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ABSTRACT 
We classified the combinatorial structures of 3-dimensional bounded ODCH (orderable and deformable compact 
hyperbolic) Coxeter polyhedra up to symmetry. Using Plantri graphs and graph theory, we proved that the number of 
such combinatorial polyhedrons is five. One of such combinatorial polyhedra is P10-2 which has 10 vertices. Using 
graph theory, we find that there are seven orderable and deformable compact hyperbolic polyhedra P10-2 up to 
symmetry.    
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1. INTRODUCTION 

 
A n-dimensional orbifold is a topological space with a structure based on the quotient space of n

 by a finite group 
action. An orbifold is called good if its universal cover is a manifold. We will concentrate only on good orbifolds. 
 
To give a hyperbolic structure on an orbifold, we model it locally by the orbit spaces of finite subgroups of ( )1,PO n  

acting on open subsets of  Hn  . Similarly, to put a real projective structure on an orbifold, we model it locally by the 
orbit spaces of finite subgroups of  ( )1,PGL n +   acting on open subsets of  nP  . 
 
A real projective structure on an orbifold M implies that M has a universal cover M and the deck transformation group 

( )1 Mπ   acting on M  so that 
( )1

M
Mπ



  is homeomorphic to M. 

 
A convex set in Pn

 is a convex set in an affine patch. If we use Klein's model of a n-dimensional hyperbolic space, 
then is an open ball in Pn

  and ( )1,PO n   is a subgroup of ( )1,PGL n +   preserving Hn . Therefore Hn  can be 

imbedded in an ( )1n + -dimensional real vector space V as an upper part of hyperboloid 
2 2 2
1 2 1... 1nx x x +− + + + = −  

 
Hence hyperbolic orbifolds naturally have real projective structures. But a real projective structure of an orbifold may 
not have hyperbolic structure. 
 
We will concentrate on 3-dimensional compact hyperbolic orbifolds whose base spaces are homeomorphic to a convex 
polyhedron and whose sides are silvered and each edge is given an order. If the dihedral angle of an edge of a compact 

hyperbolic polyhedron is 
n
π

  then we say that the order of the edge is n  where n  is a positive number. 
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Definition: 1.0.1 Let X be 3S , 3E , or 3H . Let Isom(X) denotes the group of isometries of X. A Coxeter polyhedron is 
a convex polytope in X whose dihedral angles are all integer sub-multiples of .π  Let P be a 3-dimensional Coxeter 
polyhedron and  Γ  be the group generated by the reflections in the faces of P. Then Γ  is a discrete group of Isom(X) 
and P is its fundamental polyhedron. Conversely, every discrete group Γ  of Isom(X) can be obtained from a Coxeter 
polyhedron P such that P is its fundamental polyhedron. The number of faces intersect at vertex is called the degree of 
that vertex. Also the edge order of edges of a Coxeter polyhedron are positive integers. 
 
Definition: 1.0.2 Let P be a fixed convex polyhedron. Let us assign orders at each edge. Let e be the number of edges 
and 2e  be the numbers of order-two. Let f  be number of sides. 
 
We remove any vertex of P which has more than three edges ending or with orders of the edges ending there is not of 
the form 

  ( ) ( ) ( ) ( )2,2, , 2, 2,3,3 , 2,3,4 , 2,3,5 ,n n ≥
 

 
i.e., orders of spherical triangular groups. This make P into an open 3-dimensional orbifold. 
 
Let P̂  denote the differential orbifold with sides silvered and the edge orders realized as assigned from P with vertices 
removed. We say that  P̂  has a Coxeter orbifold structure. 
 
Definition: 1.0.3 The deformation space P̂ of projective structures on an orbifold P̂ is the space of all projective 
structures on  P̂  quotient by isotopy group actions of P̂  . 
 
Definition: 1.0.4 We say P is orderable if we can order the sides of P so that each sides meets sides meets sides of 
higher index in less than or equal to 3  edges. 
 
Example: 1.0.5 Cube and dodecahedron are not satisfying orderability condition. 
 
Definition: 1.0.6 Let P̂   be the orbifold structure of a 3-dimensional polyhedron P. We say that the orbifold structure  
P̂  is orderable if the sides of P can be ordered so that each side has no more than three edges which are either of order 
2 or included in a side of higher index. P̂  is trivalent if each side F has three or less number of edges of order two or 
edges belonging to sides of higher class than F. 
 
Definition: 1.0.7 A combinatorial polyhedron is a 3-ball whose boundary sphere 2S is equipped with a cell complex 
whose 0-cells, 1-cells and 2-cells will also be called vertices, edges and faces respectively, and which can be realized as 
a convex polyhedron. Topologically, a compact polyhedron P is a combinatorial polyhedron. A polyhedron is called 
trivalent if degree of each vertex is 3. 
 
In my previous article, we proved the following proposition.    
 
Proposition: 1.0.9 Let P be a 3-dimensional CH-Coxeter polyhedron and P̂  be its Coxeter orbifold structure. Suppose 
that P̂  is orderable and projectively deformable. Then the total number of combinatorial polyhedral of such P is 5 and 
P is one of the combinatorial polyhedrons T, P6, P8-1, P10-1 and P10-2. The figure of P10-2 is as follows:  
 

 
In this article, we find the complete set of orderable and deformable compact Coxeter hyperbolic polyhedron P10-2.   
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Theorem: 1.0.10 Let P10-2 be a compact hyperbolic Coxeter polyhedrom figure-1 and ˆ10-2P  be its Coxeter orbifold 
structure. Suppose that ˆ10-1P  is orderable and projectively deformable. Then the total number of such P10-2 is 7 and 
P10-2 is one of the polyhedrons in figure 2. 
 

 
 
Proof:  Using Choi’s theorem, we prove that the number of edges of order 2 is exactly 5. By Andreev’s condition for 
compact hyperbolic polyhedrons, we prove that the order of the edges at each vertex is one of the form 

( ) ( ) ( )2,3,3 , 2,3,4 , 2,3,5 . Using graphical properties, we can assign the orders to each edge in seven different 
ways up to symmetry. Then we assign the order of the faces in each of these five polyhedrons to form ODCH Coxeter 
polyhedron.     
    
2. PRELIMINARY 
 
2.1. Andreev’s Theorem. In 1970, E.M. Andreev provides a complete characterization of 3-dimensional compact 
hyperbolic polyhedral having non-obtuse dihedral angles on his article [2]. Therefore Andreev’s theorem is a 
fundamental tool for classification of 3-dimensional compact hyperbolic Coxeter polyhedron. Some elementary faces 
about polyhedral are essential before we state Andreev’s theorem. 
 
Definition: 2.1.1A cell complex on 2S  is called trivalent if each vertex is the intersection of three faces. A                  
3-dimensional combinatorial polyhedron is a cell complex C on 2S  that satisfied the following condition: 

(1) Every edges of C is the intersection of exactly two faces. 
(2) Anon-empty intersection of two faces is either an edge or a vertex. 
(3) Every faces contains not fewer than 3 edges. If a face contains n edges then n is called the length of the face. 

 
Suppose C* be the dual complex of C in 2S . Then C* is a simplicial complex which embed in the same 2S  so that the 
vertex correspond to face of C, etc. A simple closed curve Γ in C* is called k-circuit if it is formed by k edges of C*. A 
k-circuit Γ is called prismatic k-circuit if the intersection of any two edges of C intersected byΓ  is empty. If a 
prismatic k-circuit meets the edges 1 2, ,..., ke e e  of C successively then we say that the edges 1 2, ,..., kF F F  are an k-
prismatic element of C. 
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Theorem: 2.1.2 (Andreev, 1970), Let C be an combinatorial polyhedron such that C is not a simplex and suppose that 

non-obtuse angles 0
2ij
πα< ≤  are given corresponding to each edge ij i jF F F= ∩  of C where iF  and jF  are the 

faces of C. Then there exist a compact hyperbolic polyhedron P in 3-dimensional hyperbolic space which realize C with 
dihedral angles   ijα  at the edge   ijF  if and only if the following five conditions hold: 

(1) C is trivalent. 
(2) If  ijk i j kF F F F= ∩ ∩  is a vertex of C then 

ij jk kiα α α π+ + >
. 

(3) If  Γ  is a prismatic 3-circuit which intersects edges , ,ij jk kiF F F  of  C then 

ij jk kiα α α π+ + <
 

(4) If  Γ  is a prismatic 4-circuit which intersects edges  , , ,ij jk ki liF F F F  of  C then 

              
2ij jk kl liα α α α π+ + + <

. 
(5) If sF  is a four sides faces of C with edges  , , ,is js ks lsF F F F  enumerated successively, then 

3

3
is ks ij jk kl li

js ls ij jk kl li

α α α α α α π

α α α α α α π

+ + + + + <

+ + + + + <
 

    
Furthermore, this polyhedron is unique up to hyperbolic isometries. Also Roeder, Hubbard and Dunbar proved that if C 
is not a triangular prism, then condition (5) is a consequence of (3) and (4) (Sec [14]). Andreev’s restriction to non-
obtuse dihedral angles is necessary to ensure that P be convex. Without this restriction of dihedral angles, compact 
hyperbolic polyhedral realizing a given abstract polyhedron may not be convex. Since dihedral angles of Coxeter 
polyhedron is non-obtuse, Andreev’s theorem provide a complete characterization of 3-dimensional hyperbolic Coxeter 
polyhedron having more than four faces. 
 
2.2. Choi’s Theorem. Prof. Choi concentrated a class of Coxeter orbifolds which is called orderable Coxeter orbifolds 
and a certain type of orbifolds known as normal type orbifolds. In this class of orbifolds, we understand the restricted 
deformation space of orbifolds in real projective space from his article [6]. 
 
Definition: 2.2.1 We denote k(P) the dimension of the projective group acting on a convex polyhedron P.   

 ( )
3 if is a tetrahedron
1 if is a cone with base a convex polygon which is not a triangle
0 otherwise

P
k P P


= 



 

 
Definition: 2.2.2 A Coxeter group Γ  is an abstract group define by a group presentation of form 

( )( ), ; , ,ijn

i i jR R R i j I∈
. 

Where I is a countable index set, ijn N∈ is symmetric for ,i j  and 1ijn =   . 
 
The fundamental group of the orbifold will be a Coxeter group with a presentation 

( ), 1, 2,... , 1ijn

i i jR i f R R= =
 

where iR  is associated with silvered sides and ,i jR  has order  ,i jn  associated with the edge formed by the i-th and  j-
th side meeting. 
 
A Coxeter orbifold whose polytope has a side F and a vertex v where all other sides are adjacent triangles to F and 
contains v and all edge orders of F are 2 is called a cone-type Coxeter orbifold. A Coxeter orbifold whose polyhedron is 
topologically a polygon times an interval and edges orders of top and bottom sides are 2 is called a product-type 
Coxeter orbifold. If P̂   is not above type and has not finite fundamental group, then P̂   is said to be a normal-type 
Coxeter orbifold. 
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Theorem: 2.2.3 (Choi, 2006). Let P be a convex polyhedron and P̂  be given a normal type Coxeter orbifold structure. 
Let k(P) be the dimension of the group of projective automorphisms acting on P. Suppose that P̂  is orderable. Then 
P̂  is projectively deformable if and only if ( )23 0f e e k P− − − > .  
 
2.3. Planar Graphs. The study of graphs is very important to understand the combinatorial structure of a polyhedron. 
We will discuss about the basis relation between graph theory and the 3-dimensional convex polyhedron. 
 
Definition: 2.3.1 A planar graph is a graph that can be drawn on the sphere( or the plane) without edge crossings. Two 
edges of a graph are parallel if they have the same endpoints. A loop is an edge whose endpoints are the same vertex. If 
there are neither parallel edges nor loops, a graph is called simple. A simple graph is called k-connected if the removal 
of any k-1 or fewer vertices (all the edges they are incident with) leaves a connected graph. The dual graph of a plane 
graph is a plane graph obtained from the original graph by exchanging the vertices and faces. The dual graph of a graph 
is k-connected if and only if the graph is k-connected. If all the faces of planar graph is triangles then the graph is called 
triangulation. The dual of a triangulation is a trivalent planar graph. A triangulation with n vertices has exactly  
3 6n −  edges and  2 4n −  faces. 
 
Definition: 2.3.2 Let  ( )1 1 1,G V E=  and ( )2 2 2,G V E=   be two graphs imbedded on the sphere such that  1 2,V V  be 

the set of vertices of 1 2,G G   and  1 2,E E  be the sets of edges of 1 2,G G  . An isomorphism from 1G  to 2G  is a pair of 

bijections 1 2:V Vϕ →  and 1 2: E Eϕ →  which preserve the vertex-edge incidence relationship.  
 
Definition: 2.3.3 Let P be a convex polyhedron. The vertices and the edges of P from an abstract, finite, simple graph, 
called the graph of P and denoted by G(P). Thus, G(P) is an abstract graph defined on the set of vertices vert (P) of P. 
Two vertices u and v in vert (P) are adjacent in G(P) if and only if [u, v]  is an edge of P. 
 
Definition: 2.3.4 A 3-dimensional polyhedron is called simplicial polyhedron if every face contain exactly 3 vertices. 
A 3-dimensional polyhedron is called a simple polyhedron if each vertex is the intersection of exactly 3 faces. 
 
Theorem: 2.3.5 (Blind and Mani). If P is convex polyhedron, then the graph G(P) determines the entire combinatorial 
structure of P. 
 
In other words, if two simple polyhedral have isomorphic graphs, then their combinatorial polyhedral are isomorphic 
as well. 
        
Steinitz established the following basic theory for 3-dimensional polyhedron. 
 
Theorem: 2.3.6 (Steinitz). G(P) is the graph of a 3-dimensional polyhedron P if and only if it is simple, planar and 3-
connected. 
 
Corollary: 2.3.7 Every 3-connected planar graph has a representation in the plane such that all edges are straight, 
and all the bounded regions determined by it, as well as the union of all the bounded regions, are convex polygons. 
   
Since the compact hyperbolic polyhedron is simple, the combinatorial polyhedron of a compact hyperbolic polyhedron 
can be known from 3-connected planar graph of the polyhedron. 
 
3. RESULTS                     
 
3.1. Known Results from previous article. In my previous articles [The graphical investigation of orderable and 
deformable compact Coxeter polyhedral in hyperbolic space] and [Application of Plantri graph: All Combinatorial 
structure of Orderable and Deformable Compact Coxeter Hyperbolic Polyhedra], we found the following theorems and 
propositions: 
 
Let P be a CH-Coxeter polyhedron and  P̂  be its Coxeter orbifold structure of P. 
 
Proposition: 3.1.1 If   P̂  is orderable, then P is also orderable. 
 
Remark: 3.1.2 If P is not orderable, then  P̂  is also not orderable. 
Let  e  be the number of edges of P and 2e   be the number of edges of edge order 2. Let  v  be the number of vertices 
of P and  f   be the number of faces of P. 
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Proposition: 3.1.3 Let P be a 3-dimensional compact hyperbolic Coxeter polyhedron and  P̂  be Coxeter orbifold 
structure of P. Suppose P̂  is orderable and projectively deformable. Then 

a. Every vertex is incident with exactly three edges. 
b. Every vertex is incident with at least one edge of edge order 2. 

c. 2 5 10
2
v e v≤ ≤ ⇒ ≤ . 

d. v is even. 
 
3.2 Main Results. Now we are ready to establish the main results. 
 
Proposition: 3.2.1 Let P be a 3-dimensional CH-Coxeter polyhedron with 10 vertices and P̂  be its Coxeter orbifold 
structure of P.  If P̂  is orderable and projectively deformable then 2 5e = . 
 
Proof: By Choi’s theorem 2.2.3, ( )23 0f e e k P− − − > . By definition 2.2.1, for the polyhedra with 10 vertices P, 

( ) 0k P = .   
 
Since the combinatorial structure of orderable and projectively deformable compact hyperbolic coxeter polyhedra with 
10 vertices are 10-1, 10-2P P , therefore 7, 15f e= = .  

Since 7, 15f e= = , therefore ( )2 2 23 0 3 7 15 0 0 6f e e k T e e− − − > ⇒ ⋅ − − − > ⇒ >  
 
By proposition 3.1.3, every vertex is incident with at least one edge of edge order 2. Since there are 10 vertices of T and 

each vertex incident with exactly two vertices, therefore the number of edges of order 2 is at least 5
2
v
= . Hence 

2 5e ≥ .  
 
Since 25 6e≤ < , therefore 2 5e = .  
 
Proposition: 3.2.2 Let P be a 3-dimensional CH-Coxeter polyhedra with 10 vertices and P̂  be its Coxeter orbifold 
structure of P.  If P̂  is orderable and projectively deformable then the order of the edges at each vertex is one of the 
form ( ) ( ) ( )2,3,3 , 2,3,4 , 2,3,5 .     
 
Proof: Since there are 5 edges of P of order 2 and 10 vertices in P and each vertex is incident with at least one edge of 
order 2, therefore each vertex is incident with exactly one edge of order 2.  
 
Suppose that 1 2,r r  be the order of the two edges at a vertex other than 2. Then 1 2, 3r r ≥ .  
 
By Andreev’s first condition, we have  

1 2 1 2

1 1 1 1 1 11
2 2r r r r
+ + > ⇒ + >  

 

Since 1 2, 3r r ≥ , therefore 
1 2

1 1 2
3r r

+ < .  Hence 
1 2

1 1 1 2
2 3r r
< + ≤ . 

If 1 2, 4r r ≥  then 
1 2

1 1 1
2r r

+ ≤ . This is a contradiction. Hence 1 23 or 3r r= = .  

Assume that 2 3r = . If 1 6r ≥  then 

2 2
1 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 3 2
2 2 6 2 6 6

r r
r r r r r

< + ⇒ < + ⇒ − < ⇒ < ⇒ < ⇒ =  

This is a contradiction. Hence 13 5r≤ ≤ .  

Therefore the edge order at each vertex is one of the form ( ) ( ) ( )2,3,3 , 2,3,4 , 2,3,5 . 
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Theorem: 3.2.3 Let P10-2 be a compact hyperbolic Coxeter polyhedron as figure-1 and ˆ10-2P  be its Coxeter 
orbifold structure. Suppose that ˆ10-2P  is orderable and projectively deformable. Then the total number of such P10-2 
is 7 and P10-2 is one of the polyhedrons in figure 2. 
 
Proof: Suppose that the order of the edges be 1 2 15, ,...,r r r  and level the faces of P10-1  as follows:  
 

 
 
From the above figure-3, the 3-prismetric circuits are ( ) ( ) ( )2 5 6 3 5 6 4 5 6, , , , , , , ,F F F F F F F F F . Therefore by 
Andreev’s second condition, we have  

1 5 11 6 12 11 8 9 11

1 1 1 1 1 1 1 1 11, 1, 1
r r r r r r r r r
+ + < + + < + + <                                                             (1)  

 
Therefore only one edge can be order of 2 in each set of{ } { } { }1 5 11 6 12 11 8 9 11, , , , , , , ,r r r r r r r r r  and { }2,3 cannot be a 
subset of each set. Since there are five edges of order 2 and each vertex is incident with an edge of order 2, therefore all 
the edges of order 2 are disjoint. 
 
By definition of orderability 1.0.4, the order of the faces depends on the edges of order 2 and faces of higher index.  
Therefore we first assign edge order 2.     
 
Suppose that 1 2r = . Then 5 11, 2r r >  by equation (1).  Since all the edges of order 2 are disjoint, therefore 

6 4 3 2, , , 2r r r r >  and hence 10 12 2r r= = . Since 12 2r = , therefore 7 9, 2r r > . Since at the vertex 7v , one edge is of 

order 2, therefore 8 2r =  and hence 13 2r = . Since five edges are order 2, therefore remaining edges must have order 

other than 2. In this case the order of the faces are 1 7 2 4 3 6 5, , , , , ,F F F F F F F .  
 

 
 
Suppose that 6 2r = . Since all the edges of order 2 are disjoint, therefore 1 2 7 8, , , 2r r r r > .  
 
From the equation (1), we have 11 12, 2r r > . Therefore 9 52, 2r r= = . Since 9 2r =  at vertex 9v , therefore 

13 14, 2r r > . Then 15 2r = . Since 5 2r =  at 4v , therefore 10 32, 2r r> = . Since five edges are order 2, therefore 

remaining edges must have order other than 2. In this case the order of the faces are 1 7 2 4 3 5 6, , , , , ,F F F F F F F .  
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But figure 4 and figure 5 are equivalent up to symmetry by the graph isomorphism  

( ) ( )3 4 5 1 0 3 2 1 1 0, , ,..., , , ,...,v v v v v v v v   
 
Suppose that 2 2r = . Since all the edges of order 2 are disjoint, therefore 1 6 5 12, , , 2r r r r > .  

If 3 2r = then 4 10, 2r r > . At the vertex 4v , all the edges are of order other than 2. This is a contradiction.  
 
Therefore 3 2r ≠ . This implies 4 2r =  and hence 11 2r = .  
 
From the equation (1), we have 6 12 9 8, , , 2r r r r > . Therefore 7 2r = . Since 11 2r =  at vertex 10v , therefore 

13 15, 2r r > . Then 14 2r = .  

 
It is not orderable as the order of the edges 1 2 4 7,F F F F∩ ∩  are 2.  
 
Thus we have only one graph with edge order 2 as in figure 4.  
  
Since { }1 5 113 , ,r r r∉ , therefore 5 113, 3r r≠ ≠ . Since at each vertex there is at least one edge of order 3, therefore 

2 4 5 9 13 3r r r r r= = = = = . Since 12 3r ≠ , therefore 14 3r = .  
 
From the equations (1), we have  

5 11 6 11 9 11

1 1 1 1 1 1 1 1 1, ,
2 2 2r r r r r r

+ < + < + <  

Therefore 6 11 5 94 , , , 5r r r r≤ ≤  and ( ) ( ) ( )5 11 6 11 9 11, , , , ,r r r r r r  are not identical with ( )4,4 .  
 
Since at each vertex there is at least one edge of order 3, therefore 

3 4 2 7 14 15 3r r r r r r= = = = = = .  
 
Suppose that 11 4r = . Then 5 6 9 5r r r= = =  
Suppose that 11 5r = . By the reflection 5 9r r , ( ) ( )5 9, 4,5r r =  and ( ) ( )5 9, 5, 4r r =  give same Coxeter 

polyhedron. Therefore we can choose ( )5 9 6, ,r r r as follows: 

( ) ( ) ( ) ( ) ( ) ( )4,4,4 , 4,5,4 , 5,5,4 , 4,4,5 , 4,5,5 , 5,5,5  
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Therefore we have total seven orderable and deformable Coxeter hyperbolic polyhedrons of type P10-2 and these are as 
figure-2. The order of the faces is 1 7 2 4 3 6 5, , , , , ,F F F F F F F  for each of the above polyhedrons. Therefore each of 
these above polyhedrons has ODCH Coxeter Orbifold structure.   
 
4. CONCLUSION 
 
In this article, we find that the number of orderable and deformable compact hyperbolic Coxeter polyhedral P10-2 in 
real projective space is exactly seven. It can be extended to find all the 3-dimensional non compact hyperbolic Coxeter 
polyhedral which are orderable and deformable in real projective space. 
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