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ABSTRACT 
In this paper, we obtain the transient solution in closed form of fluid queue driven by a birth and death process on an 
infinite-state space whose birth and death rates are suggested by a chain sequence. The probability with which the buffer 
content becomes empty at an arbitrary time is also determined. Numerical illustrations are added to capture the 
variations in the behaviour of this performance measure against time.  
 
 
1. MODEL DESCRIPTION 
 

Consider a fluid queue driven by a birth and death process,{ }0),( ≥ttX  with rates suggested by a chain sequence, viz, 
the birth and death parameter satisfy  
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with 1=0λ  and 0=0µ  so that { }

1nµ  is the minimal parameter sequence for the constant term chain sequence 

{ } 1/4<0,,,, ≤ββββ  , so that 
1nλ  and 

1nµ  are positive, given by  
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where (.)nU  is the Chebyshev polynomial of second kind of order n  and βα 2= . Note that  
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The transition probability for the process { }0),( ≥ttX , whose birth and death rates are governed by (1), with 

0=(0)X , are  
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(Lenin and Parthasarathy [3].) 
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It can easily be show that the sequence { }
1nλ  is decreasing with n  and tends towards )/241(1 β−+ , so that it 

could represent a queue with discouraged arrivals. The sequence { }
1nµ  is thus increasing with n  towards 

)/241(1 β−− , which means that the service rate of the queue can be dynamically adapted in the function of the 
number of customer in the queue, until a fixed limit. This kind of model is mathematically interesting because it is indeed 
rare and has closed- form solution. 
 
If )(tC  denotes the content of the buffer at time t , the 2-dimentional process { }0),(),( ≥ttCtX  constitutes a 
Markov process. When the process )(tX  is positive, the fluid level in the buffer increases at a constant rate 0>r  and 

when 0=)(tX , the fluid level in the buffer decreases at a constant rate 0<0r . We suppose that 0=(0)X  and 

0=(0)C . Fluid models of this type find application in the field of telecommunication for modeling the network traffic 
and in the approximation of discrete stochastic queueing networks. For practical design and performance evaluation, it is 
essential to obtain information about the buffer occupancy distribution. 
 
If 0,,),)(,=)((),( ≥∈≤≡ xtixtCitXPxtGi ϕ , the Kolmogorov forward equations for the Markov process 

{ })(),( tCtX  are given by  
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subject to the initial condition  

1,2,3,=0=)(0,1,=)(0,0 iforxGxG i                                                                 (7) 
 
and boundary condition 

,0,1,2,=)(=,0)( ifortqtG ii                                                                             (8) 
 

Here )(tqi  represents the probability that at time t  the buffer is empty and the state of the background Markov process 
is i. The content of the buffer decreases and thereby becomes empty only when the net input rate of the fluid into the 
buffer is negative. Therefore, when the buffer becomes empty at any time t , the background process should necessarily 
be in state zero corresponding to which the effective input rate is 0<0r . Hence we have 0=)(tqi  for 1,2,3,=i  

as 0>r  when itX =)(  for 1,2,3,=i  
 
Fluid queue with chain sequence, 
 
The transient distribution of the buffer content is given by  

).,(1=)>)((
0=

xtGxtCP i
i

r ∑
∞

−   

 
In this sequence let ),(* xsGi  and ),(** wsGi  denote the single Laplace transform (with respect to t ) and double 

Laplace transform (with respect to t  and x ) of ),( xtGi ,respectively.  
 

2. TRANSIENT SOLUTION 
 
The expression for the joint distribution of the buffer content of the fluid queue model under consideration using an 
approach similar to F.Gullemin [2] is given by  
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for every 0≥t  and )[0, rtx∈  where the coefficient ),( knbi  are given by the following recursive expressions 

(i) For 0=i   
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(ii) For 0≥i   

    0,0=,0)( ≥nfornbi  
  

    .11,1)1,(1)1,(=),( 1111 nknforknbknbknb iiiii ≤≤≥−−+−− ++−− µλ                  (12) 
 

From (9), the probability that the buffer is empty at time t is given by  
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where ,0)(0 nb  for all 1≥n  are obtained from the recurrence relations (10) and (11). The following theorem presents 

an alternate formula for the evaluation of ,0)(0 nb .  
 
Theorem: 2.1 For all 1,≥n  
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Proof:The following propositions and lemma presents a simplified formula for evaluating the various terms involved in 
the determinations of ,0)(0 nb  thereby reducing the computational complexity  

  
Proposition: 2.2  For all 101, −≤≤≥ nkn ,  
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Proof: Recall (10),  
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Multiplying the above equation by kirrr −−− ))/(( 00 and summing over all i  from k  to 1−n ,we get  
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Hence we have  
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Lemma: 2.3  For 0=),(1, knbi i≥  for  in <0 ≤  and 
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where the number ),( lis  are referred to as the ballot numbers given by  
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Proof: Recall (12)  
 

.11,1)1,(1)1,(=),( 1111 nknforknbknbknb iiiii ≤≤≥−−+−− ++−− µλ                           (21) 
 
For all ,11, nkn ≤≤≥  define  
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Fluid queue with chain sequence 
 
Then (12) becomes,  

1).1,(1)1,(=),( 111 −−+−− +−− knBknBknB iiiii µλ                                                      (24) 
 
From (1), ,=1 βµλ ii−  hence we have  
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Laplace transform of the above equation with respect to u  yields  
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Writing in the form of continued fraction, we get 
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Solving the above continued fraction, we get  
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Before we proceed further, we give a brief discussion on the function )(zC  below. 
 
Let )(zC  be the complex function define by  
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For 1/4,≤z  we have  
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Where the number nc  are referred to as the Catalan number given by  
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More generally, for 1≥k  and 1/4,≤z  we have  
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where the numbers ),( nks  are given by (20). 
 
Continuing our discussion from (33), we easily get, for 1≥i  and 1/4,</ 2zvβ   
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We thus have, for 1≥i  and 1/4,</ 2zvβ   
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where the last equality is obtained by exchanging the order of summation. This leads, for 1≥i ,to the following 
expression of :),( vnHi   
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This means in particular, that 0=),( knbi  for 1≥i  and .<0 in≤   
 
CONCLUSION  
 
We conclude that a fluid queue driven by an infinite-state BDP whose birth and death rates are suggested by a chain 
sequence. The stationary solution for the background BDP suggested by a chain sequence dose not exist and hence the 
stationary distribution for fluid queue driven by such BDSs also does not exit. However their transient probabilities yield 
a simple closed form solution. 

 
REFERENCES  
 

1. M. Abramowitz and I.A. Stegun(eds), Handbook of Mathematical Functions, with Formulas, Graphs and 
Mathematical Tables, National Bureau of Standards Applied Mathematice Series, Vol.55, Superintendent of 
Documents, U.S. Government Printing Office, District of Columbia, 1995.  

2. L.C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed., McGraw-Hill, New York, 1992.  
3. E.A. Van Doorn and W.R.W. Scheinhardt, A fluid queue driven by an infinite state birth-death process, 

Teletrafic Contributions for the Information Age (Proc. 15th International Teletraffic Congress, 
Washington,DC) (V. Ramaswami and P.E. Writh,eds.,) Elsevier, Amsterdam, 1997,pp. 465 - 475.  

4. D.J. Evans,J. Shanehchi and C.C. Rick, A modified bisection algorithm for the determination of  the 
eigenvalues of a symmetric tridiagonal matrix, Number. Math. 38 (1981/1982), no.3, 417 – 419.  

5. K.V. Fernando, On computing an eigenvector of a tridiagonal matrix, I. Basic results. SIAM J. Matrix Anal. 
Appl. 18 (1997), no.4, 1013 - 1034.  

6. F. Guillemin and D. Pinchon, Continued fraction analysis of the duration of an excursion in an ∞//MM  
system, J. Appl.Probab. 35 (1998), no. 1, 165 - 183.  

7. C.H. Lam and T.T. Lee, Fluid flow models with state-dependent service rate, Comm. Statist, Stochastic Models 
13 (1997), no.3, 547 - 576.  

8. R.B. Lenin and P.R. Parthasarathy, A computational approach for fluid queues driven by truncated birth-death 
process, Methodol. Comput. Appl. Probab. 2 (2000), no.4, 373 - 392.  

9.  ... ,Fluid queues driven by an NIMM ///  queue, Mathematical Problems in Engineering 6 (2000), 439 - 460.  
10. D. Mitra, Stochastic theory of a fluid models of producer and consumers coupled by a buffer, Adv. In Appl. 

Probab. 20 (1988), no.3, 646 - 676.  
11. C.H. Ng, Queueing Modeling Fundamentals, Join Willy &  Sons, Chichester, 1996.  
12. S. Resnick and G. Samorodnitsky, steady-state distribution of the buffer content for ∞//GM  input fluid 

queues, Bernoulli 7 (2001), no.2, 191 - 210.  
13. B. Sericola and B. Tuffin, A fluid queue driven by a Markovian queue, Queueing SystemTheory Appl. 31 

(1999), no,3-4, 253 - 264.  
14. Shwartz and A. Weiss, Large Deviations for Performance Analysis, St0chastic Modeling Series, Chapman &  

Hall, London, 1995.  
 

Source of support: Nil, Conflict of interest: None Declared

 
 


	1. MODEL DESCRIPTION
	2. TRANSIENT SOLUTION

