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ABSTRACT 
The problem of onset of convective instability in a dielectric micropolar viscoelastic fluid (Walters’ liquid ' )B  heated 
from below confined between two horizontal plates under the simultaneous action of the rotation of the system, vertical 
temperature gradient, one relaxation time and vertical electric field is considered. Linear stability theory is used to 
derive an eigenvalue of twelve order, and an exact eigenvalue equation for a neutral instability is obtained. Under 
somewhat artificial boundary conditions, this equation can be solved exactly to yield the eigenvalue relationship from 
which various critical values are determined in detail. Critical Rayleigh heat numbers and wave number for the onset of 
instability are presented graphically as a function of rotation at a certain value of the Prandtl number, for various 
values of the relaxation time, the Rayleigh electric number, the elastic parameter and micropolar parameters. 
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NOMENCLATURE 
L  distance between two rigid boundaries 

)σ,σ,σ( 321=σ  microrotating 
ρ  density 
μ  coefficient of viscosity 
P  pressure 

γ,β,α,k  material  constants of the heat conducting micropolar fluid defined in Eq. (3) 

vC  specific heat at constant volume 

vk  thermal conductivity 

j                              microinertia 
)w,v,u(=v       velocity 

ε                      dielectric constant 
e                      coefficient of relative variation of the dielectric constant with temperature 

οτ  relaxation time 

g)0,(0, −=g  the gravitational acceleration 

οα   coefficient of relative variation of the density with temperature 
T                      temperature 

)E0,(0, z=E  electric field 

οK   the elastic constant of Walters’ liquid B′  

οη   the limiting viscosity at small rate of shear 

ορ
η

ν ο=       the kinematic viscosity 
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ορν
kK =  the thermal diffusivity 

2
ο

*
ο

Lρ
KK =  the elastic parameter 

δ                                coefficient giving account of the coupling between the spin flux and the heat flux 
 
1. INTRODUCTION 
 
In recent years, using the theory of micropolar fluids developed by Eringen [1, 2], several authors [3-5] have 
investigated problems related to stability and turbulence. As the theory of micropolar fluids encompass a wide variety of 
fluids (for example: liquid crystals, polymers, animal blood, etc.), in which randomly oriented bar like elements, 
dumbbell molecules or spherical particles are present, and as each volume element of the fluid undergoes translation as 
well as rotation, the analysis of the problems of stability revealed a number of interesting physical phenomena which are 
unseen in Newtonian fluids. 
 
Initiating the study of thermal instability of a micropolar fluid layer heated from below, Ahmadi [6] has shown that 
there exists cellular convection at the onset of instability. Assuming that the boundaries are free from shear stress and 
microrotation, he has obtained an analytical solution in the case of free boundaries. His analysis shows that the 
micropolar fluids are more stable than Newtonian ones. Datta and Sastry [7] have extended the analysis of Ahmadi to 
the case of heat conducting micropolar fluids. They have found that the heat induced by microrotation causes instability 
of the layer, whether the fluid is heated from below or above. The instability for heating from above is quite a novel 
phenomenon as it does not have analogous in Newtonian fluid. While analysing the problem of convective instability of 
a micropolar fluid layer confined between rigid boundaries, Walzer [8] has mentioned that the analysis of the instability 
finds applications in the area of Geophysics, for example, in understanding the phenomenon of rising of valconic liquid 
with bubbles, and convective process inside the earth’s mantle. However, he has concluded his analysis without any 
calculation of eigenvalue. Rama Rao [9] has examined the onset of instability in a heat conducting micropolar fluid 
layer confined between rigid boundaries. On obtaining a numerical solution of the eigenvalue problem, he has shown 
that, in the case of adverse temperature gradient, the convective cells at the onset of instability are more elongated than 
those in the case of positive temperature gradient.  
 
The effect of rotating on thermal convection in micropolar fluids is important in certain chemical engineering and 
biochemical situations. Sharma and Kumar [10] studied the effect of uniform rotation on thermal instability micropolar 
fluid. They found  that  the  present  of  coupling  between  thermal  and  micropolar  effect  might introduce oscillatory 
motion in the system. 
 
In technological field there exists an important class of fluids, called non-Newtonian fluids, which are also being studied 
extensively because of their practical applications. One such fluid is called viscoelastic fluid. Walters [11] and Beard 
and Walters [12] deduced the  governing  equations for the boundary flow for a  prototype  viscoelastic fluid which they 
have designated as liquid ′B  when this liquid has a very short memory. Singh and Singh [13] have studied the 
magneto-hydrodynamic flow of a viscoelastic fluid past an accelerated plate. Othman [14] has studied the stability of a 
rotating layer of viscoelastic dielectric liquid (Walters’ liquid ′B ) heated from below. Othman [15] investigated the 
convective stability of a horizontal layer of viscoelastic conducting liquid (Walters’ liquid ′B ) heated from below and 
rotating about a vertical axis in the presence of a magnetic field and thermal relaxation. In these works, more general 
model of magneto-hydrodynamic free convection flow which also includes the relaxation time of heat convection and 
the electric permeability of the electromagnetic field are used. The inclusion of the relaxation time and electric 
permeability modify the governing thermal and electromagnetic equations, changing them from parabolic to hyperbolic 
type, and there by eliminating the unrealistic result that thermal disturbance is realized instantaneously everywhere 
within a fluid.  
 
An important stability problem is the thermal convection in a horizontal thin layer of fluid heated from below. A 
detailed account of thermal convection in a horizontal thin layer of Newtonian fluid heated from below, under varying 
assumptions of hydrodynamics, has been given by Chandrasekhar [16]. Othman [17] analyzed the problem of the onset 
of stability in a horizontal layer of viscoelastic dielectric fluid (Walters’ liquid ′B ) under the simultaneous action of a 
vertical ac electric field and a vertical temperature gradient without rotation.  
 
In the present paper our object is to study the thermal instability of a rotating heat conducting micropolar viscoelastic 
fluid layer confined between rigid boundaries in the presence of ac electric field and thermal relaxation. Hear, we 
employ the basic equations of the heat conducting micropolar viscoelastic fluid referred to a rotating frame. 
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2. FORMULATION OF THE PROBLEM 
 
We consider an incompressible, dielectric and  infinite micropolar viscoelastic fluid layer confined between two 
horizontal surfaces separated by a distance L. Choosing the origin on the lower boundary, let us introduce the Cartesian 
co-ordinate system x,y,z in which z is measurement at right angles to the boundaries. Let the system be rotating (round 
the z-axis) with a uniform angular velocity )Ω0,0,(=Ω . The lower bounding surface at 0z =  and the upper 

bounding surface at Lz =  are maintained at constant temperatures οT  and 1T , respectively. The lower surface is 

grounded and the upper surface is kept at high alternating (60 HZ) potential whose root-mean-square value is 1φ .  
 

Under the foregoing assumptions the basic equations can be written as [17] 

0
x
v

i

i =
∂
∂

                                                                                                                                                                                             (1) 

ο ο
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i i i i

k i
k kk kk i

e i
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,                                    (2)

( ) ( ) ( ) ( )2. . 2 ,j v k v k
t

ρ σ α β σ γ σ σ∂ + ∇ + ∇ ∇ + ∇ + ∇∧ − ∂ 
                                                                         (3) 

Cρ ( ) Tv t
v. ∂

+ ∇ ∂ 
( )2 .vk T Tδ σ= ∇ + ∇ ∇∧ οCρ τ ( ) T,v tt

v. ∂ ∂
+ + ∇ ∂∂  

                                    (4)  

 
( ). 0,Eε∇ =                                                                                       (5) 

 
and 

0E∇∧ =  or  .E ϕ= −∇                                                      (6) 

where, eif is the force of electric origin which may be expressed as Landau and Lifshitz [18] 

eif = 2
e i

1ρ E
2 i

E
x
ε∂

−
∂ i

1
2 x

∂
+

∂

2
ερ E
ρ

 ∂
 ∂ 

                                    (7) 

taking into account the fact that the free charge density eρ  is zero. If we replace the pressure 

* 1P P
2

= −
ε 2ρ E
ρ

∂
∂

                                    (8) 

 
The electrostriction term disappear from Eq. (2) which can be rewritten in the form: 

*
2

ο ο
i

2 2
i i i i

k i
k kk kk i

v v vv P 1ερ v ρg η E Kx x x xt x x 2 x t
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The mass density and the dielectric constant are assumed to be functions of temperature as follows: 
 

( )[ ]οοο TTα1ρρ −−= , οα > 0                                                                                                                               (10) 
 

( )[ ]οο TTe1εε −−= ,   e > 0                                                                                                                                    (11) 
 
where οα and e are usually positive. 

 
It is clear that there exist the following steady solutions (denoted by an over bar): 

0,u v w= = = ,                                                                                                                                                             (12) 
 

0,σ =                                                                                                                                                                           (13) 
 

0 0 ,T T zβ= −                                                                                                                                                                 (14) 
 

],zβα1[ρρ οοο +=                                                                                                                                                     (15)  
 

]zβe1[εε οο += ,                                                                                                                                                      (16) 
 

xE 0,= yE 0,=
( )

0

0

,
1z

EE
e zβ

=
+

                                                                                                                           (17)
 

ο
ο

Eφ Log (1 e β z )
e

 = − + 
 

                                                                                                                                   (18) 

here, 

ο 1
ο

T Tβ ,
L
−

=                                                                                                                                                               (19) 

( )
0

0
0

,
log 1

eE
e z

ϕ β
β

= −
+                                                                                                                                               (20) 

are the  adverse  temperature  gradient  and  the root-mean-square value of the electric field at z = 0. If necessary, the 
modified pressure *P can be determined from  

210
2i z

i i

pg E
x x

ερ ∂ ∂
= −

∂ ∂



.                                                                                                                                              (21) 

 
Let this initial steady state be slightly perturbed where the simple relation ψψψ ′+=  can be expressed any physical 
quantities ψ  after perturbation and prime refers to perturbed quantities. Following the usual steps of linear stability 
theory we can obtain the following main equations: 

u v w 0
x y z
′ ′ ′∂ ∂ ∂
+ + =

∂ ∂ ∂
,                                                                                                                                        (22) 
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0
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                                 (23) 
'

2 20
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0
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ρ
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0
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x
vζ ∧∇=

′∂
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The boundary conditions appropriate for the problem are given by [10] 

0Ω
z
ζT

z
ww 32

2
==

′∂
∂

=ϕ′=′=
′∂

′∂
=′   at   L0,z =′                                                                                       (28) 

Now, introducing the nondimensional variables given by
2

2 2, , , , , , , ,v v v v

v

k k k kLL L L L
L k L L L

β β 2
0 0 3, ,vkeE L

L
β

2
vkand

L
Ω =  

 
as units of length, velocity, time, temperature, vorticity, electro potential, microrotation and rotation of the fluid 
respectively, we obtain the equations governing the disturbances as: 

1
r

2 2P w
t

− ∂
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0
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where,  

νk
βLgαR
v

4

H =   is the Rayleigh heat number,  

νkρ
LβEeε

R
vο

422
ο

2
ο

E =   is the Rayleigh electric number, 

v
r k

νP =   is the Prandtl number, 2
vοvο

1
v

2
ο

ο2 Lcρ
δδ,

kρ
kK,

kLρ
γC,

L
jj ==== . 

 
3. NORMAL MODE ANALYSIS 
 
Following the normal mode analysis we assume that the solutions of Eqs. (29-33) are given by: 
 
[ ] [ ] [ ])ybxa(itcexpG(z),Φ(z),Θ(z),Z(z)W(z),Ωφ,T,,ζw, 3 ++=                                                    (34) 
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where, 22 baλ +=  is the wave number and c is the stability parameter which is, in general, a complex constant.  
 
For solutions having the dependence of the form (34), Equestion. (29-33) yield 

( ) ( ) ( )

( ) ( )

1 2 2 2 2 2

2* 1 2 2 2 2
0 2 0,

r H E E

r

P c D D w R R R D

K P c D w DZ K D G

λ λ λ

λ λ

−

−

 − − − + + Θ+ Φ 

+ − + Ω − − =
                              (35) 

( ) ( )2 2 * 2 2
02 ,r rc P D z P DW K c Dλ λ ζ − − = Ω − −                                                                                     (36) 

( ) ( ) ( )2 2 2 22 ,c A D G A D Wλ λ + − − = − −                                                                                                    (37) 

( ) ( )2 2
01c c Dτ λ + − −  Θ ( )0= 1 ,c W Gτ δ+ −                                                                                               (38) 

( )2 2 0.D Dλ− Φ + Θ = .                                                                                                                                           (39) 

  
where 

1K
Aj

= ,  1

ο

KA ,
C

=  
dD .

d z
=                                                                                                                                   (40)  

 
In seeking solutions of these equations we must impose certain boundary conditions at the lower surface 0z =  and the 
upper surface .1z =  The most realistic boundary conditions may be written as  

0GZΦΘWDW ======  at   0,1z =                                                                                                      (41) 
 
In this paper, however, we shall use somewhat different boundary conditions given by [21] 

0GZDΦΘWDW 2 ======  at 0,1z =                                                                                                  (42) 
 
This case, although admittedly an artificial one to consider, is of importance since its exact solution is readily obtained. 
Furthermore, from past experience with problems of this kind (see for example, Chandrasekhar [16] and Turnbull [20]), 
one may feel fairly confident that the general features of the physical situation will be disclosed by a discussion of this 
case equally as well as by a discussion of solutions satisfying less artificial boundary conditions. 
 
Eliminating GandΦ,Θ,Z  from Equation (35-39), we obtain: 
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It can be shown from equation (43) that all even order derivatives of W vanish on the boundaries. The proper solution 
for W characterizing the lowest mode is: 
 

zπsinWW ο= ,                                                                                                                                                           (44) 

where οW is a constant. Substituting (44) in (43) and putting bλπ 22 =+ , we obtain: 
 

2R Hλ ( ) ( ) ( ) [ ]{ }2 * *
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                     [ ]2 24 2rA Pb c A bπ− Ω + + ( )01c c bτ+ +   .                                     (45) 

 
4. OVERSTABILITY MOTIONS 
 
Since c is, in general, a complex constant we put ωicc r += , where ωandcr  are real. The marginal state is 

reached when 0cr = ;  if  0ω = ,  one says that principle of exchange  of  stabilities  is  valid  otherwise we have  
overstability  and then ωic =  at marginal stability. 
 
Putting ωic =  in equation (44), the real and imaginary parts of equation (45) yield: 

ωYiXR +=                                         (46) 
 

There, X and Y are real-valued functions of *
0 0, , , , , , , , ,r EP R A K Kτ λ δΩ  and ω , and explicit expansions for these 

functions are follows: 

)AA(λ
AAωAA

X 2
2

2
1

2
42

2
31

+
+

= ,                                                                                                                                         (47) 

 

)AA(λ
AAAA

Y 2
2

2
1

2
3241

+
−

=                                                                                                                                                  (48) 

where 

( ){ } ( ) ( ){ }2 * 3 2 2 * 2 2
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(49) 

 

( ){ } ( ) ( ) ( ){ }* 3 * 2 2
2 0 0 0 0 01 1 2 2r rA K A P b A K A P A bδ τ δ ω τ τ= − − − + − + − − +  { }2

0 2 ,A bω τ+ +
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             ( )2 2 2
0 2ER Aπ λ ω τ+ − .                                                                                                                               (52)                                                                                                                               

It is apparent from Eq. (45) that for arbitrary assigned values of ,,λ,τ,R,P οEr Ω ,δ,K,A,K*
ο  and HRω,  

will be complex but the physical meaning of R required it to be real. 
 
Consequently, from the condition that R must be real, so we have either 

HR X= 0and ω =                                                                                                                                                   (53) 
or 

0HR X and Y= = .                                                                                                                                               (54) 
 
From Eq. (53) we obtain the eigenvalue equation for a natural stationary instability, 

1
2

3
H Aλ

A
R =  .                                                                                                                                                              (55) 

In this case  

( ) 3 2
1 1 2r rA P A b APbδ= − −                                                                                                                                     (56) 

( ) ( )6 5 2 2 2 3
3 2 1 4r E rA P b AP K b R P A P bλ δ π = − + − + − − Ω         

          ( )2 2 2 2 2 22 8E r rR P A A P A bλ π δ π π + − − − Ω        

          2 22 r EP R Abπ λ−               .                                                                                                                                (57) 

For Newtonian viscous fluid 0,ER A K δ ω= = = = Ω = =  Eq. (55) reduces to  

2

3

H
λ
bR =   .                                                            (58) 

hich agrees with the classical result (Chandrasekhar [16]). Equation (55) will give the critical Rayleigh heat number  

HCR  for the onset of stationary instability. 
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On the other hand Eq. (54) leads,  
 

)AA(λ
AAωAA

R 2
2

2
1

2
42

2
31

H +
+

= ,                                                                                                                                      (59) 

and 
0AAAA 3241 =− .                                        (60)  

For assigned values of *
0 0, , , , , , ,r EP K A K and Rτ δΩ   Eqs. (59) and (60) define HR  as a function of λ , the 

minimum  of this function determines the critical Rayleigh number HCR  for the onset of oscillatory convection (i.e. 
overstability) should be compared with that the onset of stationary convection (i.e. ordinary instability). The type of 
instability, which takes place in practice, will be that corresponding to the lower value of the critical Rayleigh heat 
number. 
 
5. NUMERICAL RESULTS 
 
In order to determine the conditions under which instability sets in overstability *

0 0, , , , , , ,r EP K A K and Rτ δΩ 

were assigned fixed values, and the value of ω  was evaluated numerically from Eq. (60). Using this value of ω , the 
value of HR  was evaluated numerically from Eq. (59). The procedure was then repeated for various values of λ  in 

order to locate the minimum of HR . The critical Rayleigh heat number HCR  obtained for both stationary instability 
and overstability is shown in Figs.1-4. 
 
We have plotted the variation of the critical Rayleigh heat number HCR with the rotation Ω using Eq. (59) satisfying 

(60) for the onset of over stable case for values of the dimensionless parameters 100,rP = 1,0.5,0.1,δ =


*
0 0.1,0.8, 1,K K= =   1= , 0 0.02,0.05τ =  and 0.2,0.5,A =  Figure 1 represents the dependence of HCR  on 

Ω  for three values of 0,1000,2000ER = , 0 0.02,0.05,τ = 1δ = , *
0 0.1K =  and 0.2,A =  Figure 2 represents 

the dependence of HCR on Ω  in the case of  1000.ER =  Figure 3 represents the dependence of HCR  on Ω  in the 

case of 1000.ER = , 0 0.02,0.05τ = , 0.2,A = *
0 0.1,0.8,K =  and 1δ = . Figure 4 represents the dependence of 

HCR  on Ω  in the case of 1000R E = , 0.2,A = 05.0,02.0το = , *
0 0.1K =  and 0.1,0.5δ =



. The flow is 

stable if H HCR R<  and otherwise unstable.  
 
Figures 1-4 reveal that the critical Rayleigh heat number HCR  decreases with an increase the Rayleigh electric number 

HR  and the elastic parameter *
0K , while HCR  increases  with an increase the relaxation time οτ , the rotation Ω  and 

the parameters A, δ  (i.e.  the onset of stability is delayed as  ER  and *
οK  increase,  while the onset of instability is 

delayed as οτ , Ω , δ  and A  increase). The value of HCR  for an oscillatory instability is greater than that of a 
stationary instability. 
 

In figure 5 we have exhibited the dependence of critical wave number Cλ  on Ω  for three values of  1,0.5,0.1δ =


, 

,05.0,02.0το =  *
0 0.1K = , 1000ER = 0.2,and A =  Figure 5 reveals that the critical wave number Cλ

decreases or increases as δ  or  οτ  increases. This implies that the width of the cell at the onset of instability increases 

with the heat imparted by microrotation, while it reduces as the relaxation time οτ  increases. 
 
In the case of a Newtonian fluid, it is well known that the rotation introduces vorticity into the fluid. Then, the fluid 
moves in the horizontal plates with higher velocity. On account of this motion the velocity of the fluid perpendicular to 
the plates reduces, thus the onset of convection is inhibited. In the case of a micropolar fluid, free from the rotation of 
the system, it is apparent that a part of vorticity of the fluid is spent in inducing rotation to the micropolar additives. 
This apparent increase in the viscosity of the fluid reduces the velocity of the fluid, and hence delays the onset of 
instability. When the system is subject to low rotation, the microrotation and the rotation of the system have reinforced 
each other as the net effect of these two agents is to curtail the vertical component of the velocity. On the other hand, in  
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the case of high rotation the motion of the fluid prevails essentially in the horizontal plates. This motion is reduced by 
the presence of micropolar additives. Thus the component of the velocity perpendicular to the horizontal plates 
enhances, thereby the system is prone to instability.   
 
6. CONCLUSION 
 
Natural convection of a rotating micropolar viscoelastic fluid heated from below in the presence of electric field has 
been analyzed numerically. The study focused on the effect of a rotating micropolar fluid, elastic parameter, electric 
field and relaxation time on the convection phenomenon. From the above analysis, we conclude that the micropolar 
additives, the rotation of the system and the relaxation time have stabilizing effect while the elastic parameter and the 
presence of electric field  have destabilizing effect. It is also noted from Figs. 1-4 that the critical Rayleigh heat number 
for overstability is always greater than the critical Rayleigh heat number for stationary convection. 
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8. FIGURES CAPTIONS 
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