International Journal of Mathematical Archive-5(3), 2014, 111-118

Available online through www.ijma.info ISSN 2229-5046

WEIGHTED SHARING OF A SMALL FUNCTION OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES

C. K. Basu ${ }^{1}$ and T. Lowha*2
${ }^{1}$ Department of Mathematics, West Bengal State University, Berunanpukuria, P.O. Malikapur, Barasat,North 24 Parganas, Pin-700126, West Bengal, India.

${ }^{2}$ Department of Mathematics, Sarsuna College, Sarsuna,Kolkata, Pin-700061, West Bengal, India.

(Received on: 20-01-14; Revised \& Accepted on: 11-03-14)

Abstract

In this paper, we study the relationship between a meromorphic function and its k-th order derivative which share a small function with weight(multiplicities) l(a positive integer)ignoring multiplicity.

MR(2010) Subject Classification: 30D35.
Keywords and Phrases: Meromorphic function, sharing values, small function.

INTRODUCTION AND RESULTS

In this paper we shall use the standard notations of Nevanlinna theory such as $T(r, f), N(r, f), m(r, f)$ and so on (see[3]), where f is a meromorphic function defined on the whole complex plane. The quantity $\mathrm{S}(\mathrm{r}, \mathrm{f})$ is defined by $\mathrm{S}(\mathrm{r}, \mathrm{f})=0(\mathrm{~T}(\mathrm{r}, \mathrm{f})$) as $r \rightarrow \infty$ possibly outside a set of finite linear measure. A meromorphic function $\mathrm{a}(\mathrm{z})$ is called a small function with respect to f provided $\mathrm{T}(\mathrm{r}, \mathrm{a})=\mathrm{S}(\mathrm{r}, \mathrm{f})$ holds.

Suppose that f and g are two non-constant meromorphic functions, a is a small function with respect to f and g and k be a positive integer. Now f and g share ' a ' ignoring multiplicities or IM (counting multiplicities or CM) if f - a and $g-a$ have the same zeros ignoring(counting) multiplicities. We denote by $N_{k}\left(r, \frac{1}{f-a}\right)$, the counting function for zeros of $\mathrm{f}-\mathrm{a}$ with multiplicity $\leq k$ (counting multiplicity), and by $\bar{N}_{k}\left(r, \frac{1}{f-a}\right)$, the corresponding one for which the multiplicity is not counted. Similarly by $N_{(k}\left(r, \frac{1}{f-a}\right)$, we mean the counting function for zeros of $\mathrm{f}-\mathrm{a}$ with multiplicity at least k (counting multiplicity) and by $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$, we mean the corresponding one for which the multiplicity is not counted.
We denote $N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots \ldots .+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$
where $\bar{N}_{(1}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)$ and $\delta_{p}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{p}\left(r, \frac{1}{f-a}\right)}{T(r, f)}$, where p is a positive integer; then clearly $0 \leq \delta(a, f) \leq \delta_{k}(a, f) \leq \Theta(a, f) \leq 1$,

Corresponding author: T. Lowha*2
${ }^{2}$ Department of Mathematics, Sarsuna College, Sarsuna,Kolkata, Pin-700061, West Bengal, India. E-mail: t.lowha@gmail.com

C. K. Basu ${ }^{1}$ and T. Lowha*2/ Weighted Sharing of A Small Function of A Meromorphic Function And Its Derivatives/

where $\delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)}$ and $\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\frac{N}{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}$
In [6], Q.C. Zhang proved the following theorem about a meromorphic function and its k-th order derivative.
Theorem: A Let f be a non-constant meromorphic function and let k be a positive integer. Suppose that f and $\mathrm{f}^{(\mathrm{k})}$ share 1 CM and $2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{f^{(k)}}\right) \leq(\lambda+o(1)) T\left(r, f^{k}\right)$ for $r \in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$ then $\frac{f^{(k)}-1}{f-1} \equiv c$ for some constant $c \in C-\{0\}$.

In 2003, Kit-wing [5] discussed the problem of a meromorphic function and its k - th derivative sharing one small function and proved the following result.

Theorem: B Let $k \geq 1$. Let f be a non-constant non-entire meromorphic function, $a \in s(f)$ and $a(\neq 0, \infty)$ and f do not have any common pole. If $f, f^{(k)}$ share a CM and $4 \delta(0, f)+2(8+k) \Theta(\infty, f)>19+2 k$, then $f=f^{(k)}$.

Two years latter, in 2005, Q.C.Zhang [2] proved the following theorem.
Theorem: C Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)($ not $\equiv 0, \infty)$ be a meromorphic function such that $\mathrm{T}(\mathrm{r}, \mathrm{a})=\mathrm{S}(\mathrm{r}, \mathrm{f})$. Suppose that $\mathrm{f}-\mathrm{a}$ and $\mathrm{f}^{(k)}$-a share $(0, l)$. If $l \geq 2$ and $(3+k) \Theta(\infty, f)+2 \delta_{2+k}(0, f)>k+4$ or, if $l=1$ and $(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f)>k+6$, or, if $\mathrm{l}=0$, i.e., $\mathrm{f}-\mathrm{a}$ and $\mathrm{f}^{(k)}$ a share the value 0 IM and $(6+k) \Theta(\infty, f)+5 \delta_{2+k}(0, f)>2 k+10$ then $f \equiv f^{(k)}$.

Recently, in 2010, A.Chen, X.Wang and G.Zhang [7] proved the following results.
Theorem: D Let $k(\geq 1), n(\geq 1)$ be integers and f be a non-constant meromorphic function. Also let $a(z)(n o t \equiv 0, \infty)$ be a small function with respect to f. If f and $\left[f^{n}\right]^{(k)}$ share $a(z)$ IM and
$4 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{\left(\frac{f}{a}\right)^{\prime}}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+o(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$, or, if f and
$\left(f^{n}\right)^{(k)}$ share a(z) CM and $2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{\left(\frac{f}{a}\right)^{\prime}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+o(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$, for $0<\lambda<1$,
where $r \in I$ and I is a set of infinite linear measure, then $\frac{f-a}{\left(f^{n}\right)^{(k)}-a}=c$, for some constant $c \in C-\{0\}$.
Theorem: E Let $k(\geq 1), n(\geq 1)$ be integers and let f be a non-constant meromorphic function. Also let $a(z)($ not $\equiv 0, \infty)$ be a small function with respect to f. If f and $\left(f^{\mathrm{n}}\right)^{(\mathrm{K})}$ share $\mathrm{a}(\mathrm{z}) \operatorname{IM}$ and $(2 k+6) \Theta(\infty, f)+3 \Theta(0, f)+2 \delta_{k+2}(0, f)>2 k+10$, or, if f and $\left(\mathrm{f}^{\mathrm{f}}\right)^{(\mathrm{K})}$ share $\mathrm{a}(\mathrm{z}) \mathrm{CM}$ and $(k+3) \Theta(\infty, f)+\delta_{2}(0, f)+\delta_{k+2}(0, f)>k+4$ then $f \equiv\left(f^{n}\right)^{(k)}$.

In this paper, we will prove the following two theorems which will include the behavior of a meromorphic function and its k th derivative sharing a small function with multiplicity not greater than l , a positive integer.

Theorem: $\mathbf{1}$ Let k, m and n are three positive integers with $m \leq n$ and let f be a non-constant meromorphic function. Also let $a(z)(n o t \equiv 0, \infty)$ be a small function with respect to f. If $\bar{E}_{l)}\left(a, f^{m}(z)\right)=\bar{E}_{l)}\left(a, f^{n(k)}\right)$, where 1 is a positive integer and
$\bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq(\lambda+0(1)) T\left(r,\left(f^{n}\right)^{(k)}\right)$, for $0<\lambda<1$,
where $r \in I$ and I is a set of infinite linear measure, then $\frac{\left(f^{n}\right)^{(k)}-a}{f^{m}-a}=c$ for some constant $a \in C-\{0\}$ where C is the set of complex numbers.

Theorem: 2 Let f be a non-constant meromorphic function and let k and n be two positive integers. If $\bar{E}_{l)}(a, f) \equiv \bar{E}_{l)}\left(a,\left(f^{n}\right)^{(k)}\right)$, where 1 is a positive integer and $a(z)($ not $\equiv 0, \infty)$ be a small function of f and $(2 k+6) \Theta(\infty, f)+\Theta(0, f)+2 \delta_{2}(0, f)+2 \delta_{k+2}(0, f)>2 k+10$ then $f=\left(f^{n}\right)^{(k)}$.

2. LEMMAS

Here we mention some existing lemmas of the literature which will be frequently used to prove the aforementioned theorems.

Lemma 2.1 (see[7]): Let f be a non-constant meromorphic function and k,p be two positive integers. Then $N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)$.

Lemma: 2.2 (see[4]) Let f be a non-constant meromorphic function and let n be a positive integer. $P(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots \ldots . .+a_{1} f$
where a_{i} is a meromorphic function such that $T\left(r, a_{i}\right)=S(r, f)(i=1,2, \ldots \ldots ., n)$. Then
$T(r, P(f))=n T(r, f)+S(r, f)$.

3. PROOF OF THE THEOREMS

Proof of Theorem: 1 Let $F=\frac{f^{m}}{a}$ and $G=\frac{\left(f^{n}\right)^{(k)}}{a}$. Therefore, $F-1=\frac{f^{m}-a}{a}$ and $G-1=\frac{\left(f^{n}\right)^{(k)}-c}{a}$.
Now, $\bar{E}_{l)}\left(a, f^{m}\right)=\bar{E}_{l)}\left(a,\left(f^{n}\right)^{(k)}\right)$ except the zeros and poles of a(z). Define,
$H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime \prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime \prime}}{G-1}\right)$.
We now consider two cases:
Case: I Suppose H not $\equiv 0$. Then $m(r, H)=S(r, f)$. Now if z_{0} is a common simple zero of $F-1$ and $G-1$ (except the zeros and poles of $\mathrm{a}(\mathrm{z})$), then after simple calculation, we get $H\left(z_{0}\right)=0$.
So, $\bar{N}_{E}\left(r, \frac{1}{G-1}\right) \leq N\left(r, \frac{1}{H}\right)+S(r, f) \leq T(r, H)+S(r, f) \leq N(r, H)+S(r, f)$
Again by analysis, we can deduce that,

$$
\begin{aligned}
N(r, H) & \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{aligned}
$$

Also, $\bar{N}\left(r, \frac{1}{G-1}\right)=N_{E}^{1)}+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N} *\left(r, \frac{1}{G-1}\right)+S(r, f)$.
Therefore,

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right) \leq & \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right) \tag{1}\\
& +\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f)
\end{align*}
$$

Since, $\bar{E}_{l)}(1, F)=\bar{E}_{l)}(1, G)$,
Therefore, $2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{*}\left(r, \frac{1}{G-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right) \leq 2 \bar{N}_{(2}\left(r, \frac{1}{G-1}\right)$.
From (1), we have,

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right) & \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{G-1}\right) \\
& +2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{2}
\end{align*}
$$

We also have,
$\bar{N}_{2}\left(r, \frac{1}{F}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{*}\left(r, \frac{1}{F-1}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \leq 2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)$
Now by the second fundamental theorem we get,
$T(r, G) \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G)$
From (4) using (2) and (3) we get,
$T(r, G) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)$
By lemma(2.1) we have,
$T\left(r, f^{n}\right)^{(k)} \leq 6 \bar{N}(r, f)+2 N_{2}\left(r, \frac{1}{f}\right)+2 N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f)$
which contradicts the given conditions of the theorem.
Case: II Suppose $H(z) \equiv 0$ i.e., $\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}=\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime \prime}}{G-1}$. Integrating we get,
$\log F^{\prime}-2 \log (F-1)=\log G^{\prime}-\log (G-1)+\log A$. where A is a constant $\neq 0$.
That is, $\log \frac{F^{\prime}}{(F-1)^{2}}=\log \frac{A G^{\prime}}{(G-1)^{2}}$.

Again integrating we get,
$\frac{1}{F-1}=\frac{A}{G-1}+B$
Now if z_{0} is a pole of f with multiplicity p which is not the poles and the zeros of $a(z)$, then z_{0} is the pole of F with multiplicity mp and the pole of G with multiplicity $n \mathrm{n}+\mathrm{k}(\neq \mathrm{mp})$. This contradicts (6). This implies f has no pole, that is f is an entire function.

So, $\bar{N}(r . F)=S(r, f)$ and $\bar{N}(r . G)=S(r, f)$. Now we prove that $\mathrm{B}=0$.
We first assume that $\mathrm{B} \neq 0$, then $\frac{1}{F-1}=\frac{B\left(G-1+\frac{A}{B}\right)}{G-1}$.
Therefore, $\bar{N}\left(r, \frac{1}{G-1+\frac{A}{B}}\right)=\bar{N}(r, F)=S(r, f)$
Now we assume $\frac{A}{B} \neq 1$.
By the second fundamental theorem,

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1+\frac{A}{B}}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leq T(r, G)+S(r, f)
\end{aligned}
$$

Hence $T(r, G)=\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)$ i.e., $T\left(r,\left(f^{n}\right)^{(k)}\right)=\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f)$
This contradicts the given condition of the theorem.
Next, we assume $\frac{A}{B}=1$. Then, $(\mathrm{AF}-\mathrm{A}-1) \mathrm{G}=-1$.
So, $\frac{a^{2}}{f^{n}\left(A f^{m}-A a-A\right)}=-\frac{\left(f^{n}\right)^{(k)}}{f^{n}}$
Now by lemma (2.1) and (2.2), we get,

$$
\begin{aligned}
(n+m) T(r, f) & =T\left(r, \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right)+S(r, f) \\
& \leq n\left(N r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq n T(r, f)+S(r, f)
\end{aligned}
$$

i.e., $T(r, f)=S(r, f)$. This is not true.

Hence our assumption is not true and therefore $\mathrm{B}=0$. So, $\frac{G-1}{F-1}=A$
This proves the theorem.

Proof of the theorem: 2

Let $F=\frac{f(z)}{a(z)}$ and $G=\frac{\left(f^{n}\right)^{(k)}}{a(z)}$. So, $\bar{E}_{l)}(a, f)=\bar{E}_{l)}\left(a,\left(f^{n}\right)^{(k)}\right)$ implies, $\bar{E}_{l)}(1, F)=\bar{E}_{l)}(1, G)$, except the zeros and poles of $\mathrm{a}(\mathrm{z})$.

We define, $H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)$.
Now we consider two cases:
Case: I Suppose H not $\equiv 0$.
Then (5) of the proof in theorem1 still holds. Writing (5) for the function F , we get,
$T(r, F) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)$
i.e. $T(r, f) \leq 2 \bar{N}(r, f)+2 \bar{N}_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+2 \bar{N}(r, f)+\bar{N}_{2}\left(r, \frac{1}{f}\right)+2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)$

$$
\leq\left(2 k+6 \overline{\mathrm{~N}}(r, f)+2 N_{K+2}\left(r, \frac{1}{f}\right)+2 \bar{N}_{2}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)\right.
$$

i.e., $(2 k+6) \Theta(a, f)+\Theta(0, f)+2 \delta_{2}(0, f)+2 \delta_{k+2}(0, f) \leq 2 k+10$

This contradicts the given condition of the theorem.
Case: II Suppose $\mathrm{H} \equiv 0$.
So $\frac{1}{F-1}=\frac{A}{G-1}+B$, where $\mathrm{A} \neq 0$, B are constant. By the same argument of the proof of theorem 1 , we get,

$$
\bar{N}(r, F)=S(r, f) \text { and } \bar{N}(r, G)=S(r, f)
$$

So, $\Theta(\infty, f)=1$.
Assume that, $\mathrm{B} \neq 0$, then $\frac{B\left(F-1-\frac{1}{B}\right)}{F-1}=-\frac{A}{G-1}$
So, $\bar{N}\left(r, \frac{1}{F-1+\frac{1}{B}}\right)=\bar{N}(r, G)=S(r, f)$.
If $\mathrm{B} \neq-1$, then by the second fundamental theorem for F , we have

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1+\frac{A}{B}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq T(r, F)+S(r, f)
\end{aligned}
$$

So $T(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)$ i.e., $T(r, f) \leq \bar{N}\left(r, \frac{1}{f}\right)$. Hence, $\Theta(0, f)=0$.

Putting $\Theta(\infty, f)=1 ; \Theta(0, f)=0$ and also $\delta(0, f) \leq \Theta(0, f)=0$ in the given condition of the theorem we have, $\delta_{k+2}(0, f)>2$, which is not true. Hence $\mathrm{B}=-1$.

So $\bar{N}\left(r, \frac{1}{F}\right)=S(r, f)$, i.e., $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$. Therefore, $\frac{F}{F-1}=\frac{A}{G-1}$,
i.e., $\mathrm{F}(\mathrm{G}-1-\mathrm{A})=-$ A that is $F=\frac{A}{-G+(1+A)}$.

So, $f=\frac{A}{-\left(f^{n}\right)^{(k)}+(1+A)}$. Therefore, $\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}+(1+A)}\right)=\bar{N}(r, f)=S(r, f)$.
Hence $T(r, f)=T\left(r,\left(f^{n}\right)^{(k)}\right)=S(r, f)$. which is also not true. Thus $\mathrm{B}=0$.
So $\frac{1}{F-1}=\frac{A}{G-1}$, i.e., $\mathrm{G}-1=\mathrm{A}(\mathrm{F}-1)$.
If $\mathrm{A} \neq 1$ then $G=A\left(F-1+\frac{1}{A}\right)$. So, $N\left(r, \frac{1}{G}\right)=N\left(r, \frac{1}{F-1+\frac{1}{A}}\right)$.
By the second fundamental theorem, we have,
$T(r, F) \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1+\frac{1}{A}}\right)+S(r, f)$.
i.e.,

$$
\begin{align*}
T(r, f) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{f}\right)+S(r, f) \tag{7}
\end{align*}
$$

So,
$\Theta(0, f)+\delta_{k+1}(0, f) \leq 1$
Now by the given condition of the theorem and by (7) we have, $\Theta(0, f)>2$. This is not possible.
So, $\mathrm{A}=1$ and hence $\mathrm{F}=\mathrm{G}$ i.e., $f=\left(f^{n}\right)^{(k)}$.
This proves the theorem.

REFERENCES

[1] Chen A.,Wang X.,and Zhang G., Unicity of meromorphic function sharing one small function with its derivative, International Journal of Mathematics and Mathematical Sciences,Artical Id 507454,P.11,2010.
[2] Fang M.L.,Hong W., A unicity theorem for entire functions concerning differential polynomials,Indian J. Pure Appl.Math.32(9)(2001), 1343-1348.

C. K. Basu ${ }^{1}$ and T. Lowha*²/ Weighted Sharing of A Small Function of A Meromorphic Function And Its Derivatives/ IJMA- 5(3), March-2014.

[3] Hayman W.K., Meromorphic functions,Oxford Mathematical Monographs Clarendon Press,Oxford,1964.
[4] Lin S., Lin W., Uniqueness of meromorphic function concerning weakly weighted sharing,Kodai mathematical Journal, Vol29,pp.269-280,2006.
[5] Yang C.C., On deficiencies of differential polynomials II,Math.Z.125(1972),107-112.
[6] Yang C.C.,Yi H.X., Uniqueness theory of meromorphic function,Mathematics and its Application, Vol.557, Science Press,Beijing,China;Kluwer Academic,New York,NY,USA,2003.
[7] Yi H.X., Yang C.C., Uniqueness theory of meromorphic functions,Science Press,Beijing,1995.
[8] Yu K.W., On entire and meromorphic functions that share small functions with their derivatives,J.Inequal. Pure and Appl. Math. 4(2003),1-7.
[9] Zhang Q.C., Meromorphic function that shares one small function with its derivative,Journal of Inequalities in pure and Applied Mathematics, Vol.6, no.4, Article 116,P.13,2005.
[10] Zhang Q.C., The uniqueness of meromorphic functions with their derivatives,Kodai Mathematical Journal, Vol21, no.2, pp.179-184,1998.

Source of support: Nil, Conflict of interest: None Declared

