(ca)MAAvailable online through www.ijma.info ISSN 2229-5046

ON SUMS OF POLYNOMIAL CONJUGATE EP MATRICES

S. Krishnamoorthy* and G. Manikandan**
*Head of the Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India.
**Lecturer in Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, India.

(Received on: 26-11-13; Revised \& Accepted on: 27-12-13)

Abstract

Necessary and sufficient conditions are determined for a sum of polynomial con-EP matrices to be polynomial con-EP and it is shown that the sum and parallel sum of parallel summable polynomial con-EP matrices are polynomial con$E P$.

Keywords: EP matrix, polynomial matrix, Generalized inverse.
Ams classification: 15A09, 15A15, 15A57.

INTRODUCTION

In this paper we shall study the question of when of polynomial conjugate EP (polynomial con-EP) matrices is polynomial con-EP. We give necessary and sufficient conditions for sum of polynomial con-EP matrices to be polynomial con-EP. We also show that sum and parallel sum of parallel summable (p.s) [7], polynomial con-EP matrices are polynomial con-EP. The results of this paper for polynomial con-EP matrices are analogous to that of EP matrices, studied in [4].

Throughout we shall deal with $n \times n$ complex polynomial matrices. An n-square matrix $A(\lambda)$ which is a polynomial in the scalar variable λ from a field C represented by $A(\lambda)=A_{m} \lambda^{m}+A_{m-1} \lambda^{m-1}+\ldots \ldots .+A_{1} \lambda+A_{0}$ where the leading coefficient $A_{m} \neq 0, A_{i} s$ are square matrices in $V_{n \times n}$ is defined a polynomial matrix. Let \bar{A}, A^{T}, A^{*} and A^{-} denote the conjugate, transpose, conjugate transpose and generalized inverse ($A A^{-} A=A$) of A respectively. A^{\dagger} denotes the Moore-penrose inverse satisfying the following four equations: $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X},(\mathrm{AX})^{*}=\mathrm{AX}$ and $(X A)^{*}=X A$ of [7]. Any matrix A is called polynomial con-EP if $R(A)=R\left(A^{T}\right)$ or $N(A)=N\left(A^{T}\right)$ or $A A^{\dagger}=A^{\dagger} A$ and is called polynomial con-EP, if A is polynomial con-EP and $\operatorname{rk}(A)=r$, where $N(A), R(A)$ and $r k(A)$ denote the null space, range space and rank of A respectively[5]. Any two matrices A and B are said to be p.s. if $N(A+B) \subseteq N(B)$ and $N(A+B)^{*} \subseteq N(B)^{*}$ or equivalently $N(A+B) \subseteq N(A)$ and $N(A+B)^{*} \subseteq N(A)^{*}$. If A and B are p.s. then parallel sum of A and B denoted by $A: B$ and defined as $A: B=A(A+B)^{-} B$ of [7], if A and B are p.s. then the following hold [7]
(1) $\mathrm{A}: \mathrm{B}=\mathrm{B}: \mathrm{A}$
(2) A^{*} and B^{*} are p.s. and $(\mathrm{A}: \mathrm{B})^{*}=\mathrm{A}^{*}$: B^{*}
(3) If U is nonsingular them $U A$ and $U B$ are p.s. and $U A: U B=U(A: B)$
(4) $R(A: B)=R(A) \cap R(B)$
(5) (A: B):E=A:(B:E) if all the parallel sum operations involved are defined.
S. Krishnamoorthy* and G. Manikandan**/ On Sums Of Polynomial Conjugate Ep Matrices / IJMA- 4(12), Dec.-2013.

Let $\mathrm{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ be an $\mathrm{n} \times \mathrm{n}$ matrix. Then the schur complement of A in M, denoted by M / A is defined as D-CA ${ }^{-}$B [3]. For further properties of schur complements one may refer [1] and [2].

Theorem: 1 Let $A_{j}(i=1$ to $n)$ be polynomial con-EP matrices. Then $A=\sum_{i=1}^{n} A_{j}$ is polynomial con-EP if any one of the following equivalent conditions hold.
(i) $\quad \mathrm{N}(\mathrm{A}) \subseteq \mathrm{N}\left(\mathrm{A}_{\mathrm{i}}\right)$ for each i.
(ii)

$$
\mathrm{rk}\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
\cdot \\
\cdot \\
A_{n}
\end{array}\right]=\operatorname{rk}(A) .
$$

Proof: Equivalence of (i) and (ii) is already proved in [4] Since each A_{i} is polynomial con-EP $N\left(A_{i}\right)=N\left(A_{i}^{T}\right)$ for each i. $N(A) \subseteq N\left(A_{i}\right)$ for each i implies $N(A) \subseteq \cap N\left(A_{i}\right)=\cap N\left(A_{i}^{T}\right)=\cap N\left(A_{i}^{T}\right)$ and $r k(A)=r k\left(A^{T}\right)$. Hence $N(A)=N\left(A^{T}\right)$. Thus A is polynomial con-EP. Hence the Theorem.

Remark 1: In the above Theorem if A is nonsingular then the conditions hold automatically and A is polynomial conEP. But, it fails if we relax the condition on the A_{i} 's.

Example 1: $\mathrm{A}=\left[\begin{array}{cc}\lambda^{2} & \lambda \\ \lambda & \mathrm{i}\end{array}\right]$ is polynomial con-EP, $\mathrm{B}=\left[\begin{array}{cc}\lambda^{3} & \lambda^{2}+\mathrm{i} \\ \lambda^{2} & \mathrm{i}\end{array}\right]$ is not polynomial con-EP then $\mathrm{A}+\mathrm{B}$ is not polynomial con-EP. However, $N(A+B) \subseteq N(A)$ and $\quad N(A+B) \subseteq N(B) ; r k\left[\begin{array}{l}A \\ B\end{array}\right]=r k(A+B)$.

Remark 2: If rank is additive, that is $\operatorname{rk}(A)=\sum \operatorname{rk}\left(A_{i}\right)$ then by Theorem 11 of [3], $R\left(A_{i}\right) \cap R\left(A_{j}\right)=\{0\}, i \neq j$, which implies $N(A) \subseteq N\left(A_{i}\right)$ for each i, hence A is polynomial con-EP. That the conditions given in Theorem 1 are weaker than the condition of rank additivity can be seen by the following example.

Example 2: Let $\mathrm{A}=\left[\begin{array}{cc}\lambda^{2} & \lambda \\ \lambda & \mathrm{i}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\lambda^{3} & \lambda^{2} \\ \lambda^{2} & \mathrm{i}\end{array}\right] \mathrm{A}, \mathrm{B}$ and $\mathrm{A}+\mathrm{B}$ are polynomial con- EP_{1} matrices. Conditions (i) and (ii) of Theorem 1 hold. But $\operatorname{rk}(\mathrm{A}+\mathrm{B}) \neq \operatorname{rk}(\mathrm{A})+\mathrm{rk}(\mathrm{B})$.

Theorem 2: Let $A_{i}(i=1$ to $n)$ be polynomial con- $E P_{1}$ matrices such that $\sum_{i \neq j}\left(A_{i}\right)^{*} A_{j}=0$. Then $A=\sum A_{i}$ is polynomial con-EP.

Proof: As in the proof of Theorem 2 in [6], Let $\sum_{i \neq j}\left(A_{i}\right)^{*} A_{j}=0$ implies $N(A) \subseteq N\left(A_{i}\right)$ for each i. Since each A_{i} is polynomial con-EP, A is polynomial con-EP. By theorem 1 hence the theorem

Remark: 3

Theorem 2 fails if we relax the condition that A_{i}^{\prime} 'S are polynomial con-EP. For instance
$\mathrm{A}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \mathrm{i} \lambda^{2} & 0 \\ \mathrm{i} \lambda^{2} & 0 & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}0 & \mathrm{i} \lambda^{2} & 0 \\ \mathrm{i} \lambda^{2} & 0 & 0 \\ 0 & \mathrm{i} \lambda^{2} & 0\end{array}\right]$ are not polynomial con-EP, then $\mathrm{A}+\mathrm{B}$ is also not polynomial conEP. However B ${ }^{*} \mathrm{~A}+\mathrm{A}{ }^{*} \mathrm{~B}=0$.

Remark: 4 The condition given in Theorem 2 implies those in Theorem 1, but not conversely. This can be seen by the following.

Example: 3 Let $A=\left[\begin{array}{cc}\lambda^{2} & \mathrm{i} \\ \mathrm{i} & \lambda\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\lambda^{2} & \lambda \\ \lambda & \mathrm{i}\end{array}\right]$. A and B are polynomial con-EP matrices. $\mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{A})$ and $N(B)$.

But $A^{T} B+B^{T} A=\left[\begin{array}{cc}2 \lambda^{4}+2 \lambda i & \lambda^{3}+\lambda^{2}(i+1)-1 \\ \lambda^{3}+\lambda^{2}(i-1)-1 & 4 \lambda i\end{array}\right] \neq 0$.
Remark: 5 We note that the conditions given in Theorem 1 and Theorem 2 are only sufficient for the sum of polynomial con-EP matrices to be polynomial con-EP. But not necessary and this is illustrated in the following.

Example: 4 Let $\mathrm{A}=\left[\begin{array}{cc}\lambda^{2} & \mathrm{i} \\ -\mathrm{i} & 0\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\lambda^{2} & \lambda \\ \lambda & \mathrm{i}\end{array}\right]$. A and B are con- EP_{2}. Neither the conditions in Theorem 1 nor in Theorem 2 hold. However $\mathrm{A}+\mathrm{B}$ is polynomial con-EP.

If A and B are polynomial con-EP matrices by Result 2.1 of [5]. We get $A{ }^{*}=K_{1} \bar{A}$, and $B{ }^{*}=K_{2} \bar{B}$, where K_{1} and K_{2} are nonsingular $n \times n$ matrices. If $K_{1}=K_{2}$, then $A+B$ is polynomial con-EP. If $\left(K_{1}-K_{2}\right)$ is nonsingular then the above conditions are also necessary for the sum of polynomial con-EP matrices to be polynomial con-EP. This is given in the following Theorem.

Theorem: 3 Let $A^{*}=K_{1} \bar{A}$ and $B^{*}=K_{2} \bar{B}$ such that $\left(K_{1}-K_{2}\right)$ is a nonsingular matrix. Then $A+B$ is polynomial con-EP if and any only if $N(A+B) \subseteq N(B)$.

Proof: $A^{*}=K_{1} \bar{A}$ and $B^{*}=K_{2} \bar{B}$ by Result 2.1 of [5] A and B are polynomial con-EP matrices. Since $N(A+B) \subseteq N(B)$ We can see that, $N(A+B) \subseteq N(A)$. Hence by Theorem 1, A+B is polynomial con-EP.

Conversely, let us assume that $A+B$ is polynomial con-EP, then by Theorem1 of [5], $A^{*}+B^{*}=(A+B)^{*}=G(\overline{A+B})$ for some $n \times n$ matrix G. Hence $K_{1} \bar{A}+K_{2} \bar{B}=G \overline{(A+B)}$. This implies $K \bar{A}=H \bar{B}$, where $K=K_{1}-G$ and $H=G$ K_{2}.
$(\mathrm{K}+\mathrm{H}) \overline{\mathrm{A}}=\mathrm{H} \overline{(\mathrm{A}+\mathrm{B})} \quad$ and $\quad(\mathrm{K}+\mathrm{H}) \overline{\mathrm{B}}=\mathrm{K} \overline{(\mathrm{A}+\mathrm{B})} . \quad \mathrm{By}$ hypothesis, $\mathrm{K}+\mathrm{H}=\mathrm{K}_{1}-\mathrm{K}_{2} \quad$ is nonsingular. $N \overline{(A+B)} \subseteq N(H \overline{(A+B)}=N(K+H) \bar{A}=N(\bar{A})$, which implies $N(A+B) \subseteq N(A)$.

Similarly, $N \overline{(A+B)} \subseteq N(K \overline{(A+B)}=N(K+H) \bar{B}=N(\bar{B})$ implies $N(A+B) \subseteq N(B)$. Thus $A+B$ is polynomial con-EP implies, $N(A+B) \subseteq N(A)$ and $N(B)$. Hence the Theorem.

Remark 6: The condition ($\mathrm{K}_{1}-\mathrm{K}_{2}$) to be nonsingular is essential in Theorem 3. This is illustrated in the following.
S. Krishnamoorthy* and G. Manikandan**/ On Sums Of Polynomial Conjugate Ep Matrices / IJMA- 4(12), Dec.-2013.

Example 5: $A=\left[\begin{array}{cc}\lambda^{2} & 0 \\ 0 & \mathrm{i} \lambda^{2}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\mathrm{i} \lambda & 0 \\ 0 & 0\end{array}\right]$ are both symmetric, hence con-EP. Here $\mathrm{K}_{1}=\mathrm{K}_{2}$ and $A+B=\left[\begin{array}{cc}\mathrm{i}\left(\lambda^{2}+\lambda\right) & 0 \\ 0 & \mathrm{i} \lambda^{2}\end{array}\right]$ is polynomial con-EP. But $\mathrm{N}(\mathrm{A}+\mathrm{B}) \notin \mathrm{N}(\mathrm{A})$ or $\mathrm{N}(\mathrm{B})$. Thus Theorem 3 fails.

Lemma: 1 Let A and B be polynomial con-EP matrices. Then A and B are p.s. if and only if $N(A+B) \subseteq N(A)$.
Proof: If A and B are p.s. then $N(A+B) \subseteq N(A)$ follows from definition.
Conversely, if $N(A+B) \subseteq N(A)$ then $N(A+B) \subseteq N(B)$. Since A and B are polynomial con-EP matrices by Theorem 1, $\mathrm{A}+\mathrm{B}$ is polynomial con-EP.

Hence $N(A+B)^{T}=N(A+B)=N(A) \cap N(B)=N\left(A^{T}\right) \cap N\left(B^{T}\right)$ which implies, $N(A+B)^{T}=N\left(A^{T}\right) \cap N\left(B^{T}\right)$
Therefore, $\mathrm{N}(\mathrm{A}+\mathrm{B})^{*} \subseteq \mathrm{~N}(\mathrm{~A})^{*}$ and $\mathrm{N}(\mathrm{A}+\mathrm{B})^{*} \subseteq \mathrm{~N}(\mathrm{~B})^{*}$. By hypothesis $\mathrm{N}(\mathrm{A}+\mathrm{B}) \subseteq \mathrm{N}(\mathrm{A})$. Hence A and B are p.s.

In the following Theorem we show that sum and parallel sum of p.s. polynomial con-EP matrices is polynomial conEP.

Theorem: 4 If A and B are p.s. polynomial con-EP matrices then $A: B$ and $A+B$ are polynomial con-EP.
Proof: Since A and B are p.s. polynomial con-EP matrices, by Lemma $1, N(A+B) \subseteq N(A)$ and $N(A+B) \subseteq N(B)$. Now, the fact that $(A+B)$ is polynomial con-EP follows from Theorem 1.

$$
\text { Now, } \begin{aligned}
\mathrm{R}(\mathrm{~A}: \mathrm{B})^{*} & =\mathrm{R}\left(\mathrm{~A}^{*}: \mathrm{B}^{*}\right) & & (\mathrm{By}(2)) \\
& =\mathrm{R}\left(\mathrm{~A}^{*}\right) \cap \mathrm{R}\left(\mathrm{~B}^{*}\right) & & (\mathrm{By}(4)) \\
& =\mathrm{R}(\overline{\mathrm{~A}}) \cap \mathrm{R}(\overline{\mathrm{~B}}) & & \text { (A and B are polynomial con-EP) } \\
& =\mathrm{R}(\overline{\mathrm{~A}}: \overline{\mathrm{B}}) & & \text { (By (4)) } \\
& =\mathrm{R}(\overline{\mathrm{~A}}: \bar{B}) & &
\end{aligned}
$$

Which implies ($\overline{\mathrm{A}: \mathrm{B}}$) is polynomial con-EP and hence A : B is polynomial con-EP. Thus A: B is polynomial con-EP whenever A and B are polynomial con-EP. Hence the Theorem.

Theorem: 5 Let A be polynomial con- $E P_{r_{1}}$ and B be polynomial con- $E P_{r_{2}}$ matrices of order n such that $N(A+B) \subseteq N(B)$. Then there exists a $2 n \times 2 n$ polynomial con- $\mathrm{EP}_{\mathbf{r}}$ matrix M such that the schur complement of C in M is polynomial con-EP, where $\mathrm{r}=\mathrm{r}_{1}+\mathrm{r}_{2}$ and $\mathrm{C}=\mathrm{A}+\mathrm{B}$.

Proof: Since A is polynomial con- $E P_{r_{1}}$ and B is polynomial con- $E P_{r_{2}}$, by Result 2.1 of [5] there exist unitary matrices U and V of order n such that
$\mathrm{A}=\mathrm{U}^{\mathrm{T}} \mathrm{DU}$, and $\mathrm{B}=\mathrm{V}^{\mathrm{T}} \mathrm{EV}$, where
$\mathrm{D}=\left[\begin{array}{cc}\mathrm{H} & 0 \\ 0 & 0\end{array}\right]$, H is $\mathrm{r}_{1} \times \mathrm{r}_{1}$ nonsingular and
$E=\left[\begin{array}{ll}K & 0 \\ 0 & 0\end{array}\right], H$ is $r_{2} \times r_{2}$ nonsingular.
Let us define $P=\left[\begin{array}{ll}\mathrm{V} & 0 \\ \mathrm{U} & \mathrm{I}\end{array}\right], \mathrm{P}$ is nonsingular.

Now, $\quad \mathrm{P}^{\mathrm{T}}\left[\begin{array}{ll}\mathrm{E} & 0 \\ 0 & \mathrm{D}\end{array}\right] \mathrm{P}=\left[\begin{array}{cc}\mathrm{V}^{\mathrm{T}} & \mathrm{U}^{\mathrm{T}} \\ 0 & \mathrm{I}\end{array}\right]\left[\begin{array}{cc}\mathrm{E} & 0 \\ 0 & \mathrm{D}\end{array}\right]\left[\begin{array}{cc}\mathrm{V} & 0 \\ \mathrm{U} & \mathrm{I}\end{array}\right]$

$$
=\left[\begin{array}{cc}
\mathrm{V}^{\mathrm{T}} \mathrm{EV}+\mathrm{U}^{\mathrm{T}} \mathrm{DU} & \mathrm{U}^{\mathrm{T}} \mathrm{D} \\
\mathrm{DU} & \mathrm{D}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
\mathrm{A}+\mathrm{B} & \mathrm{U}^{\mathrm{T}} \mathrm{D} \\
\mathrm{DU} & \mathrm{D}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
\mathrm{C} & \mathrm{AU}^{*} \\
\overline{\mathrm{UA}} & \overline{\mathrm{U} A U^{*}}
\end{array}\right]=\mathrm{M} .
$$

M is $2 n \times 2 n$ matrix and $r k(M)=r k(E)+r k(D)=r_{1}+r_{2}=r$.
Let us define $\mathrm{Q}=\left[\begin{array}{cc}\mathrm{T}_{\mathrm{n}} & 0 \\ \mathrm{UA}^{\dagger} \mathrm{A} & \mathrm{I}_{\mathrm{n}}\end{array}\right]$, Q is nonsingular.
Since A is polynomial con-EP $\mathrm{AA}^{\dagger}=\overline{\mathrm{A}^{\dagger} \mathrm{A}}$ and by Result 2.2 of [5] $\overline{\mathrm{U}} \mathrm{AU}^{*}$ is polynomial con-EP.
We can write M as, $M=Q^{T}\left[\begin{array}{cc}B & 0 \\ 0 & \bar{U} A U^{*}\end{array}\right] Q$. Since B and $\bar{U} A U^{*}$ are polynomial con-EP, Q is nonsingular, M is polynomial con-EP. Since M is of rank r, M is polynomial con- EP_{r}. Thus we have proved the existence of the polynomial con- $E P_{r}$ matrix M . Now $\mathrm{C}=\mathrm{A}+\mathrm{B}$ is polynomial con-EP follows from Theorem 1. Since $\mathrm{N}(\mathrm{C}) \subseteq \mathrm{N}(\mathrm{A})=\mathrm{N}(\overline{\mathrm{U}} \mathrm{A})$ and $\mathrm{N}\left(\mathrm{C}^{*}\right) \subseteq \mathrm{N}\left(\mathrm{A}^{*}\right)=\mathrm{N}\left(\mathrm{AU}^{*}\right)^{*}$. By the Lemma in $[7], \mathrm{A}=\mathrm{AC}^{-} \mathrm{C}=\mathrm{CC}^{-} \mathrm{A}$ and $(\overline{\mathrm{U}} \mathrm{A}) \mathrm{C}^{-}\left(\mathrm{AU}^{*}\right)$ is invariant for all choice of C^{-}. The schur complement of C^{\dagger} in M is,

$$
\begin{aligned}
\mathrm{M} / \mathrm{C} & =\overline{\mathrm{U}} A U^{*}-\overline{\mathrm{U}} A \mathrm{C}^{-} \mathrm{AU}^{*} \\
& =\overline{\mathrm{U}} A \mathrm{U}^{*}-\overline{\mathrm{U}}(\mathrm{~A}+\mathrm{B}) \mathrm{C}^{-}\left(\mathrm{A} \mathrm{U}^{*}\right)+\overline{\mathrm{U}} \mathrm{BC}^{-} \mathrm{AU}^{*} \\
& =\overline{\mathrm{U}} A \mathrm{U}^{*}-\overline{\mathrm{U}} C^{-} \mathrm{AU}^{*}+\overline{\mathrm{U}} \mathrm{UC}^{-} \mathrm{AU}^{*} \\
& =\overline{\mathrm{U}} A \mathrm{U}^{*}-\overline{\mathrm{U}} A \mathrm{U}^{*}+\overline{\mathrm{U} B C A U^{*}} \\
& =\overline{\mathrm{U}} B C^{-} A \mathrm{U}^{*} \\
& =\overline{\mathrm{U}}(\mathrm{~A}: B) \mathrm{U}^{*}
\end{aligned}
$$

Since A and B are polynomial con-EP, by Theorem 4, A:B is polynomial con-EP. By Result 2.2 of [5], $\mathrm{M} / \mathrm{C}=\overline{\mathrm{U}}(\mathrm{A}: \mathrm{B}) \mathrm{U}^{*}=\mathrm{P}(\mathrm{A}: B) \mathrm{P}^{\mathrm{T}}$, where $\mathrm{P}=\overline{\mathrm{U}}$ is unitary, is also polynomial con-EP. Hence the Theorem.

Remark: 7 In a special case if A and B are polynomial con-EP matrices such that $A+B=I_{n}$ then $A B=A: B=B: A=B A$ is polynomial con-EP. However this fails if we relax the conditions on A and B. For instance, $A=\left[\begin{array}{cc}\lambda^{3} & 0 \\ 0 \lambda & 3\end{array}\right]$ is olynomial con- EP_{2} and $\mathrm{B}=\left[\begin{array}{cc}0 & 0 \\ \mathrm{i} \lambda & 1\end{array}\right]$ is not polynomial con-EP. Here $\mathrm{AB}=\mathrm{BA}$ is not polynomial con-EP, however $A+B=I_{2}$.
S. Krishnamoorthy* and G. Manikandan**/ On Sums Of Polynomial Conjugate Ep Matrices / IJMA- 4(12), Dec.-2013.

REFERENCE

1. F. Burns, D. Carlson, E. Haynsworth and Th. Markham, Genaralized invesrse formulas using the Schur complement, SIAM J. Appl. Math., 26(1974), P 254-59.
2. D. Carlson, E. Haynsworth and Th. Markham, generalization of the Schur complement by means of moore penrose inverse SIAM J. Appl. Math., 26(1974), 69-175.
3. G. Marsaglia and G.P.H. Styan, Equalities and Inequalities for ranks of matrices, Linear and Multilinear Alg., 2(1974), 269-92.
4. AR. Meenakshi, On sums of EP matrices, Houston Journal of Mathematics, 9, \# 1(1983), 63-69.
5. AR. Meenakshi and R. Indira, Conjugate EP_{r} factorization of a matrix, Appear in the Mathematics Student, 61(1992), P 1-9,
6. AR. Meenakshi and R. Indira, An conjugate EP matrices, (periodica math., Hung).
7. C.R. Rao and S.K. Mitra, Genaralized inverse of matrices and its applicationsss, Wiley and Sons, New York, (1971).

Source of support: Nil, Conflict of interest: None Declared

