International Journal of Mathematical Archive-4(12), 2013, 189-194

ON SUMS OF POLYNOMIAL CONJUGATE EP MATRICES

S. Krishnamoorthy* and G. Manikandan**

*Head of the Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India.

**Lecturer in Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India.

(Received on: 26-11-13; Revised & Accepted on: 27-12-13)

ABSTRACT

N ecessary and sufficient conditions are determined for a sum of polynomial con-EP matrices to be polynomial con-EP and it is shown that the sum and parallel sum of parallel summable polynomial con-EP matrices are polynomial con-EP.

Keywords: EP matrix, polynomial matrix, Generalized inverse.

Ams classification: 15A09, 15A15, 15A57.

INTRODUCTION

In this paper we shall study the question of when of polynomial conjugate EP (polynomial con-EP) matrices is polynomial con-EP. We give necessary and sufficient conditions for sum of polynomial con-EP matrices to be polynomial con-EP. We also show that sum and parallel sum of parallel summable (p.s) [7], polynomial con-EP matrices are polynomial con-EP. The results of this paper for polynomial con-EP matrices are analogous to that of EP matrices, studied in [4].

Throughout we shall deal with $\mathbf{n} \times \mathbf{n}$ complex polynomial matrices. An n-square matrix $A(\lambda)$ which is a polynomial in the scalar variable λ from a field C represented by $A(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \dots + A_1 \lambda + A_0$ where the leading coefficient $A_m \neq 0$, A_i 's are square matrices in $V_{n \times n}$ is defined a polynomial matrix. Let \overline{A} , A^T , A^* and $A^$ denote the conjugate, transpose, conjugate transpose and generalized inverse (A $A^-A=A$) of A respectively. A^{\dagger} denotes the Moore-penrose inverse satisfying the following four equations: AXA=A, XAX=X, $(AX)^*=AX$ and $(XA)^* = XA$ of [7]. Any matrix A is called polynomial con-EP if $R(A)=R(A^T)$ or $N(A)=N(A^T)$ or $AA^{\dagger} = A^{\dagger}A$

and is called polynomial con-EP, if A is polynomial con-EP and rk(A)=r, where N(A), R(A) and rk(A) denote the null space, range space and rank of A respectively[5]. Any two matrices A and B are said to be p.s. if $N(A+B) \subseteq N(B)$ and

 $N(A+B)^* \subseteq N(B)^*$ or equivalently $N(A+B) \subseteq N(A)$ and $N(A+B)^* \subseteq N(A)^*$. If A and B are p.s. then parallel sum of A and B denoted by A:B and defined as $A: B = A(A+B)^- B$ of [7], if A and B are p.s. then the following hold

[7]

(1)
$$A:B=B:A$$

(2) A^* and B^* are p.s. and (A:B) $^*=A^*:B^*$

(2) A and B are p.s. and (A.B) – A . B (3) If U is nonsingular them UA and UB are p.s. and UA:UB=U(A:B)

(4) $R(A:B)=R(A) \cap R(B)$

(5) (A: B):E = A:(B:E) if all the parallel sum operations involved are defined.

Let M = $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ be an $n \times n$ matrix. Then the schur complement of A in M, denoted by M / A is defined as D-CA

B [3]. For further properties of schur complements one may refer [1] and [2].

Theorem: 1 Let A_j (i=1 to n) be polynomial con-EP matrices. Then $A = \sum_{i=1}^{n} A_j$ is polynomial con-EP if any one of the following equivalent conditions hold.

(i) $N(A) \subseteq N(A_i)$ for each i.

(ii)
$$\mathbf{rk} \begin{vmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \cdot \\ \cdot \\ \mathbf{A}_n \end{vmatrix} = \mathbf{rk}(\mathbf{A}).$$

Proof: Equivalence of (i) and (ii) is already proved in [4] Since each A_i is polynomial con-EP $N(A_i) = N(A_i^T)$ for each i. $N(A) \subseteq N(A_i)$ for each i implies $N(A) \subseteq \cap N(A_i) = \cap N(A_i^T) = \cap N(A_i^T)$ and $rk(A) = rk(A^T)$. Hence $N(A) = N(A^T)$. Thus A is polynomial con-EP. Hence the Theorem.

Remark 1: In the above Theorem if A is nonsingular then the conditions hold automatically and A is polynomial con-EP. But, it fails if we relax the condition on the A_i 's.

Example 1:
$$A = \begin{bmatrix} \lambda^2 & \lambda \\ \lambda & i \end{bmatrix}$$
 is polynomial con-EP, $B = \begin{bmatrix} \lambda^3 & \lambda^2 + i \\ \lambda^2 & i \end{bmatrix}$ is not polynomial con-EP then A+B is not polynomial con-EP. However, $N(A+B) \subseteq N(A)$ and $N(A+B) \subseteq N(B)$; $rk \begin{bmatrix} A \\ B \end{bmatrix} = rk(A+B)$.

Remark 2: If rank is additive, that is $rk(A) = \sum rk(A_i)$ then by Theorem 11 of [3], $R(A_i) \cap R(A_j) = \{0\}, i \neq j$, which implies $N(A) \subseteq N(A_i)$ for each i, hence A is polynomial con-EP. That the conditions given in Theorem 1 are weaker than the condition of rank additivity can be seen by the following example.

Example 2: Let $A = \begin{bmatrix} \lambda^2 & \lambda \\ \lambda & i \end{bmatrix}$ and $B = \begin{bmatrix} \lambda^3 & \lambda^2 \\ \lambda^2 & i \end{bmatrix} A$, B and A+B are polynomial con-EP₁ matrices. Conditions (i) and (ii) of Theorem 1 hold. But $rk(A+B) \neq rk(A)+rk(B)$.

Theorem 2: Let A_i (i=1 to n) be polynomial con-EP₁ matrices such that $\sum_{i \neq j} (A_i)^* A_j = 0$. Then $A = \sum A_i$ is polynomial con-EP.

Proof: As in the proof of Theorem 2 in [6], Let $\sum_{i \neq j} (A_i)^* A_j = 0$ implies $N(A) \subseteq N(A_i)$ for each i. Since each A_i is polynomial con-EP, A is polynomial con-EP. By theorem 1 hence the theorem

Remark: 3

Theorem 2 fails if we relax the condition that A_i 's are polynomial con-EP. For instance

 $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & i\lambda^2 & 0 \\ i\lambda^2 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & i\lambda^2 & 0 \\ i\lambda^2 & 0 & 0 \\ 0 & i\lambda^2 & 0 \end{bmatrix} \text{ are not polynomial con-EP, then A+B is also not polynomial con-EP, then A+B is also not polynomial con-EP.}$

EP. However $B^*A+A^*B=0$.

Remark: 4 The condition given in Theorem 2 implies those in Theorem 1, but not conversely. This can be seen by the following.

Example: 3 Let $A = \begin{bmatrix} \lambda^2 & i \\ i & \lambda \end{bmatrix}$ and $B = \begin{bmatrix} \lambda^2 & \lambda \\ \lambda & i \end{bmatrix}$. A and B are polynomial con-EP matrices. N(A+B) \subseteq N(A) and N(B).

and N(B).

But
$$A^T B + B^T A = \begin{bmatrix} 2\lambda^4 + 2\lambda i & \lambda^3 + \lambda^2(i+1) - 1 \\ \lambda^3 + \lambda^2(i-1) - 1 & 4\lambda i \end{bmatrix} \neq 0.$$

Remark: 5 We note that the conditions given in Theorem 1 and Theorem 2 are only sufficient for the sum of polynomial con-EP matrices to be polynomial con-EP. But not necessary and this is illustrated in the following.

Example: 4 Let $A = \begin{bmatrix} \lambda^2 & i \\ -i & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \lambda^2 & \lambda \\ \lambda & i \end{bmatrix}$. A and B are con-EP₂. Neither the conditions in Theorem 1 nor in Theorem 2 hold. However, A + B is a share which seen EP

Theorem 2 hold. However A+B is polynomial con-EP.

If A and B are polynomial con-EP matrices by Result 2.1 of [5]. We get $A^* = K_1 \overline{A}$, and $B^* = K_2 \overline{B}$, where K_1 and K_2 are nonsingular $\mathbf{n} \times \mathbf{n}$ matrices. If $K_1 = K_2$, then A+B is polynomial con-EP. If $(K_1 - K_2)$ is nonsingular then the above conditions are also necessary for the sum of polynomial con-EP matrices to be polynomial con-EP. This is given in the following Theorem.

Theorem: 3 Let $A^* = K_1 \overline{A}$ and $B^* = K_2 \overline{B}$ such that $(K_1 - K_2)$ is a nonsingular matrix. Then A+B is polynomial con-EP if and any only if $N(A+B) \subseteq N(B)$.

Proof: $A^* = K_1 \overline{A}$ and $B^* = K_2 \overline{B}$ by Result 2.1 of [5] A and B are polynomial con-EP matrices. Since $N(A+B) \subseteq N(B)$ We can see that, $N(A+B) \subseteq N(A)$. Hence by Theorem 1, A+B is polynomial con-EP.

Conversely, let us assume that A+B is polynomial con-EP, then by Theorem1 of [5], $A^* + B^* = (A+B)^* = G(\overline{A+B})$ for some $n \times n$ matrix G. Hence $K_1 \overline{A} + K_2 \overline{B} = G(\overline{A+B})$. This implies $K \overline{A} = H \overline{B}$, where $K = K_1$ -G and $H = G - K_2$.

 $(K+H)\overline{A} = H\overline{(A+B)} \text{ and } (K+H)\overline{B} = K\overline{(A+B)}. \text{ By hypothesis, } K+H=K_1-K_2 \text{ is nonsingular.}$ $N\overline{(A+B)} \subseteq N(H\overline{(A+B)} = N(K+H)\overline{A} = N(\overline{A}) \text{ , which implies } N(A+B) \subseteq N(A).$

Similarly, $N(\overline{A+B}) \subseteq N(\overline{K(A+B)} = N(\overline{K+H})B = N(\overline{B})$ implies $N(A+B) \subseteq N(B)$. Thus A+B is polynomial con-EP implies, $N(A+B) \subseteq N(A)$ and N(B). Hence the Theorem.

Remark 6: The condition $(K_1 - K_2)$ to be nonsingular is essential in Theorem 3. This is illustrated in the following.

Example 5: $A = \begin{bmatrix} \lambda^2 & 0 \\ 0 & i\lambda^2 \end{bmatrix}$ and $B = \begin{bmatrix} i\lambda & 0 \\ 0 & 0 \end{bmatrix}$ are both symmetric, hence con-EP. Here $K_1 = K_2$ and $A + B = \begin{bmatrix} i(\lambda^2 + \lambda) & 0 \\ 0 & i\lambda^2 \end{bmatrix}$ is polynomial con-EP. But $N(A + B) \not\subseteq N(A)$ or N(B). Thus Theorem 3 fails.

Lemma: 1 Let A and B be polynomial con-EP matrices. Then A and B are p.s. if and only if $N(A+B) \subseteq N(A)$.

Proof: If A and B are p.s. then $N(A+B) \subseteq N(A)$ follows from definition.

Conversely, if $N(A+B) \subseteq N(A)$ then $N(A+B) \subseteq N(B)$. Since A and B are polynomial con-EP matrices by Theorem 1, A+B is polynomial con-EP.

Hence
$$N(A+B)^T = N(A+B) = N(A) \cap N(B) = N(A^T) \cap N(B^T)$$
 which implies, $N(A+B)^T = N(A^T) \cap N(B^T)$

Therefore, $N(A+B)^* \subseteq N(A)^*$ and $N(A+B)^* \subseteq N(B)^*$. By hypothesis $N(A+B) \subseteq N(A)$. Hence A and B are p.s.

In the following Theorem we show that sum and parallel sum of p.s. polynomial con-EP matrices is polynomial con-EP.

Theorem: 4 If A and B are p.s. polynomial con-EP matrices then A: B and A+B are polynomial con-EP.

Proof: Since A and B are p.s. polynomial con-EP matrices, by Lemma 1, $N(A+B) \subseteq N(A)$ and $N(A+B) \subseteq N(B)$. Now, the fact that (A+B) is polynomial con-EP follows from Theorem 1.

Now,
$$R(A:B)^* = R(A^*:B^*)$$
 (By (2))
 $= R(A^*) \cap R(B^*)$ (By (4))
 $= R(\overline{A}) \cap R(\overline{B})$ (A and B are polynomial con-EP)
 $= R(\overline{A}:\overline{B})$ (By (4))
 $= R(\overline{A:B})$

Which implies (A:B) is polynomial con-EP and hence A: B is polynomial con-EP. Thus A: B is polynomial con-EP whenever A and B are polynomial con-EP. Hence the Theorem.

Theorem: 5 Let A be polynomial con- EP_{r_1} and B be polynomial con- EP_{r_2} matrices of order n such that $N(A+B) \subseteq N(B)$. Then there exists a $2n \times 2n$ polynomial con- EP_r matrix M such that the schur complement of C in M is polynomial con-EP, where $r = r_1 + r_2$ and C = A + B.

Proof: Since A is polynomial con- EP_{r_1} and B is polynomial con- EP_{r_2} , by Result 2.1 of [5] there exist unitary matrices U and V of order n such that

 $A = U^{T}DU, \text{ and } B = V^{T}EV, \text{ where}$ $D = \begin{bmatrix} H & 0 \\ 0 & 0 \end{bmatrix}, \text{ H is } \mathbf{r}_{1} \times \mathbf{r}_{1} \text{ nonsingular and}$ $E = \begin{bmatrix} K & 0 \\ 0 & 0 \end{bmatrix}, \text{ H is } \mathbf{r}_{2} \times \mathbf{r}_{2} \text{ nonsingular.}$ $\begin{bmatrix} V & 0 \end{bmatrix}$

Let us define $P = \begin{bmatrix} V & 0 \\ U & I \end{bmatrix}$, P is nonsingular.

© 2013, IJMA. All Rights Reserved

Now,
$$P^{T}\begin{bmatrix} E & 0 \\ 0 & D \end{bmatrix} P = \begin{bmatrix} V^{T} & U^{T} \\ 0 & I \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} V & 0 \\ U & I \end{bmatrix}$$
$$= \begin{bmatrix} V^{T}EV + U^{T}DU & U^{T}D \\ DU & D \end{bmatrix}$$
$$= \begin{bmatrix} A + B & U^{T}D \\ DU & D \end{bmatrix}$$
$$= \begin{bmatrix} C & AU^{*} \\ \overline{U}A & \overline{U}AU^{*} \end{bmatrix} = M.$$

M is $2n \times 2n$ matrix and $rk(M) = rk(E) + rk(D) = \mathbf{1}_1 + \mathbf{1}_2 = r$.

Let us define $Q = \begin{bmatrix} T_n & 0 \\ UA^{\dagger}A & I_n \end{bmatrix}$, Q is nonsingular.

Since A is polynomial con-EP $AA^{\dagger} = \overline{A^{\dagger}A}$ and by Result 2.2 of [5] $\overline{U}AU^{*}$ is polynomial con-EP.

We can write M as, M= $Q^T \begin{bmatrix} B & 0 \\ 0 & \overline{U}AU^* \end{bmatrix} Q$. Since B and $\overline{U}AU^*$ are polynomial con-EP, Q is nonsingular, M is

polynomial con-EP. Since M is of rank r, M is polynomial con- EP_r . Thus we have proved the existence of the polynomial con- EP_r matrix M. Now C=A+B is polynomial con-EP follows from Theorem 1. Since $N(C) \subseteq N(A) = N(\overline{U}A)$ and $N(C^*) \subseteq N(A^*) = N(AU^*)^*$. By the Lemma in [7], $A = AC^-C = CC^-A$ and $(\overline{U}A)C^-(AU^*)$ is invariant for all choice of C^- . The schur complement of C^{\dagger} in M is,

$$M/C = \overline{U}AU^* - \overline{U}AC^- AU^*$$

= $\overline{U}AU^* - \overline{U}(A+B)C^-(AU^*) + \overline{U}BC^- AU^*$
= $\overline{U}AU^* - \overline{U}CC^-AU^* + \overline{U}BC^- AU^*$
= $\overline{U}AU^* - \overline{U}AU^* + \overline{U}BC AU^*$
= $\overline{U}BC^- AU^*$
= $\overline{U}(A:B)U^*$

Since A and B are polynomial con-EP, by Theorem 4, A:B is polynomial con-EP. By Result 2.2 of [5], $M/C = \overline{U}(A:B) U^* = P(A:B) P^T$, where $P = \overline{U}$ is unitary, is also polynomial con-EP. Hence the Theorem.

Remark: 7 In a special case if A and B are polynomial con-EP matrices such that $A+B = I_n$ then AB = A:B = B:A = BA is polynomial con-EP. However this fails if we relax the conditions on A and B. For instance, $A = \begin{bmatrix} \lambda^3 & 0 \\ 0\lambda & 3 \end{bmatrix}$ is olynomial con-EP₂ and $B = \begin{bmatrix} 0 & 0 \\ i\lambda & 1 \end{bmatrix}$ is not polynomial con-EP. Here AB=BA is not polynomial con-EP, however

$$A+B=I_2$$

REFERENCE

- 1. F. Burns, D. Carlson, E. Haynsworth and Th. Markham, *Genaralized invesrse formulas using the Schur complement*, SIAM J. Appl. Math., 26(1974), P 254-59.
- 2. D. Carlson, E. Haynsworth and Th. Markham, generalization of the Schur complement by means of moore penrose inverse SIAM J. Appl. Math., 26(1974), 69-175.
- 3. G. Marsaglia and G.P.H. Styan, *Equalities and Inequalities for ranks of matrices*, Linear and Multilinear Alg., 2(1974), 269-92.
- 4. AR. Meenakshi, On sums of EP matrices, Houston Journal of Mathematics, 9, # 1(1983), 63-69.
- 5. AR. Meenakshi and R. Indira, *Conjugate* EP_r *factorization of a matrix*, Appear in the Mathematics Student, 61(1992), P 1-9,
- 6. AR. Meenakshi and R. Indira, An conjugate EP matrices, (periodica math., Hung).
- 7. C.R. Rao and S.K. Mitra, *Genaralized inverse of matrices and its applicationsss*, Wiley and Sons, New York, (1971).

Source of support: Nil, Conflict of interest: None Declared