ON g*-q-CLOSED SETS

#K. Indirani, *P. Sathishmohan and *V. Rajendran

*Department of Mathematics, Nirmala College for Women, Coimbatore, (T.N.), India.
*Department of Mathematics, KSG College of Arts and Science, Coimbatore, (T.N.), India.

(Received on: 23-11-13; Revised & Accepted on: 09-01-14)

ABSTRACT

In this paper, we introduced and study the notions of g^* -g-closed sets and study some of their properties.

1. INTRODUCTION

In 1970, Levine [8] first introduced the concept of generalized closed (briefly, g-closed) sets were defined and investigated. The idea of grill on a topological space was first introduced by Choquet [4] in 1947. It is observed from literature that the concept of grills is a powerful supporting tool, like nets and filters, in dealing with many topological concept quite effectively. In [15], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. The aim of this paper is to introduce g^* -g-closed sets and investigate the relations of g^* -g-closed sets between such sets.

2. PRELIMINARIES

Throughout this paper, (X, τ) (or X) represent a topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A, respectively. The power set of X will be denoted by $\wp(X)$. A collection $\wp(X)$ of a nonempty subsets of a space X is called a grill [1] on X if

- (1) $A \in g$ and $A \subseteq B \Longrightarrow B \in g$.
- (2) A, B \subseteq X and A \bigcup B \in $\mathcal{A} \Longrightarrow$ A \in \mathcal{A} or B \in \mathcal{A} .

For any point x of a topological space (X, τ) , $\tau(x)$ denote the collection of all open neighbourhoods of x. We recall the following results which are useful in the sequel.

Definition: 2.1 [15] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. The mapping $\varphi \colon \mathscr{D}(X) \to \mathscr{D}(X)$, denoted by $\varphi_G(A, \tau)$ for $A \in \mathscr{D}(X)$ or simply $\varphi(A)$ called the operator associated with the grill \mathcal{G} and the topology τ and is defined by $\varphi_G(A) = \{x \in X \ A \cap U \in \mathcal{G}, \ \forall U \in \tau(x)\}$. Let \mathcal{G} be a grill on a space X. Then a map $\Psi \colon \mathscr{D}(X) \to \mathscr{D}(X)$ is defined by $\Psi(A) = A \cup \varphi(A)$, for all $A \in \mathscr{D}(X)$. The map Ψ satisfies Kuratowski closure axioms. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exits a unique topology τ_G on X given by $\tau_G = \{U \subset X / \Psi (X-U) = X-U\}$, where for any $A \subset X$, $\Psi(A) = A \cup \varphi(A) = \tau_G - \operatorname{cl}(A)$. For any grill \mathcal{G} on a topological space by (X, τ, \mathcal{G}) .

Definition: 2.2 A subset A of a topological space (X, τ) is called

- 1) a pre-open set [12] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- 2) a semi-open set [7] if $A \subseteq cl$ (int(A)) and a semi-closed set if int(cl(A)) $\subseteq A$.
- 3) a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi-pre-closed set [2] if $(int(cl(A))) \subseteq A$.

Definition: 2.3 A subset A of a topological space (X, τ) is called

- 1) a generalized closed set (briefly g-closed) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) a generalized semi-closed set (briefly gs-closed) [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 3) an α -generalized closed set (briefly α g-closed) [9] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (x, τ) .
- 4) a generalized semi-preclosed set (briefly gsp-closed) [5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 5) a generalized preclosed set (briefly gp-closed) [11] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 6) a generalized grill closed set (briefly g-g-closed) [6] if $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7) a generalized closed set (briefly g^* -closed) [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Theorem: 2.4 [15]

- 1) If g_1 and g_2 are two grills on a space X with $g_1 \subset g_2$, then $\tau_{a_1} \subset \tau_{a_2}$
- 2) If q is a grill on a space X and B $\notin q$, then B is closed in (X, τ, q) .
- 3) For any subset A of a space X and any grill g on X, $\phi(A)$ is τ_a -closed.

Theorem: 2.5 [15] Let (X, τ) be a topological space and g be any grill on X. Then

- 1) $A \subseteq B (\subseteq X) \Longrightarrow \phi(A) \subseteq \phi(B)$;
- 2) $A \subseteq X$ and $A \notin \mathcal{G} \Longrightarrow \varphi(A) = \varphi$;
- 3) $\phi(\phi(A)) \subseteq \phi(A) = cl(\phi(A)) \subseteq cl(A)$, for any $A \subseteq X$;
- 4) $\phi(A \cup B) = \phi(A) \cup \phi(B)$ for any $A,B \subseteq X$;
- 5) $A \subseteq \phi(A) \Longrightarrow cl(A) = \tau_{\phi} cl(A) = cl(\phi(A)) = \phi(A);$
- 6) $U \in \tau$ and $\tau \setminus \{ \phi \} \subseteq g \Longrightarrow U \subseteq \phi(U)$;
- 7) If $U \in \tau$ then $U \cap \phi(A) = U \cap \phi(U \cap A)$, for any $A \subseteq X$.

Theorem: 2.6 Let (X, τ) be a topological space and φ be any grill on X. Then, for any A, B \subseteq X.

- 1) $A \subseteq \Psi(A)$ [15];
- 2) $\Psi(\phi) = \phi$ [15];
- 3) $\Psi(A \cup B) = \Psi(A) \cup \Psi(B)$ [15];
- 4) $\Psi (\Psi(A)) = \Psi(A) [15];$
- 5) int (A) \subset int (Ψ (A));
- 6) int $(\Psi(A \cap B)) \subset \text{int } (\Psi(A))$;
- 7) int $(\Psi(A \cap B)) \subset \text{int } (\Psi(B))$;
- 8) int $(\Psi(A)) \subset \Psi(A)$;
- 9) $A \subseteq B \Longrightarrow \Psi(A) \subseteq \Psi(B)$.

Theorem: 2.7 [16] Let (X, τ) be a topological space and g be any grill on X. Then, for any $A, B \subseteq X$,

- (1) $\phi(A) \subseteq \Psi(A) = \tau_{\phi} cl(A) \subseteq cl(A)$;
- (2) $A \cup \Psi(int(A)) \subseteq cl(A)$;
- (3) $A \subseteq \phi(A)$ and $B \subseteq \phi(B) \Rightarrow \Psi(A \cap B) \subseteq \Psi(A) \cap \Psi(B)$.

3. g*-a-CLOSED SETS

Definition: 3.1 A subset A of (X, τ) is called a g^* -g-closed set if $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Theorem: 3.2 Every closed set is a g*-g-closed. But not conversely.

Proof: Let A be a closed set. Then cl(A)=A. Let U be any g-open set such that $A \subseteq U$. Then $cl(A) \subseteq U$. We know that $\Psi(A) = A \cup \varphi(A) = \tau_a - cl(A) \subseteq cl(A)$. Therefore $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

Example: 3.3 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{b\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{c\}$. A is a g^* - \mathcal{G} -closed set but not closed set.

Theorem: 3.4 Every g-closed set is a g*-q-closed. But not conversely.

Proof: Let A be a g-closed set. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. We know that $\Psi(A) = A \cup \Psi(A) = \tau_g - cl(A) \subseteq cl(A)$. Therefore $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

Example: 3.5 Let $X = \{a, b, c\}$, $\tau = \{\{\phi\}, \{a\}, \{b\}, \{a, b\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{c\}$. A is a g^* - \mathcal{G} -closed set but not g-closed set of (X, τ) .

Theorem: 3.6 Every g*-g-closed set is a gsp closed. But not conversely.

Proof: Let A be a g^* -g-closed set in (X, τ) . Then $\Psi(A) \subseteq U$. Whenever $A \subseteq U$ and U is g-open. From the above theorem $cl(A) \subseteq U$. But every closed set is a semi-pre-closed set, we have $spcl(A) \subseteq U$ and also every open set is g-open. Therefore $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Example: 3.7 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{b\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{b\}$. A is a g^* - \mathcal{G} -closed set but not gsp-closed set of (X, τ) .

Theorem: 3.8 Every g*-g-closed set is a gp-closed. But not conversely.

Proof: Let A be a g^* -g-closed set in (X, τ) . Then $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. From the above $cl(A) \subseteq U$. But every closed set is a pre-closed set, we have $pcl(A) \subseteq U$ and also every open set is g-open. Therefore $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Example: 3.9 Let $X = \{a, b, c\}$, $\tau = \{\{\phi\}, \{b\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{b\}$. Then A is gp-closed set but not g^* - \mathcal{G} -closed set of (X, τ) .

Remark: 3.10 If A and B are g*-g-closed set, then AUB is also a g*-g-closed set.

Theorem: 3.11 Every g*-g-closed set is a αg-closed set. But not conversely.

Proof: Let A be a g^* -g-closed set in (X, τ) . Then $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. We know $cl(A) \subseteq U$. From the above and every closed set is α -closed set. We have $\alpha cl(A) \subseteq U$ and also every open set is g-open. Therefore $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Example: 3.12 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{b\}, \{X\}\}\}$ and $g = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{b\}$. Then A is a αg -closed set but not g^* -g-closed set of (X, τ) .

Theorem: 3.13 Every g*-*g*-closed set is a gs-closed set. But not conversely.

Proof: Let A be g^* -g-closed set in (X, τ) . Then $\Psi(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. We know $cl(A) \subseteq U$ from the above and every closed set is semi-closed set. We have $scl(A) \subseteq U$ and also every open set is g-open. Therefore $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Example: 3.14 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{b\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{b, c\}$. Then A is a gs-closed set but not a g^* - \mathcal{G} -closed set of (X, τ) .

Theorem: 3.15 A subset A of (X, τ) if a g^* -g-closed set if and only if $\Psi(A)$ – A does not contain any non-empty g-g-closed set.

Proof: Necessity: Let F be a g-g-closed set of (X, τ) such that $F \subseteq \Psi(A) - A$. Then $A \subseteq X$ -F.

Since A is g^* -g-closed and X-F is g-g-open, $\Psi(A) \subseteq X$ - F. This implies $F \subseteq X$ - $\Psi(A)$.

So $F \subseteq (X - \Psi(A)) \cap (\Psi(A) - A) \subseteq (X - \Psi(A)) \cap \Psi(A) = \phi$. Therefore $F = \phi$.

Sufficiency: Suppose A is a subset of (X, τ) such that $\Psi(A) - A$ does not contain any non-empty g-g-closed set. Let U be a g-g-closed set of (X, τ) such that $A \subseteq U$. If $\Psi(A) \nsubseteq U$, then $\Psi(A) \cap \Psi(U) \neq \varphi$. Since $\Psi(A)$ is a closed set. Then we have $\varphi \neq \Psi(A) \cap \Psi(U)$ is a g-g-closed set of (X, τ) . Then $\varphi \neq \Psi(A) \cap \Psi(U) \subseteq \Psi(A) - A$. So $\Psi(A) - A$ contains a non-empty g-g-closed set. This contradicts the hypothesis. Therefore A is a g^* -g-closed set.

Theorem: 3.16 If A is a g^* -g-closed set of (X, τ) such that $A \subseteq B \subseteq \Psi(A)$, then B is also a g^* -g-closed set of (X, τ) .

Proof: Let U be a g-g-closed set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is g^* -g-closed, $\Psi(A) \subseteq U$. Now $\Psi(B) \subseteq \Psi(\Psi(A)) = \Psi(A) \subseteq U$. Therefore B is also a g^* -g-closed set of (X, τ) .

Theorem: 3.17 Every g*-q-closed set is a g*-closed. But not conversely.

Example: 3.18 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{a\}, \{c\}, \{a, c\}, \{X\}\} \text{ and } \mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}.$ Let $A = \{a, c\}.$ Then A is a g*-closed but not g*- \mathcal{G} -closed set of (X, τ) .

Theorem: 3.19 Every g*-g-closed set is a g-g-closed set. But not conversely.

Example: 3.20 Let $X = \{a, b, c\}, \tau = \{\{\phi\}, \{a\}, \{c\}, \{a, c\}, \{X\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Let $A = \{c\}$. Then A is a g- \mathcal{G} -closed set but not g^* - \mathcal{G} -closed set of (X, τ) .

Remark: 3.21

4. g*-q-CONTINUOUS

Definition: 4.1 A function $f:(X, \tau, g) \to (Y, \sigma)$ is called g^* -g-continuous if $f^{-1}(V)$ is a g^* -g-closed set of (X, τ, g) for every closed set V of (Y, σ) .

Theorem: 4.2 Every continuous map is g*-g-continuous. But not conversely.

Proof: Let $f: (X, \tau, g) \to (Y, \sigma)$ be a continuous map. Let V be a closed set in Y. Then $f^1(V)$ is closed. Since every closed set is g^* -g-closed set. We have $f^1(V)$ is a g^* -g-closed set. Therefore f is g^* -g-continuous.

Example: 4.3 Let $X = Y = \{a, b, c\}$, $\tau = \{\{\phi\}, \{b\}, \{X\}\}$ and $\sigma = \{\{\phi\}, \{a\}, \{a, b\}, \{Y\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, b\}, \{X\}\}\}$. Define $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ by f(a) = a, f(b) = b and f(c) = c. f is not continuous since $\{c\}$ is a closed set of (Y, σ) . But $f^{-1}(c) = \{c\}$ is not closed set of (X, τ, \mathcal{G}) . However f is g^* - \mathcal{G} -continuous.

Theorem: 4.4 Every g-continuous map is g*-q-continuous map. But not conversely.

Proof: Let $f: (X, \tau, g) \to (Y, \sigma)$ be a g-continuous map. Let V be a g-closed set in Y. Then $f^1(V)$ is g-closed. Since every g-closed is g^* -g-closed set. We have $f^1(V)$ is a g^* -g-closed set. Therefore f is g^* -g-continuous.

Example: 4.5 Let $X = Y = \{a, b, c\}$, $\tau = \sigma = \{\{\phi\}, \{a\}, \{a, b\}, \{x\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, c\}, \{x\}\}\}$. Define f: $(X, \tau, \mathcal{G}) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b and f(c) = c. f is not g-continuous. Since $\{c\}$ is a closed set in (Y, σ) . But $f^{-1}(c) = \{c\}$ is not a g-closed set of (X, τ, \mathcal{G}) . However f is g^* - \mathcal{G} -continuous.

Theorem: 4.6 Every g^* -g-continuous map is gsp continuous and hence an αg -continuous, gp-continuous and gs-continuous. But not conversely.

Proof: Let $f: (X, \tau, g) \to (Y, \sigma)$ be a g^* -g-continuous map. Let V be a closed set of (Y, σ) . Since f is g^* -g-continuous, $f^1(V)$ is a g^* -g-closed set of (X, τ, g) . By the theorems 3.6, 3.8, 3.11 and 3.13, $f^1(V)$ is gsp-closed, ag-closed and gs-closed set of (X, τ) .

Example: 4.7 Let $X = Y = \{a, b, c\}$, $\tau = \{\{\varphi\}, \{a\}, \{a, b\}, \{x\}\}\}$, $\sigma = \{\{\varphi\}, \{c\}, \{x\}\}\}$ and $\mathcal{G} = \{\{a\}, \{a, c\}, \{x\}\}\}$. Define $g: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ by g(a) = a, g(b) = b and g(c) = c. f is not is g*-continuous. Since $\{a, b\}$ is a closed set in (Y, σ) , but $f^{-1}(a, b) = \{a, b\}$ is not g*-g-closed. However f is gsp continuous, g-continuous and g-continuous.

REFERENCES

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [2] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.
- [3] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [4] G. Choquet, Sur less notions de filter et grille, comptes Rendus Acad. Sci. Paris, 224(1947), 171-173.
- [5] J. Dontchev, On generalizing semi-preopen sets, Mem.Fac.Sci.Kochi Univ. Ser. A, Math., 16(1995), 35-48.
- [6] K. Indirani, P. Sathishmohan and V. Rajendran, On Generalized Grill Closed Sets, International Journal of Applied Mathematics, vol 3, Issue 2(Oct 2012-Mar '13)
- [7] N. Levine, Semi-open sets and semi-continuity in topological Spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.

*K. Indirani, *P. Sathishmohan and *V. Rajendran/ On g^* -g-closed sets / IJMA- 5(1), Jan.-2014.

- [9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15(1994), 51-63.
- [10] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [11] H. Maki, J. Uniehara and T. Noiri, Every topological Spaces in pre- $T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996). 33-42.
- [12] A.S. Mashhour, M.E. Abd EI-Monsef and S.N. EI-Deeb, On Pre-Continuous and weak Pre-continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53(1982), 47-53.
- [13] A.S. Mashhour, I.A. Hasanein and S.N. EI-Deep, α -continuous and α -open mappings, Acta. Math.Hung., 41(3-4) (1983), 213-218.
- [14] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [15] B. Roy and M.N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33(4)(2007), 771-786.
- [16] O .Ravi and S. Ganesan On g- α -open sets and g- α -continuous functions submitted.
- [17] M.K.R.S Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 21(2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared