International Journal of Mathematical Archive-5(3), 2014, 119-123

 (cas $\$$ MA Available online through www.ijma.info ISSN 2229-5046

 (cas $\$$ MA Available online through www.ijma.info ISSN 2229-5046}

A NOTE ON RECTANGULAR MATRICES

Md. Shahidul Islam Khan*
Department of Mathematics, Nabajyoti College, Kalgachia, PIN-781319, India.

(Received on: 27-02-14; Revised \& Accepted on: 15-03-14)

Abstract

In this paper, we study about determinants, adjoint, inverse, α - characteristic equation, α-minimal polynomial and α-eigenvalues of rectangular matrices. We also prove some enlightening results.

1. INTRODUCTION

Let V be a Γ - Banach algebra and m , n be positive integers. Denote by $V_{m, n}$ and $\Gamma_{n, m}$ the sets of $m \times n$ matrices with entries from V and $n \times m$ matrices with entries from $\Gamma_{\text {respectively. Let }}\left(x_{i j}\right),\left(y_{i j}\right) \in V_{m, n}$ and $\left(\gamma_{j i}\right) \in \Gamma_{n, m}$, we define $\left(z_{i j}\right)=\left(x_{i j}\right)\left(\gamma_{j i}\right)\left(y_{i j}\right)$ where $z_{i j}=\sum_{p} \sum_{q} x_{i p} \gamma_{p q} y_{q j}$ and $\|A\|=\max \left\{\left|x_{i j}\right|: i=1,2, \ldots . m ; j=1,2, \ldots . n\right\}$, where $A=\left(x_{i j}\right) \in V_{m, n}$. Then $V_{m, n}$ is a $\Gamma_{m, n}$ - Banach algebra with respect to matrix addition, scalar multiplication, matrix multiplication and norm defined as above. The concept of α - characteristic equations has been generalized by several authors [1], [2], [3], [5].In [3], define the product of rectangular matrices A and B of order $m \times n$ by $A . B=A \alpha B$, for a fixed rectangular matrix $\alpha_{n \times m}$. With this product, we have $A^{2}=A \alpha A, A^{3}=A^{2}(\alpha A)$, $A^{4}=A^{3}(\alpha A), \ldots \ldots ., A^{n}=A^{n-1}(\alpha A)$.

2. DEFINITIONS AND EXAMPLES

Definition 2.1: A determinant $|A|$ for a rectangular matrix $A_{m \times n}(m \leq n)$
Let J_{n} be the set of integers $\{1,2,3, \ldots \ldots, n\}$. Let the integers $m, k_{p^{1}}, k_{p^{2}}, \ldots \ldots . k_{p^{m}}$ be such that
i. $m \leq n$
ii. $\quad k_{p^{i}} \in J_{n}$ for all $i \in J_{m}$ and $p=1,2,3, \ldots \ldots \ldots$.
iii. $\quad k_{p^{1,}}<k_{p^{2}}<\ldots \ldots .<k_{p^{m}}$

For an integer $d, 1 \leq d \leq(n-m+1)$, define a set S_{d} such that
$S_{d}=\left\{e_{p}^{d}=\left(d, k_{p^{2}}, k_{p^{3}}, \ldots \ldots ., k_{p^{m}}\right)\right\}$
If $N_{d}={ }^{n-d} C_{m-1}$, then the cardinal number of S_{d} is N_{d}.
The set $S_{d}, 1 \leq d \leq(n-m+1)$ will be ordered as follows. A set $S_{u}<S_{v}$ whenever $u<v$. Moreover, the elements e_{p}^{d} and e_{q}^{d} will be placed in the order $e_{p}^{d}<e_{q}^{d}$ whenever $k_{p^{s}}<k_{q^{s}}$ for $\mathrm{s}=2,3 \ldots \mathrm{~m}$.

All the m-tuples, therefore, admit of the following order; namely
$e_{1}^{1}<e_{2}^{1}<$ \qquad $.<e_{N_{1}}^{1}<e_{2}^{2}<$ \qquad $<e_{N_{2}}^{2}<$ \qquad $<e_{1}^{n-m+1}<$ \qquad $<e_{n-m+1}^{n-m+1}$

Corresponding author: Md. Shahidul Islam Khan*
Department of Mathematics, Nabajyoti College, Kalgachia, PIN-781319, India.
E-mail: shahidul_islamkhan786@yahoo.com

Consider the matrix $A=\left(a_{i j}\right)_{m \times n}, m \leq n$. Let A_{p}^{d} be a sub-matrix of order $m \times m$ of A whose columns conform to the ordering of integers in $e_{p}^{d} ; 1 \leq d \leq(n-m+1), 1 \leq p \leq N_{d}$.

For an $m \times n(m \leq n)$, matrix A with real elements. Let A_{p}^{d} be defined as above, then the number $\sum_{d=1}^{n-m+1} \sum_{p=1}^{N_{d}} \operatorname{det}\left(A_{p}^{d}\right)$ will be defined as the determinant of A and will be denoted by $|A|$.

For an $m \times n(m \geq n)$, matrix A with real elements, $|A|$ will be defined as $\left|A^{T}\right|$ where $\left|A^{T}\right|$ denotes the transpose of matrix of A.

Example: Let $A=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 & 7\end{array}\right)$. Here $m=2$ and $n=5$, so $1 \leq d \leq(5-2+1)$
i.e. $d=1,2,3,4$ and $N_{1}=4, N_{2}=3, N_{3}=2, N_{4}=1$. The sets S_{1}, S_{2}, S_{3} and S_{4} contains the following elements, namely

$$
\begin{aligned}
& S_{1}=\{(1,2),(1,3),(1,4),(1,5)\} \\
& S_{2}=\{(2,3),(2,4),(2,5)\} \\
& S_{3}=\{(3,4),(3,5)\} \\
& S_{4}=\{(4,5)\}
\end{aligned}
$$

There by the above definition, we have

$$
\begin{aligned}
|A| & \left.=\left\lvert\, \begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 6
\end{array}\right.\right] \\
& =\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|+\left|\begin{array}{ll}
1 & 3 \\
3 & 5
\end{array}\right|+\left|\begin{array}{ll}
1 & 4 \\
3 & 6
\end{array}\right|+\left|\begin{array}{ll}
1 & 5 \\
3 & 7
\end{array}\right|+\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|+\left|\begin{array}{ll}
2 & 4 \\
4 & 6
\end{array}\right|+\left|\begin{array}{ll}
2 & 5 \\
4 & 7
\end{array}\right|+\left|\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right|+\left|\begin{array}{ll}
3 & 5 \\
5 & 7
\end{array}\right|+\left|\begin{array}{ll}
4 & 5 \\
6 & 7
\end{array}\right| \\
& =-42
\end{aligned}
$$

Definition 2.2: Cofactors, Adjoints and Inverse of rectangular matrix

Let A be a $m \times n(m \leq n)$ rectangular matrix of order $m \times n$; then we have by definition that $|A|$ is a linear homogeneous function of the entries in the ith row of A. If $c_{i j}$ denotes the coefficient of $a_{i j}, j=1,2,3, \ldots \ldots, n$, then we get the expression

$$
|A|=a_{i 1} c_{i 1}+a_{i 2} c_{i 2}+a_{i 3} c_{i 3}+\ldots \ldots .+a_{i n} c_{i n}
$$

The coefficient $c_{i j}$ of $a_{i j}$ of the above expression is called the cofactor of $a_{i j}$. Let E, F, G and H be the sub-matrices of A of the order $(i-1) \times(j-1),(i-1) \times(n-j),(m-i) \times(n-j)$ and $(m-i) \times(j-1)$ respectively such that $A=\left[\begin{array}{ccc}E & : & F \\ \ldots \ldots \ldots \ldots . . & a_{i j} \ldots \ldots \ldots \ldots \\ H & : & G\end{array}\right]$ then the determinant of the sub-matrix $M_{i j}$ of the order $(m-1) \times(n-1)$ corresponds to the $M_{i j}=\left|\begin{array}{cc}E & -F \\ -H & G\end{array}\right|$, the cofactor of $a_{i j}$, that is $c_{i j}=\left|M_{i j}\right|$.

A rectangular matrix A of order $m \times n(m \leq n)$ is said to be non-singular if $|A| \neq 0$; otherwise it is said to be singular.

If A is non-singular, then its inverse A^{-1} is defined by $A^{-1}=\frac{\operatorname{Adj}(A)}{|A|}$.

Definition 2.3: α-characteristic Equation, α-eigenvalue, α - eigenvector
Let us consider a rectangular matrix $A_{m \times n}(m \neq n)$. Then we consider a fixed rectangular matrix $\alpha_{n \times m}$ of the opposite order of A. Then αA and $A \alpha$ are both square matrices of order n and m respectively. If $m<n$, then αA is the highest $n^{\text {th }}$ order singular square matrix and $A \alpha$ is the lowest $m^{\text {th }}$ order square matrix forming their product. Then the matrix $\alpha A-\lambda I_{n}$ and $A \alpha-\lambda I_{m}$ are called the left α-characteristic matrix and right α-characteristic matrix of A respectively, where λ is an indeterminate. Also the determinant $\left|\alpha A-\lambda I_{n}\right|$ is a polynomial in λ of degree n , called the left α-characteristic polynomial of A and $\left|A \alpha-\lambda I_{m}\right|$ is a polynomial in λ of degree m, called the right α-characteristic polynomial of A. That is, the characteristic polynomial of singular square matrix αA is called the left α-characteristic polynomial of A and the characteristic polynomial of the square matrix $A \alpha$ is called the right α-characteristic polynomial of A. The equations $\left|\alpha A-\lambda I_{n}\right|=0$ and $\left|A \alpha-\lambda I_{m}\right|=0$ are called the left α-characteristic equation and right α-characteristic equation of A respectively. Then the rectangular matrix A satisfies the left α-characteristic equation, and the left α-characteristic equation of A is called the α-characteristic equation of A.

For, $\mathrm{m}>\mathrm{n}$ the rectangular matrix $A_{m \times n}$ satisfies the right α-characteristic equation of A. So in this case, the equation $\left|A \alpha-\lambda I_{m}\right|=0$ is called the α-characteristic equation of A. The roots of the α-characteristic equation of a rectangular matrix A are called the α - eigenvalues of A

If λ is an α-eigenvalue of rectangular matrix A of order $m \times n(m<n)$, then the matrix $\alpha A-\lambda I_{n}$ is singular. The equation $\left(\alpha A-\lambda I_{n}\right) X=0$ then possesses a non-zero solution i.e. there exists a non-zero column vector X such that $\alpha A X=\lambda X$. A non-zero vector X satisfying this equation is called a α-characteristic vector or $\alpha-$ eigenvector of A corresponding to the α-eigenvalue λ.

Definition 2.4: α-minimal polynomial

For a rectangular matrix $A_{m \times n}(m \neq n)$ over a field K, let $J(A)$ denote the collection of all polynomial $f(\lambda)$ for which $f(A)=0$ (Note that $J(A)$ is non empty, since the α - characteristic polynomial of A belongs to $J(A)$). Let $m_{\alpha}(\lambda)$ be the monic polynomial of minimal degree in $J(A)$. Then $m_{\alpha}(\lambda)$ is called the α-minimal polynomial of A.

3. MAIN RESULTS

Theorem 3.1: Let A be a rectangular matrix of order $m \times n \quad(m \leq n)$.
i. If $m=1$, then $|A|=a_{11}+a_{12}+a_{13}+\ldots \ldots . .+a_{1 n}$.
ii. If $m=n$, then $|A|=\operatorname{det}(A)=\operatorname{det}\left(A_{1}^{1}\right)$
iii. If any row of A is multiplied by c, then $|A|$ is multiplied by c.
iv. If any two rows are identical, then $|A|=0$.
v. The values of a determinant changes in sign only, if any two rows are interchanged.
vi. If each element in a row is an algebraic sum of two or more quantities, then the determinant can be expressed as an algebraic sum of two or more determinants.

Proof: Proofs are straightforward and so omitted.
Theorem 3.2: If A is a rectangular matrix of order $m \times n \quad(m \leq n)$, then
i. $\quad A \cdot \operatorname{Adj}(A)=|A| I_{m}$ where I_{m} is the unit matrix of order m.
ii. $\quad \operatorname{Adj}(A) \cdot A=$ a singular matrix of order n .

Proof: Proofs are straightforward and so omitted.

Theorem 3.3: If A is an $m \times n(m<n)$ rectangular matrix and α is an $n \times m$ rectangular matrix, then A is a zero of its α-characteristic polynomial.

Proof: Since A is an $m \times n \quad(m<n)$ rectangular matrix and α is an $n \times m$ rectangular matrix, so the $\alpha-$ characteristic polynomial of A is of the form
$\Delta(\lambda)=|\lambda I-\alpha A|=a_{m} \lambda^{n}+a_{m-1} \lambda^{n-1}+a_{m-2} \lambda^{n-2}+\ldots . .+a_{0} \lambda^{n-m}$.
Let $B(\lambda)$ denote the classical adjoint of the matrix $\lambda I-\alpha A$. The elements of $B(\lambda)$ are cofactors of the matrix $\lambda I-\alpha A$ and hence are polynomials in λ of degree not exceeding $n-1$.

Thus $B(\lambda)=B_{m-1} \lambda^{n-1}+B_{m-2} \lambda^{n-2}+\ldots . .+B_{1}^{n-m+1}+B_{0} \lambda^{n-m}$, where the B_{i} are n-square matrices over K which are independent on λ. By the fundamental property of the adjoint

$$
\begin{aligned}
& (\lambda I-\alpha A) B(\lambda)=|\lambda I-\alpha A| I \\
& \begin{aligned}
(\lambda I-\alpha A)\left(B_{m-1} \lambda^{n-1}\right. & \left.+B_{m-2} \lambda^{n-2}+\ldots . .+B_{1}^{n-m+1}+B_{0} \lambda^{n-m}\right) \\
\quad & =\left(a_{m} \lambda^{n}+a_{m-1} \lambda^{n-1}+a_{m-2} \lambda^{n-2}+\ldots . .+a_{0} \lambda^{n-m}\right) I
\end{aligned}
\end{aligned}
$$

Removing parentheses and equating the coefficients of corresponding of λ,

$$
\begin{aligned}
& B_{m-1}=a_{m} I \\
& B_{m-2}-(\alpha A) B_{m-1}=a_{m-1} I \\
& B_{m-3}-(\alpha A) B_{m-2}=a_{m-2} I
\end{aligned}
$$

$$
\begin{aligned}
B_{0}-(\alpha A) B_{1} & =a_{1} I \\
-(\alpha A) B_{0} & =a_{0}
\end{aligned}
$$

Multiplying the above matrix equations by $A^{n}, A^{n-1}, A^{n-2}, \ldots \ldots, A^{n-m+1}, A^{n-m}$ respectively.
$A^{n} B_{m-1}=a_{m} A^{n}$
$A^{n-1} B_{m-2}-A^{n} B_{m-1}=a_{m-1} A^{n-1}$
$A^{n-2} B_{m-3}-A^{n-1} B_{m-2}=a_{m-1} A^{n-2}$

$$
\begin{aligned}
A^{n-m+1} B_{0} & -A^{n-m+2} B_{1}
\end{aligned}=a_{1} A^{n-m+1}, ~\left(A^{n-m+1} B_{0}=a_{0} A^{n-m}\right.
$$

Adding the above matrix equations, we get
$0=a_{m} A^{n}+a_{m-1} A^{n-1}+a_{m-2} A^{n-2}+\ldots . .+a_{0} A^{n-m}$
In other words, $\Delta(A)=0$. That A is a zero of its characteristic polynomial.
Theorem 3.4: Let A and α be two rectangular matrices of order $m \times n$ and
$n \times m(m<n)$ respectively. If $m_{\alpha}(\lambda)=\lambda^{r}+c_{1} \lambda^{r-1}+c_{2} \lambda^{r-2}+\ldots .+c_{r-1} \lambda$ is the $\alpha-$ minimal polynomial of A and $B_{r}=(\alpha A)^{r}+c_{1}(\alpha A)^{r-1}+c_{2}(\alpha A)^{r-2}+c_{3}(\alpha A)^{r-3}+\ldots . .+c_{r} I$, then $-\alpha A B_{r-1}=0$.

Proof: Suppose $m_{\alpha}(\lambda)=\lambda^{r}+c_{1} \lambda^{r-1}+c_{2} \lambda^{r-2}+\ldots . .+c_{r-1} \lambda$. Consider the following matrices:
$B_{0}=I$
$B_{1}=\alpha A+c_{1} I$
$B_{2}=(\alpha A)^{2}+c_{1} \alpha A+c_{2} I$
$B_{3}=(\alpha A)^{3}+c_{1}(\alpha A)^{2}+c_{2} \alpha A+c_{3} I$
$B_{r-1}=(\alpha A)^{r-1}+c_{1}(\alpha A)^{r-2}+c_{2}(\alpha A)^{r-3}+\ldots \ldots+c_{r-1} I$
$B_{r}=(\alpha A)^{r}+c_{1}(\alpha A)^{r-1}+c_{2}(\alpha A)^{r-2}+c_{3}(\alpha A)^{r-3}+\ldots . .+c_{r} I$
Then $B_{0}=I$
$B_{1}-\alpha A B_{0}=c_{1} I$
$B_{2}-\alpha A B_{1}=c_{2} I$
$B_{3}-\alpha A B_{2}=c_{3} I$
$B_{r-1}-\alpha A B_{r-2}=c_{r-1} I$
Thus $-\alpha A B_{r-1}=c_{r} I-B_{r}$
$=c_{r} I-\left[(\alpha A)^{r}+c_{1}(\alpha A)^{r-1}+c_{2}(\alpha A)^{r-2}+c_{3}(\alpha A)^{r-3}+\ldots \ldots . c_{r} I\right]$
$=-\left[\alpha A^{r}+c_{1} \alpha A^{r-1}+c_{2} \alpha A^{r-2}+c_{3} \alpha A^{r-3}+\ldots \ldots . c_{r-1} \alpha A\right]$
$=-\alpha\left(A^{r}+c_{1} A^{r-1}+c_{2} A^{r-2}+c_{3} A^{r-3}+\ldots \ldots . c_{r-1} A\right)$
$=-\alpha \cdot m_{\alpha}(A)$
$=-\alpha .0$
$=0$

REFERENCES

[1]. G. L. Booth, "Radicals of matrix Γ - rings", Math. Japonica, Vol.33, 1988, pp. 325-334.
[2]. H.K. Nath, "A study of Gamma-Banach algebras", Ph.D. Thesis, (Gauhati University), 2001.
[3]. Jinn Miao Chen, "Von Neumann regularity of two matrix $\Gamma_{n, m}$-ring $M_{m, n}$ over Γ-ring", M. J. Xinjiang Univ. Nat. Sci., Vol. 4, 1987, pp. 37-42.
[4]. P. Rajkhowa and Md. Shahidul Islam Khan, "On α-Characteristic Equations and α-Minimal Polynomial of Rectangular Matrices", IOSR J. of Mathematics, Vol. 6, Issue 3, 2013, pp. 42-46.
[5]. T. K. Dutta and H. K. Nath, "On the Gamma ring of rectangular Matrices", Bulletin of Pure and Applied Science, Vol. 16E, 1997, pp. 207-216.

Source of support: Nil, Conflict of interest: None Declared

