \quad$ (By (7))
$\Rightarrow \alpha^{-1}\left(\mathrm{~d}_{1}(\beta(\mathrm{u}))\right) \mathrm{R}_{2}(\mathrm{w})=0 . \forall \mathrm{u}, \mathrm{w} \in \mathrm{I}$
Now consider $\sigma\left(\mathrm{d}_{2}(\mathrm{w})=\mathrm{d}_{2}(\sigma(\mathrm{w}))=\mathrm{d}_{2}(\mathrm{w})\right.$ (since I is σ ideal.)
Since R is σ-prime then from equation (9) we obtain
$\Rightarrow \alpha^{-1}\left(\mathrm{~d}_{1}(\beta(\mathrm{u}))\right) R \mathrm{~d}_{2}(\mathrm{w})=0=\alpha^{-1}\left(\mathrm{~d}_{1}(\beta(\mathrm{u}))\right) \mathrm{R} \sigma\left(\mathrm{d}_{2}(\mathrm{w})\right)$
By the definition of σ-prime we obtain either $\alpha^{-1}\left(d_{1}(\beta(u))\right)=0$ or $d_{2}(w)=0$
Case-1: If $\alpha^{-1}\left(d_{1}(\beta(u))\right)=0$ then
$\left(\mathrm{d}_{1}(\beta(\mathrm{u}))=0\left(\right.\right.$ since α^{-1} is an automorphism)
$\Rightarrow \beta\left(\mathrm{d}_{1}(\mathrm{u})=0 \forall \mathrm{u} \in \mathrm{I} .\left(\mathrm{d}_{1}\right.\right.$ commutes with $\left.\beta\right)$
$\Rightarrow \mathrm{d}_{1}(\mathrm{u})=0 \forall \mathrm{u} \in \mathrm{I}$.
For any $r \in R$ we have $d_{1}(u r)=0$ then $d_{1}(u) \alpha(r)+\beta(u) d_{1}(r)=0$
Since $d_{1}(u)=0 \forall u \in I$ the above equation reduces to $\beta(u) d_{1}(r)=0$.
$\beta^{-1}\left(\beta(\mathrm{u}) \mathrm{d}_{1}(\mathrm{r})\right)=0=\mathrm{I} \beta-1\left(\mathrm{~d}_{1}(\mathrm{r})\right)=0$.
Since I is non-zero the last relation yields $d_{1}(r)=0 \forall r \in R$. Hence $d_{1}=0$.
Similarly for any $r \in \operatorname{Rd}_{2}(w r)=0$ then $\beta(w) d_{2}(r)=0$. (Using definition of (α, β) derivation).
$\beta^{-1}\left(\beta(w) d_{2}(r)\right)=0=I d_{2}(r)=0$.
Since $\mathrm{I} \neq 0$ the last relation yields $\mathrm{d}_{2}(\mathrm{r})=0 \forall \mathrm{r} \in \mathrm{R}$ ie $\mathrm{d}_{2}=0$ on R .
Theorem: Let R be a σ-prime ring with characterstic $\neq 2$. I be a non -zero σ-ideal of R and d be a non-zero (α, β) derivation of R which commutes with σ. If $[d(x), x] \in Z(R) \forall x \in I$ then R is commutative.

Proof: Let $[\mathrm{d}(\mathrm{x}), \mathrm{x}] \in \mathrm{Z}(\mathrm{R}) \forall \mathrm{x} \in \mathrm{I}$
By linearizing above equation we get $[\mathrm{d}(\mathrm{x}), \mathrm{y}]+[\mathrm{d}(\mathrm{y}), \mathrm{x}] \in \mathrm{Z}(\mathrm{R}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$.
Replacing y by x^{2} in (10) we have $\left[\mathrm{d}(\mathrm{x}), \mathrm{x}^{2}\right]+[\mathrm{d}(\mathrm{x}) \alpha(\mathrm{x})+\beta(\mathrm{x}) \mathrm{d}(\mathrm{x}), \mathrm{x}] \in \mathrm{Z}(\mathrm{R}) \forall \mathrm{x} \in \mathrm{I}$

So $[\mathrm{d}(\mathrm{x}), \mathrm{x}] \alpha(\mathrm{x}) \in \mathrm{Z}(\mathrm{R})$. For any $\mathrm{r} \in \mathrm{R}$ we have that
$\alpha(\mathrm{r}) \alpha(\mathrm{x})[\mathrm{d}(\mathrm{x}), \mathrm{x}]=\alpha(\mathrm{x})[\mathrm{d}(\mathrm{x}), \mathrm{x}] \alpha(\mathrm{r})=\alpha(\mathrm{x}) \alpha(\mathrm{r})[\mathrm{d}(\mathrm{x}), \mathrm{x}]$.
$[\alpha(\mathrm{x}), \alpha(\mathrm{r})][\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$
Since $[d(x), x] \in Z(R)$, we get from (11)
$[\alpha(\mathrm{x}), \alpha(\mathrm{r})] \mathrm{R}[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$. Also, I is $\sigma-$ ideal so $\sigma([\mathrm{d}(\mathrm{x}), \mathrm{x}])=[\mathrm{d}(\mathrm{x}), \mathrm{x}]$.
By σ-primeness of R we get either $[\alpha(\mathrm{x}), \alpha(\mathrm{r})]=0$ or $[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$
Case - 1: If $[d(x), x]=0$ then by lemma 3 of [7] R is commutative.
Case-2: If $[\alpha(\mathrm{x}), \alpha(\mathrm{r})]=0$ then $\alpha(\mathrm{x}) \alpha(\mathrm{r})-\alpha(\mathrm{r}) \alpha(\mathrm{x})=0$.
$\alpha(x r)-\alpha(r x)=\alpha[x, r]=0 \forall x \in I, r \in R$.
Since $\alpha \neq 0$ is automorphism we get $[x, r]=0 \forall x \in I, r \in R$.
Therefore $\mathrm{I} \subseteq \mathrm{Z}(\mathrm{R})$. Replacing r by rs , where $\mathrm{r}, \mathrm{s} \in \mathrm{R}$ in the above equation we get
$[\mathrm{x}, \mathrm{rs}]=0$. Expanding this equation we get $\mathrm{rsx}=\mathrm{rxs}=\mathrm{srx}$
We conclude that $[\mathrm{r}, \mathrm{s}] \mathrm{x}=0$ then $[\mathrm{r}, \mathrm{s}] \mathrm{I}=0 . \forall \mathrm{r}, \mathrm{s} \in \mathrm{R}$.

$$
[\mathrm{r}, \mathrm{~s}]=0 \forall \mathrm{r}, \mathrm{~s} \in \mathrm{R} .(\mathrm{I} \neq 0)
$$

Hence R is commutative.

REFERENCES

[1] N. Divinsky., On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1955), 19-22.
[2] Posner.E.C., Derivation in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.
[3] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19(1976), 113-115.
[4] P. H. Lee. T. K. Lee., On derivations of prime rings, Chiness J. Math. 9(2) (1981), 107-110.
[5] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109(1990), 47-52.
[6] M. Bresar, centralizing mappings and derivations in prime rings, J. Algebra. 156(1993), 385-394.
[7] L. Oukhtite and S.Salhi. Derivations and commutativity of σ-prime rings, Int, J. Contemp. Math. Sci., Vol.1, 2006, no.9, 439-448.
[8] L. Oukhtite, S. Salhi., On commutativity of σ-prime rings. Glasnik Matematicki. Volume 41, No. 1 (June 2006).
[9] L. Oukhtite, S. Salhi. , σ-prime rings with a special kind of automorphism .Submitted.

Source of support: Nil, Conflict of interest: None Declared

[^0]: Corresponding author: P.V. Rama Krishna
 Department of mathematics, Sri venkateswara University, Tirupati-517502, (A.P.), India. E-mail: rampaduchuri@gmail.com

