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Abstract 
 

 In this paper, a theorem on the degree of approximation of the function 
belonging to the Lipschitz class by almost (E,q) (C,1) product means of its 
Fourier series has been established.  

--------------------------------------------------------------------------------------------------

1. Definitions and Notations:  
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where 1
nC   denoted the  (C, 1) transform of sn; then 

an infinite series  n
n 0

u
∞

=
�  with the partial sums sn is 

said to be summable (E,q) (C,1) to the definite 
number s and we write 

 ( )q

n
EC → s[ (E,q) (C,1)] as n → ∞   

 Let f(t) be periodic with period 2π and 
integrable in the sense of Lebesgue. The Fourier 
series of f(t) is given by 

( )0 n n
n 0

1
f(t) ~ a a cosnt b sinnt

2

∞

=

+ +�          (3)  

A function f ∈ Lip α if 

f(x + t) - f(x) = O(|t|α) for 0 < α ≤ 1.                       (4)  

The degree of approximation of a function f : R → R 
by a trigonometric polynomial tn of order n is 

defined by  Zygmund (1968; 1; p.114) 

{ }n nt f sup t (x) f(x) : x R
∞

− = − ∈          (5) 

We shall use following notation : 

φ(t) = f(x + t) + f(x - t) - 2f(x)  

2. Main Theorem:  The degree. of approximation of 
functions belonging to Lip α by Cesàro means and 
by Nörlund means has been discussed by a number 
of researcher's like Alexits (1961), Quereshi (1981, 
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1982), Quereshi and Neha (1990)  Chandra (1975), 
Sahney and Goel(1973), Khan(1974), Leinder (2005) 
and Rhoades(2003). But till now no work seems to 
have been done to obtain the degree of 
approximation of the function belonging to Lip α by 
(E,q) (C,1) product means of its Fourier series.  In 
an attempt to make study in this direction, one 
theorem on the degree of approximation of function 
of Lip α class by product summability means of the 
form (E,q) (C,1) has been obtained as following :  

Theorem: If f : R → R is 2π-periodic, Lebesgue 
integrable on  
[-π, π] and belonging to the Lipschitz class then the 
degree of approximation of f by the (E,q) (C,1) 
product means of its Fourier series satisfies for  n = 
0, 1, 2, ... 
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3. Proof of the theorem: 

 The nth
 partial sum Sn(x) of the series (3) at 

t = x is written as 
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       Let us consider I2 
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Combining (6), (7) and (8), we get 
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Thus,  
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This completes the proof of the theorem.  
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