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ABSTRACT 
Let ),(= EVG be a graph, let VD ⊆ and u be any vertex in D . Then the out degree of u with respect to D  

denoted by )(uod
D

, is defined as |)()(=|)( DVuNuod
D

−∩ . A subset )(GVD ⊆  is called a near equitable 

dominating set of G if for every DVv −∈ there exists a vertex Du∈  such that u  is adjacent to v and 
1|)()(| ≤−

−
voduod

DVD
. A near equitable dominating set is called a strong total near equitable dominating set 

(stned-set) if for every vertex Dv∈ there exists Du∈  such that u  is adjacent to v  and 1|)()(| ≤− voduod
DD

. 

The minimum cardinality of stned-set of G  is called the strong total near equitable domination number of G  and is 
denoted by )(Gstneγ . In this paper, we initiate a study of this parameter.  
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1. INTRODUCTION 
 
By a graph ),(= EVG  we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of 
G  are denoted by n  and m , respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [4].  
 
Let ),(= EVG  be a graph and let Vv∈ . The open neighborhood and the closed neighborhood of v  are denoted by 

}:{=)( EuvVuvN ∈∈ and [ ] = ( ) { },N v N v v∪ respectively. If VS ⊆ then )(=)( vNSN Sv∈∪ and 

SSNSN ∪)(=][ .  
 
A subset S  of V  is called a dominating set if [ ] = .N S V  The minimum (maximum) cardinality of a minimal 
dominating set of G  is called the domination number (upper domination number) of G  and is denoted by )(Gγ  

))(( GΓ . An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [7]. A survey of 
several advanced topics in domination is given in the book edited by Haynes et al. [8]. Various types of domination have 
been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes 
et al. [7]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi [5] introduced the concept of total domination in graphs. A 
dominating set D  of a graph G  is a total dominating set if every vertex of V  is adjacent to some vertex of .D  The 
cardinality of a smallest total dominating set in a graph G  is called the total domination number of G  and is denoted 
by )(Gtγ . 

 
Equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal 
capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly.  
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Let )(GVD ⊆ and u be any vertex in .D The out degree of u with respect to D  denoted by ( ),

D
od u is defined as 

( ) =| ( ) ( ) | .
D

od u N u V D∩ − D  is called a near equitable dominating set of G  if for every DVv −∈  there 

exists a vertex Du∈  such that u  is adjacent to v  and | ( ) ( ) | 1.
D V D

od u od v
−

− ≤ The minimum cardinality of 

such a dominating set is denoted by neγ  and is called the near equitable domination number of G [1]. A near equitable 

dominating set D  is said to be a total near equitable dominating set if every vertex Vw∈ is adjacent to an element of 
.D  The minimum cardinality of total near equitable dominating set of G is called the total near equitable domination 

number of G and is denoted by )(Gtneγ [2].  
 

We need the following Definition.  
  

Definition: 1.1[1] Let ),(= EVG  be a graph and D  be a near equitable dominating set of G . Then Du∈  is a 

near equitable pendant vertex if 1=)(uod
D

. A set D  is called a near equitable pendant dominating set if every vertex 

in D  is an equitable pendant vertex. 
 

2. STRONG TOTAL NEAR EQUITABLE DOMINATION IN GRAPHS 
 
Definition: A near equitable dominating set D  of a graph G  is said to be a strong total near equitable dominating set 
(stned-set) if for every vertex Dv∈  there exists Du∈  such that u  is adjacent to v  and 1|)()(| ≤− voduod

DD

. A stned-set D  is said to be minimal if no proper subset of D is a stned-set. The minimum cardinality of stned-set of 
G  is called the strong total near equitable domination number of G  and is denoted by )(Gstneγ .  
 
We note that this parameter is only defined for graphs without isolated vertices and, since each total near equitable 
dominating set is a near equitable dominating set and each strong total near equitable dominating set is a total near 
equitable dominating set, we have )()()( GGG stnetnene γγγ ≤≤ . 

 
Proposition: 2.1 Let G  be any graph, and let )(GVD ⊂  be a strong total near equitable dominating set of G . 
Then for every component C  of G , )(CVD∩  is a strong total near equitable dominating set in C .  

 
A vertex of a graph is said to be pendant if its neighborhood contains exactly one vertex. The vertex which is adjacent to 
the pendant vertex is called support vertex. 

 
Proposition: 2.2 Let T  be a tree. Then a total near equitable dominating set is a strong total near equitable dominating 
set if every support vertex is adjacent to at most two pendant vertices.  

  
Theorem: 2.3 Let T  be a tree. Then 22=)( −−mnTstneγ  if and only if T  is a star.  

  
Proof: Let T be a tree of order n . Since T is a star, 1=)( −nTstneγ . Since for any tree, 1= −nm , we have 

22=21)(2=1=)( −−−−−− mnnnnTstneγ .  
 
Conversely, suppose thatT is not star, thenT contains more than one support vertex. Therefore 2)( −≤ nTstneγ . Thus 

( ) < 2 2.stne T n mγ − −   
  

Theorem: 2.4 For any cycle nC 2=)( −nCnstneγ if and only if 4,5=n , 6 .  
  

Proof: Let nCG ≅  If 4,5=n , 6 . Clearly, ( ) = 2.stne nC nγ −   

Conversely, suppose that ( ) = 2.stne nC nγ − Since .nG C≅ Assume that 4, 5,n ≠ 6. If = 3,n then 

12=)( 3 ≠Cstneγ . If 7=n , then 5<4=)( 7Cstneγ . Similarly, for 8≥n , 2<)( −nCnstneγ . 
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Definition: A graph G  is a near equitably balanced graph if for any near equitable dominating set D  of G , 

)(=)( voduod
DD

, for all Dvu ∈, .  

 
Example: A path 4C is a near equitably balanced graph. But a path 5P is not near equitably balanced graph. 

 
Remark: 2.5 Let G  be a graph such that any near equitable dominating set of G  is a near equitable pendant 
dominating set. Then G  is a near equitably balanced graph.  

  
Theorem: 2.6 Let G  be a near equitably balanced graph. Then D  is a strong total near equitable dominating set of 
G  if and only if D  is total near equitable dominating set.  

  
Proof: Let G  be a near equitably balanced graph. Then for any near equitable dominating set D of ,G  

)(=)( voduod
DD

 for all Dvu ∈, . Also, for every DVv −∈  there exists a vertex Du∈ such that u  is 

adjacent to v  and 1|)()(| ≤−
−

voduod
DVD

. Since D  is a total near equitable dominating set, for any Du∈  

there exists Dv∈  such that u  is adjacent to v . Therefore D  is a strong near equitable dominating set. 
 

Theorem: 2.7 Let G be a near equitably balanced graph and let D be a near equitable dominating set of G . Then for 
any DVww −∈′, , 2|)()(| ≤′−

−−
wodwod

DVDV
.  

  
Proof: Let D be a near equitable dominating set of a near equitably balanced graph G . Suppose that ww ′, are any two 

vertices of DV − such that )()( wodwod
DVDV

′≤
−−

. Since D is a near equitable dominating set of G , for any ,u D∈  
)()()( woduodwod

DVDDV
′≤≤

−−
such that 1|)()(| ≤−

−
woduod

DVD
and | ( ) ( ) | 1.

D V D
od u od w

−
′− ≤ Therefore 

2|)()(| ≤′−
−−

wodwod
DVDV

.  

  
A graph G is called k -regular if every vertex of G has degree k . A graph is said to be regular if it is k -regular for some 
nonnegative integer k . Analogous to this definition we can define the near equitably regular graph as follows. 
 
Definition: Let G be a near equitably balanced graph and let D be a near equitable dominating set of G . Then G is a near 
equitably regular graph if for any Du ∈, and DVv −∈ , )(=)( voduod

DVD −
.  

 
Example: A cycle 4C is a near equitably regular graph.  
 
Theorem: 2.8 Let ),( mnG  be a near equitably regular graph, 1≥m  and let D  be a near equitable dominating set 
of G  such that the subgraph 〉−〈 DV  induced by DV −  is connected. Then DV −  is a strong total near 
equitable dominating set.  

  
Proof: Let ),( mnG be a near equitably regular graph, 1.m ≥ Then for any stned- set ,D  

1)(=)(=)(=)( ≥′
−−

wodwodvoduod
DVDVDD

 for all Dvu ∈,  and for all DVww −∈′, . Therefore for 

any Du∈ , 1)( ≥uod
D

. Since the subgraph 〉−〈 DV  induced by DV −  is connected, it follows that DV −  is 

a strong total near equitable dominating set.  
 

Definition: A near equitably regular graph with vertices of out degree k  is called a k - near equitably regular graph or 
near equitably regular graph of out degree k .  
 
Theorem: 2.9 A k -regular graph is a k - near equitably regular graph if and only if it is a k-regular bipartite graph or 
a totaly disconnected.  
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Proof: Let ),( mnG  be a k -regular graph. Then kudeg

G
=)(  for all )(GVu∈ . Suppose that G  is a k - near  

equitably regular graph, it follows that kwodvoduod
DVDD

=)(=)(=)(
−

 for all Dvu ∈,  and DVw −∈ . 

Therefore both subgraphs 〉〈D  and 〉−〈 DV  induced by D  and DV − , respectively are totally disconnected. 

Thus G  is totaly disconnected for 0=k  and k-regular bipartite graph for 1≥k . The converse is obvious.  
  

Theorem: 2.10 Let G  be a near equitably regular graph and let D  be a total near equitable dominating set of G . 
Then D  is a strong total near equitable set.  

  
Proof: Let G  be a near equitably regular graph, Suppose that D  is a total near equitable dominating set, then for any 

Vv∈  there exists Du∈  such that v  is adjacent to u  and )(=)( voduod
DD

 or )(=)( voduod
DVD −

 . 

Therefore D  is a strong total near equitable set.  
 
Definition: Let G  be a graph and let D  be a near equitable dominating set of G . Then G  is a near equitably 
bi-regular graph if for any Dvu ∈,  and DVw −∈ , 1)(=)(=)( ±

−
wodvoduod

DVDD
.  

 
Proposition 2.11  Any complete graph nK  is a near equitably bi-regular graph.  

  
Proposition: 2.12 Any near equitably bi-regular graph is a near equitably balanced graph.  

  
Proposition: 2.13 Let G  be a graph and let D  be a near equitable pendant dominating set of G . Then for any 

Du∈  and DVv −∈ , 2)()( ≤≤
−

voduod
DVD

.  

  
Theorem: 2.14 Let G  be a graph and let D  be a near equitable pendant dominating set of G . Then   

(i) G  is a near equitably regular graph if and only if 1=)(vod
DV −

  

(ii) G  is a near equitably bi-regular graph if and only if 2=)(vod
DV −

.  

 
Theorem: 2.15 Let G  be a graph and let D  be a near equitable dominating set of G  such that the subgraphs 〉〈D  
and 〉−〈 DV  induced by D  and DV − , respectively are a bipartite graph. Then for any Du∈ , 

muod
DDu

=)(∑ ∈
.  

  
Proof: Suppose that D  is a near equitable dominating set of G  such that the subgraphs 〉〈D  and 〉−〈 DV  induced 

by D  and DV − , respectively are bipartite graphs, then )(=)( udeguod
D

 and )(=)( vdegvod
DV −

, for all 

Du∈  and DVv −∈ . Since mwdeg
Vw

2=)(∑ ∈
, we have mwdeguod

VwDDu
=)(

2
1=)( ∑∑ ∈∈

. 

  
3. BOUNDS 
 
In this section, we present sharp bounds for )(Gstneγ .  
 
Theorem: 3.1 Let G  be a connected graph of order n , 4≥n . Then 1)( −≤ nGstneγ . Further equality holds for 

nk1, .  
 
Proof: It is enough to show that for any minimum strong total near equitable dominating set D  of G , 1|| ≥− DV . 
Since G  is a connected graph of order n , 4≥n , it follows that 1)( ≥Gδ . Suppose 0|=| DV − , it follows that 

nD |=| . Therefore G  is totally disconnected, a contradiction.  
  

 
 



Ali Mohammed Sahal* and Veena Mathad/ Strong Total Near Equitable Domination in Graphs/ IJMA- 5(3), March-2014. 

© 2014, IJMA. All Rights Reserved                                                                        187   

 
Theorem: 3.2 Let ),( mnG  be a near equitably regular graph, 1≥m  and let D  be a near equitable dominating set 

of G  such that the subgraph 〉−〈 DV  induced by DV −  is connected. Then )()( GnGstne γγ −≤ . Further 

equality holds for 4C . 
  
Proof: Let G  be a near equitably regular graph.  By Theorem 2.8, DV −  is a strong total near equitable dominating 
set. Therefore, )(||)( GnDVGstne γγ −≤−≤ . 

 
4. MINIMAL STRONG TOTAL NEAR EQUITABLE DOMINATING SETS  
 
We now proceed to obtain a characterization of minimal stned-sets.  
 
Theorem: 4.1 Let D be a dominating set of a graph G . If D is a stned- set, then D is a minimal stned- set if and only if 
one of the following holds:   
1.  D is minimal near equitable dominating set.  
2.  For any two adjacent vertices Dyx ∈, , )(>)( yodxod

DD
 and for any vertex Dv∈  deferent from x  and      

   y , the set vU  is nonempty, where 1=)()(,,{= yodxodDyxU
DDv −∈ , and v  is adjacent to x  but not   

   adjacent to }y .  
  

Proof: Suppose that D is a minimal strong total near equitable dominating set of G . Then for any Dv∈ , }{vD − is not 
strong total near equitable dominating set. If D is a minimal near equitable dominating set, then we are done. If not, then 
for any Dv∈ , let 1=)()(,,{= yodxodDyxU

DDv −∈ , and v is adjacent to x  but not adjacent to }y . There 

exist }{, vDyx −∈ such that
{ } { }

| ( ) ( ) |> 1.
D v D v

od x od y
− −

− If both yx, are adjacent to ,v then 

1|)()(|=|)()(|
}{}{

≤−−
−−

yodxodyodxod
DDvDvD

, a contradiction. If both yx, are not adjacent to ,v then 

1|)()(|=|)()(|
}{}{

≤−−
−−

yodxodyodxod
DDvDvD

, a contradiction. So, v  is adjacent to precisely one vertex of 

},{ yx . Without loss of generality, assume that v  is adjacent to x and v  not adjacent to y .  
 
Then,  

1|)()(||)(1)(|=|)()(<|1
}{}{

+−≤−+−
−−

yodxodyodxodyodxod
DDDDvDvD

 

 
So, 0|>)()(| yodxod

DD
− . But 1|)()(| ≤− yodxod

DD
. 

 
So, 1|=)()(| yodxod

DD
− . Therefore 1=)()( yodxod

DD
− . Hence vU  is not empty.  

 
Conversely, let D  be a strong total near equitable dominating set. Suppose to the contrary D  is not a minimal strong 
total near equitable dominating set. Then for every Dv∈ , }{vD −  is a strong total near equitable dominating set. So, 
D  is not a minimal near dominating set, a contradiction. Next, suppose that D  is a strong total near equitable 
dominating set and (2)  holds. Then for every Dv∈ , vU  is not empty. So, for every Dv∈ , there exist Dyx ∈,  

such that v  is adjacent to precisely one vertex of },{ yx , and 1=)()( yodxod
DD

− . Suppose to the contrary D  is 

not a minimal strong total near equitable dominating set. Then for every Dv∈ , }{vD −  is a strong total near 

equitable dominating set. So, 1|)()(<|1
}{}{

≤−
−−

yodxod
vDvD

 and thus we have 
{ } { }

| ( ) ( ) |= 1.
D v D v

od x od y
− −

−

Then 
{ } { }

| ( ) ( ) |=| ( ) ( ) |,
D v D v D D

od x od y od x od y
− −

− − either { , } ( ),x y N v⊆ or { , } ( ) = ,x y N v ϕ∩ a 

contradiction.  
 
5. ON CORONA OF GRAPHS  
 
The corona HG   of graphs G  and H  is the graph obtained by taking one copy of G  and |)(| GV  copies of  
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H , and then joining the i th vertex of G  to every vertex in the i th copy of H . It is customary to denote by vH  that 

copy of H  whose vertices are adjoined with the vertex v  of G . In effect, HG   is composed of the subgraphs 
vHv +  joined together by the edges of G . Moreover, )(=)(

)(
vHVHGV vGVv

+
∈

 . 

 
Theorem: 5.1  Let G  and H  be any two graphs and let D  be a near equitable dominating set of H  such that for 
any adjacent vertices Du∈  and DHVv −∈ )( , )()(

)(
voduod

DHVD −
≤ , D  is near equitable dominating set 

of HG  .  
  

Proof: Let D  be a near equitable dominating set of H . Since for any adjacent vertices Du∈  and ( ) ,v V H D∈ −  

( )
( ) ( ),

D V H D
od u od v

−
≤ we have for any adjacent vertices Du∈ and ( ) ,v V G H D∈ −  1|)()(|

)(
≤−

−
voduod

DHGD 

.  

Hence D  is a near equitable dominating set of HG  .  
  

Corollary: 5.2  In Theorem 5.1, if D  is a stned- set of H  , then D  is a stned- set of HG  .  
  

Theorem: 5.3  Let G  and H  be any two graphs such that G  is a connected graph. Then )(GV  is a stned- set of 

HG   if and only if 1nKH ≅ , 1,2=n  or 2KH ≅ . 
 

Proof: Let ),(=)( 21 VVHGV  , where )(=1 GVV  and )(=2 HVV . Suppose that )(GV  is a stned- set of 

HG  . Since )(=)(
1

vHVHGV vVv
+

∈
 , it follows that for any 2Vu∈ , 1=)(

2
uod

V
. Since )(GV  is a 

stned- set of HG  , it follows that for any 1Vv∈ , 2)(
1

≤vod
V

.  

 
Therefore 2|)(| ≤HV . Hence 1nKH ≅ , 1,2=n  or 2KH ≅ .  
 
Conversely, suppose that 1nKH ≅ , 1,2=n  or 2KH ≅ , then for any 1Vv∈ , 2)(

1
≤vod

V
 and for any 2 ,u V∈

1=)(
2

uod
V

. Therefore 1|)()(|
21

≤− uodvod
VV

. Since G  is a connected graph, for any 1Vw∈  there exists 

1Vv∈  such that 1|)()(|
11

≤− wodvod
VV

. Thus )(GV  is a stned- set of HG  .  
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