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ABSTRACT 
In this paper, we have analyzed the effect of time periodic gravity modulation i.e. G-jitter on convective instability in 
anisotropic porous cavity. The cavity is heated from below and cooled from above. The amplitude of gravity 
modulation is considered to be very small. A weakly nonlinear stability analysis is done to find Nusselt number 
governing the heat transport. Analytically the non-autonomous Ginzburg- landau amplitude equation is obtained for 
the stationary mode of convection. The effects of various parameters like Vadasz number, Mechanical and Thermal 
anisotropic parameters, Amplitude of oscillation, Frequency of modulation and Aspect ratio of cavity on heat transport 
is studied. It is observed that the heat transport can also be controlled by suitably adjusting the external and internal 
parameters of the system. 
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NOMENCLATURE 
 

Latin Symbols 
  Greek symbols 

 
𝐴𝐴𝐴𝐴 the aspect ratio of the porous cavity, H/L            ρ  Density 

    Va Vadasz number     𝛼𝛼𝑇𝑇  coefficient of thermal expansion 
      H the height of cavity  𝜓𝜓 stream function 

K permeability of the porous domain            µ     dynamic viscosity 
L the length of porous layer  𝜈𝜈 kinematic viscosity, 𝜇𝜇/𝜌𝜌0 
Δ𝑇𝑇 temperature difference between the walls  𝜀𝜀 Porosity 
𝑝𝑝 Pressure  𝜂𝜂 thermal anisotropic parameter 

    Nu Nusselt number  𝜉𝜉 Mechanical anisotropic 
parameter 

 𝑅𝑅𝑎𝑎0  Critical Rayleigh number  𝛿𝛿1 amplitude of gravity modulation 
𝑔𝑔0 mean gravity  𝜔𝜔 frequency of modulation 
𝑔𝑔 gravitational acceleration, (0,0,−𝑔𝑔)  𝑘𝑘 thermal diffusivity 
𝑃𝑃𝐴𝐴 Prandtl number, 𝜈𝜈∗/𝜅𝜅∗                Other symbols 
𝑞𝑞 velocity of the fluid (𝑢𝑢, 𝑣𝑣,𝑤𝑤)  c   critical state 

 
    Ra 

 
Rayleigh number, 

   𝛼𝛼𝑇𝑇∗(𝛥𝛥𝑇𝑇)𝑔𝑔∗𝐻𝐻∗𝐾𝐾∗𝑀𝑀𝑓𝑓
𝜀𝜀𝜈𝜈∗𝜅𝜅∗

 
 0   basic state 

𝑡𝑡 Time                 , perturbed state 
𝑇𝑇 Temperature  *   non-dimensional value 
𝑀𝑀𝑓𝑓  a ratio between the heat capacity of the fluid 

and the effective heat capacity of the porous 
domain 
 

 st   Stationary 
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1. INTRODUCTION 
 
Study of thermal instability in fluid layer in presence of complex body forces has gained considerable interest in recent 
time. One of the complex forces is time dependent gravitational field which is useful in space laboratory, crystal growth 
and large scale convection in atmosphere. Mechanical vibrations are useful to improve heat transport rate. Applications 
of gravity modulation in science and technology are geophysics, oil reservoir process, petroleum industry and 
solidification of polymeric liquids. 
 
Gresho and Sani[16] was the first to study the effect of gravity modulation of a heated fluid layer. Gershuni et. al. [13] 
studied convective instability in presence of periodically varying parameter. Biringen and Peltier [7] studied the 
numerical simulation of 3D Bernard convection with gravity modulation and confirmed the results of Gresho and Sani. 
Clever et. al. [9-10] investigated a 3D as well as 2D oscillatory convection in a gravitationally modulated fluid layer for 
wider range of parameters. Yang [29] studied the stability of viscoelastic fluids in a modulated gravitational field. 
Vadasz [27] studied Coriolis Effect on gravity driven convection in a rotating porous layer heated from below. 
Vanishree[28] investigated combined effect of temperature and gravity modulation on the onset of convection in an 
anisotropic porous medium. Shu. et.al. [24] gave the comparison of experimental and numerical simulation for natural 
convection in a cavity under modulated thermal gradients and gravity. They concluded that modulation under gravity 
and temperature generates the same effects on convection. Aniss et.al. [1-2], Bhadauria [5] et. al. also studied the 
gravitational modulation under different regimes. They showed that the gravity modulation can be observed by 
vertically oscillating a horizontal fluid layer. It may have stabilizing or destabilizing effect. Boulal et. al.[8] studied the 
effect of quasi periodic gravitational modulation on the stability of  a heated fluid layer and found that threshold of 
convection corresponds precisely to quasi periodic solutions. Siddheshwar et. al. [25] investigated the heat transport by 
stationary magneto convection in a Newtonian liquid under temperature or gravity modulation using Ginz-burg model 
and concluded that it may alter the heat transport. Bhadauria et. al. [6] studied the heat transport in a porous medium 
under G-jitter and internal heating effect and found that convective system destabilizes with respect to internal 
Rayleigh number. They found that the heat transport can be controlled by properly adjusting various parameters.   
 
Anisotropy in porous media is generated due to asymmetric geometry of porous matrix. The phenomenon is observed 
in industry and nature. It is useful in study of extraction of metals from ores where a mushy layer is formed during 
solidification of alloys. The quantity and structure of resulting solid can be controlled by influencing the transport 
process. Process such as sedimentation, compaction, frost action and reorientation of the solid matrix are responsible 
for creation of anisotropic natural porous medium. Fiber materials and insulating materials are some examples of 
artificial anisotropic porous medium. Ephere [12] was the first to study the onset of convection in a horizontal porous 
layer with anisotropic thermal conductivity. Kvernvold et. al.[18] studied the non linear thermal convection in 
anisotropic porous media. Other researchers who studied thermal convection in anisotropic porous medium are Nilsen 
[23], Tyvand [26], Degan [11], Govinder [14-15], Malashetty et. al. [20-21].  Neild and Bejan [22] presented an 
excellent review for Convection in Porous Media. Bhadauria et. al. [4-3] studied Natural convection in a rotating 
anisotropic porous layer with internal heat generation and Double diffusive convection in a saturated anisotropic porous 
layer with internal heat source. 
 
In this paper, we have investigated the effect of time periodic gravity modulation i.e. G-jitter on convective instability 
in anisotropic porous cavity. The cavity is heated from below and cooled from above. The amplitude of gravity 
modulation is considered to be very small. A weakly non-linear stability analysis is done to find Nusselt number 
governing the heat transport. Analytically the Ginzburg- landau amplitude equation is obtained for the stationary mode 
of convection. The effects of various parameters like Vadasz number, Mechanical and Thermal anisotropic parameters, 
Amplitude of oscillation, Frequency of modulation and Aspect ratio of cavity on heat transport is studied. It is observed 
that the heat transport can also be controlled by suitably adjusting the external and internal parameters of the system.   
 
2. PROBLEM FORMULATIONS 
 
We consider an anisotropic porous cavity of depth H and width L with stress free boundaries which is heated from 
below and cooled from above. The X-axis is taken along the lower boundary and the Z-axis is vertically upward. The 
lower surface is held at temperature To+∆T while the upper surface is at To. A uniform positive adverse temperature 
gradient ∆T is maintained between the lower and upper surfaces. The Brinkman- Darcy model which includes the time 
derivative term is employed in the momentum equation. The continuity and momentum equations governing the motion 
of an incompressible fluid are given by 
 
∇. 𝑞𝑞 = 0                                                                                                                                                                                                    (1) 
 
1
𝜀𝜀
𝜕𝜕𝑞𝑞
𝜕𝜕𝑡𝑡

= −
1
𝜌𝜌𝑜𝑜
∇𝑝𝑝 +

𝜌𝜌
𝜌𝜌𝑜𝑜
𝑔𝑔 −

𝜈𝜈
𝐾𝐾
𝑞𝑞                                                                                                                                                             (2) 
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𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

+ (𝑞𝑞.∇)𝑇𝑇 = ∇. (𝑘𝑘∇.𝑇𝑇)                                                                                                                                                                   (3) 
 
𝜌𝜌 = 𝜌𝜌0[1 − 𝛼𝛼𝑇𝑇(𝑇𝑇 − 𝑇𝑇0)]                                                                                                                                                                      (4) 
 
where q is the velocity of fluid in porous medium,  p is the fluid pressure, ε is the porosity, K is the permeability 
tensor  𝐾𝐾𝑥𝑥(𝑖𝑖̂𝑖𝑖̂ + 𝑗𝑗̂𝑗𝑗̂)+ 𝐾𝐾𝑧𝑧�𝑘𝑘�𝑘𝑘��, κ is the thermal diffusivity tensor  𝑘𝑘𝑇𝑇𝑥𝑥(𝑖𝑖̂𝑖𝑖 � + 𝑗𝑗̂𝑗𝑗̂) +𝑘𝑘𝑇𝑇𝑧𝑧�𝑘𝑘�𝑘𝑘��, T is the temperature,  𝜈𝜈 is the 
kinematic viscosity, 𝑔𝑔 is the modulated gravitational acceleration and is given by 
 
𝑔𝑔 = 𝑔𝑔0[1 + 𝜀𝜀2𝛿𝛿1 cos(𝛺𝛺𝑡𝑡)]                                                                                                                                                (5) 
 
A Cartesian system (x, y, z) is used with Z- axis vertically upward in the gravitational field. 
 
Assuming the basic state to be quiescent, the quantities at the basic state are given by 
𝑞𝑞𝑏𝑏 = (0,0,0),    𝑝𝑝 = 𝑝𝑝𝑏𝑏(𝑧𝑧) 
 
𝑇𝑇 = 𝑇𝑇𝑏𝑏(𝑧𝑧)    𝑎𝑎𝑎𝑎𝑎𝑎   𝜌𝜌 = 𝜌𝜌𝑏𝑏(𝑧𝑧)                                                                                                                                                              (6) 
 
satisfying the conditions  𝑎𝑎𝑝𝑝𝑏𝑏

𝑎𝑎𝑧𝑧
= −𝜌𝜌𝑏𝑏𝑔𝑔,    𝑎𝑎

2𝑇𝑇𝑏𝑏
𝑎𝑎𝑧𝑧2 = 0                                                                                                                        (7)  

 
where b refers to the basic state.  
 
The conduction state solutions are given by   
 
𝑇𝑇𝑏𝑏 = 1 − 𝑧𝑧                                                                                                                                                                                               (8) 
 
Now superimpose the small perturbations at the basic state as 
 
𝑞𝑞 = 𝑞𝑞𝑏𝑏 + 𝑞𝑞′, 𝑇𝑇 = 𝑇𝑇𝑏𝑏 + 𝑇𝑇 ′, 𝜌𝜌 = 𝑝𝑝𝑏𝑏 + 𝑝𝑝′, 𝑝𝑝 = 𝜌𝜌𝑏𝑏 + 𝜌𝜌′                                                                                            (9) 
 
where primes denote the quantities at the perturbed state. Putting Eq.9 in Eqs.1−4 and using solution of basic state 
Eq.6, the perturbed equations are obtained as 
∇. 𝑞𝑞′ = 0                                                                                                                                                                                                (10) 
 
1
𝜀𝜀
𝜕𝜕𝑞𝑞′

𝜕𝜕𝑡𝑡
= −

1
𝜌𝜌0
∇𝑝𝑝′ + 𝑔𝑔𝛼𝛼𝑇𝑇𝑇𝑇′ −

𝑣𝑣
𝐾𝐾
𝑞𝑞′                                                                                                                                                   (11) 

 
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡
+ (𝑞𝑞′ .∇)𝑇𝑇′ +

𝜕𝜕𝑇𝑇𝑏𝑏
𝜕𝜕𝑧𝑧

= 𝑘𝑘𝑇𝑇𝑥𝑥∇2𝑇𝑇′ + 𝑘𝑘𝑇𝑇𝑧𝑧
𝜕𝜕2𝑇𝑇′

𝜕𝜕𝑧𝑧2                                                                                                                             (12) 
 
Now performing the non-dimensionalisation in Eqs.11 − 12 using the transformations 

𝑞𝑞′ =
𝑘𝑘𝑇𝑇𝑧𝑧
𝐻𝐻

𝑞𝑞∗, 𝑝𝑝′ =
𝜇𝜇𝑘𝑘𝑇𝑇𝑧𝑧
𝐾𝐾𝑧𝑧

𝑝𝑝∗, 𝑇𝑇′ = (∆𝑇𝑇)𝑇𝑇∗, (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐻𝐻(𝑥𝑥∗,𝑦𝑦∗, 𝑧𝑧∗), 𝑡𝑡 =
𝐻𝐻2

𝐾𝐾𝑇𝑇𝑧𝑧
𝑡𝑡∗, 𝛺𝛺 =

𝑘𝑘𝑇𝑇𝑧𝑧
𝐻𝐻2 𝛺𝛺

∗ 

 
Eliminating pressure term by taking curl of Eq. (11) and introducing the stream function defined as       
 (𝑢𝑢, 𝑣𝑣,𝑤𝑤) = (𝜕𝜕𝛹𝛹

𝜕𝜕𝑧𝑧
, 0,−𝜕𝜕𝛹𝛹

𝜕𝜕𝑥𝑥
),  we get 

 

�
1
𝑉𝑉𝑎𝑎

𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝜕𝜕2

𝜕𝜕𝑥𝑥2 +
𝜕𝜕2

𝜕𝜕𝑧𝑧2� + �
𝜕𝜕2

𝜕𝜕𝑥𝑥2 +
1
𝜉𝜉
𝜕𝜕2

𝜕𝜕𝑧𝑧2��𝛹𝛹 + 𝑅𝑅𝑎𝑎(1 + 𝜀𝜀2𝛿𝛿1 cos𝛺𝛺𝑡𝑡)
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

= 0                                                                        (13) 

 

�
𝜕𝜕
𝜕𝜕𝑡𝑡
− �𝜂𝜂

𝜕𝜕2

𝜕𝜕𝑥𝑥2 +
𝜕𝜕2

𝜕𝜕𝑧𝑧2�� 𝑇𝑇 = −
𝜕𝜕𝛹𝛹
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝛹𝛹,𝑇𝑇)
𝜕𝜕(𝑥𝑥, 𝑧𝑧)                                                                                                                                (14) 

 
where Va = εPr/Da is Vadsaz number, 𝑅𝑅𝑎𝑎 =   𝛼𝛼𝑇𝑇(∆𝑇𝑇)𝑔𝑔𝐻𝐻𝐾𝐾𝑍𝑍

𝜀𝜀𝜈𝜈 𝜅𝜅𝑇𝑇𝑥𝑥
 is the Rayleigh number and Da = Kz/L2 is the Darcy number. 

 Assuming boundaries are stress free and isothermal, therefore the boundary conditions are given by 

𝛹𝛹 =
𝜕𝜕2𝛹𝛹
𝜕𝜕𝑧𝑧2 = 0  𝑎𝑎𝑡𝑡  𝑧𝑧 = 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝑧𝑧 = 1                                                                                                                                             (15) 

 
𝑇𝑇 = 1  𝑎𝑎𝑡𝑡  𝑧𝑧 = 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝑇𝑇 = 0  𝑎𝑎𝑡𝑡  𝑧𝑧 = 1                                                                                                                                        (16) 



Amit Mishra1* & Mukesh kumar2/ A weakly non linear stability analysis of heat transport in anisotropic porous cavity under G-
jitter / IJMA- 4(11), Nov.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                       333   

 
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

= 0  𝑎𝑎𝑡𝑡  𝑥𝑥 = 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥 = 𝐴𝐴𝐴𝐴                                                                                                                                                      (17) 
 
Now rescaling time 𝜏𝜏 = 𝜀𝜀2𝑡𝑡 to keep the time variation slow. Let 𝛺𝛺 = 𝜔𝜔

𝜀𝜀2. The Eqs. (13) and (14) can be written as  

�
𝜀𝜀2

𝑉𝑉𝑎𝑎
𝜕𝜕
𝜕𝜕𝜏𝜏
∇2 + ∇𝜉𝜉 2�𝛹𝛹 + 𝑅𝑅𝑎𝑎(1 + 𝜀𝜀2𝛿𝛿1 cos𝜔𝜔𝜏𝜏)

𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

= 0                                                                                                                (18) 

 

�𝜀𝜀2 𝜕𝜕
𝜕𝜕𝜏𝜏

− ∇𝜂𝜂2� 𝑇𝑇 = −
𝜕𝜕𝛹𝛹
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝛹𝛹,𝑇𝑇)
𝜕𝜕(𝑥𝑥, 𝑧𝑧)                                                                                                                                                (19) 

 
where ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2,     ∇𝜉𝜉 2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 1
𝜉𝜉
𝜕𝜕2

𝜕𝜕𝑧𝑧2,     ∇𝜂𝜂2= 𝜂𝜂 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2 ;  
 
3. AMPLITUDE EQUATION (GINZBURG- LANDAU EQUATION) AND HEAT TRANSPORT 
 
Introduce following asymptotic equations in the Eqs. (18) and (19) 

�
𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑎𝑎0 + 𝜀𝜀2𝑅𝑅𝑎𝑎2 + ⋯
𝛹𝛹 = 𝜀𝜀𝛹𝛹1 + 𝜀𝜀2𝛹𝛹2 + ⋯
𝑇𝑇 = 𝜀𝜀𝑇𝑇1 + 𝜀𝜀2𝑇𝑇2 + ⋯   

�                                                                                                                                               (20) 

 
where 𝑅𝑅𝑎𝑎0 is the critical Rayleigh number at which convection sets in without modulation. Putting Eq. (20) in Eqs. (18) 
and (19). At lowest order ε equations are 

�
∇𝜉𝜉2 𝑅𝑅𝑎𝑎0

𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑥𝑥

−∇𝜂𝜂2
�   �  𝛹𝛹1

𝑇𝑇1
 �  = �00�                                                                                                                                           (21) 

 
This is corresponding to linear stability equations for stationary anisotropic porous convection and solution of the 
above equations can be written as 

�
𝛹𝛹1(𝑥𝑥, 𝑧𝑧, 𝜏𝜏) = 𝐴𝐴(𝜏𝜏) sin �𝜋𝜋𝑥𝑥

𝐴𝐴𝐴𝐴
� 𝑠𝑠𝑖𝑖𝑎𝑎(𝜋𝜋𝑧𝑧)

𝑇𝑇1(𝑥𝑥, 𝑧𝑧, 𝜏𝜏) = − 𝐴𝐴𝐴𝐴
𝜋𝜋(𝜂𝜂+𝐴𝐴𝐴𝐴2)

𝐴𝐴(𝜏𝜏) cos �𝜋𝜋𝑥𝑥
𝐴𝐴𝐴𝐴
� sin(𝜋𝜋𝑧𝑧)

�                                                                                                           (22) 

 
where critical Rayleigh number for anisotropic porous convection in the absence of gravity modulation is given by 
 

𝑅𝑅𝑎𝑎0 =
𝜋𝜋2(𝜉𝜉 + 𝐴𝐴𝐴𝐴2)(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)

𝜉𝜉𝐴𝐴𝐴𝐴2                                                                                                                                                         (23) 

 
At the second order we have, 

�
∇𝜉𝜉2 𝑅𝑅𝑎𝑎0

𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑥𝑥

−∇𝜂𝜂2
�  �𝛹𝛹2

𝑇𝑇2
� = �𝑅𝑅21

𝑅𝑅22
�                                                                                                                                                            (24) 

 

𝑅𝑅21 =
1
𝑉𝑉𝑎𝑎

 (𝜕𝜕𝛹𝛹1 ,∇2𝛹𝛹1)
𝜕𝜕(𝑥𝑥, 𝑧𝑧)

= 0                                                                                                                                                             (25) 

 

𝑅𝑅22 =  
𝜕𝜕(𝛹𝛹1,𝑇𝑇1)
𝜕𝜕(𝑥𝑥, 𝑧𝑧)  =

−𝜋𝜋
2(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)

[𝐴𝐴(𝜏𝜏)]2  sin(2𝜋𝜋𝑧𝑧)                                                                                                                    (26) 

 
We can obtain second order solution as  

�
𝛹𝛹2 = 0

𝑇𝑇2 = −
[𝐴𝐴(𝜏𝜏)]2

8𝜋𝜋(𝜂𝜂 + 𝐴𝐴𝐴𝐴2) sin(2𝜋𝜋𝑧𝑧)�                                                                                                                                                      (27) 

 
The horizontally-averaged Nusselt number 𝑁𝑁u(𝜏𝜏) for the anisotropic porous convection is given by  

𝑁𝑁u(𝜏𝜏) =  
�2𝐴𝐴𝐴𝐴 ∫ (1 − 𝑧𝑧 + 𝑇𝑇2)𝑧𝑧𝑎𝑎𝑥𝑥

𝐴𝐴𝐴𝐴
𝑥𝑥=0 �

𝑧𝑧=0

�2𝐴𝐴𝐴𝐴 ∫ (1 − 𝑧𝑧)𝑧𝑧𝑎𝑎𝑥𝑥
𝐴𝐴𝐴𝐴
𝑥𝑥=0 �

𝑧𝑧=0

                                                                                                                                     (28) 
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Now substituting Eq. (27) in Eq. (28) and solving the integration, we get   Nu(τ) = 1 + [A(τ)]2

4(η+Ar2) 
 

 
At the third order solution, we have   

�
∇𝜉𝜉2 𝑅𝑅𝑎𝑎0

𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑥𝑥

−∇𝜂𝜂2
�  �𝛹𝛹3

𝑇𝑇3
� = �𝑅𝑅31

𝑅𝑅32
�                                                                                                                                                           (30) 

 

𝑅𝑅31 = −(𝑅𝑅𝑎𝑎2 + 𝑅𝑅𝑎𝑎0𝛿𝛿1 𝑐𝑐𝑜𝑜𝑠𝑠(𝜔𝜔𝜏𝜏)) 
𝜕𝜕𝑇𝑇1

𝜕𝜕𝑥𝑥
 −

1
𝑉𝑉𝑎𝑎

 𝜕𝜕(𝛻𝛻2 𝛹𝛹1 )
𝜕𝜕𝜏𝜏

                                                                                                          (31) 
 

𝑅𝑅32 =
𝜕𝜕𝛹𝛹1

𝜕𝜕𝑥𝑥
𝜕𝜕𝑇𝑇2

𝜕𝜕𝑧𝑧
−
𝜕𝜕𝑇𝑇1

𝜕𝜕𝜏𝜏
                                                                                                                                                                        (32) 

 
Substituting 𝛹𝛹1 ,𝑇𝑇1,𝑇𝑇2 from Eqs. (22) and (27) in Eqs.(31)-(32), we get 
 

𝑅𝑅31 = �
−(𝑅𝑅𝑎𝑎2 + 𝑅𝑅𝑎𝑎0 𝛿𝛿1cos(𝜔𝜔𝜏𝜏))

𝜂𝜂 + 𝐴𝐴𝐴𝐴2  𝐴𝐴(𝜏𝜏) +
𝜋𝜋2(𝐴𝐴𝐴𝐴2 + 1)
𝑉𝑉𝑎𝑎 𝐴𝐴𝐴𝐴2

𝑎𝑎𝐴𝐴
𝑎𝑎𝜏𝜏
� sin �

𝜋𝜋𝑥𝑥
𝐴𝐴𝐴𝐴
� sin(𝜋𝜋𝑧𝑧)                                                                  (33) 

 

𝑅𝑅32 = �
𝐴𝐴𝐴𝐴

𝜋𝜋(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)
𝑎𝑎𝐴𝐴
𝑎𝑎𝜏𝜏

−
𝜋𝜋

4𝐴𝐴𝐴𝐴(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)𝐴𝐴
3(𝜏𝜏) cos(2𝜋𝜋𝑧𝑧)� cos �

𝜋𝜋𝑥𝑥
𝐴𝐴𝐴𝐴
� sin(𝜋𝜋𝑧𝑧)                                                                      (34) 

 
Adjoin of Eq. (21) is obtained. The solutions of adjoin so obtained are as    
 

�
𝛹𝛹�1(𝑥𝑥, 𝑧𝑧, 𝜏𝜏) = −𝐴𝐴(𝜏𝜏) sin �𝜋𝜋𝑥𝑥

𝐴𝐴𝐴𝐴
� sin(𝜋𝜋𝑧𝑧)

 𝑇𝑇�1(𝑥𝑥, 𝑧𝑧, 𝜏𝜏) = − 𝐴𝐴𝐴𝐴
𝜋𝜋(𝜂𝜂+𝐴𝐴𝐴𝐴2)

𝐴𝐴(𝜏𝜏) cos �𝜋𝜋𝑥𝑥
𝐴𝐴𝐴𝐴
� sin(𝜋𝜋𝑧𝑧)

�                                                                                                          (35) 

 
where 𝛹𝛹�1,  𝑇𝑇�1 denotes solutions of adjoins. 
 
The solvability condition for the third order solution is given as 
 
∫ ∫ [Ψ�1

𝐴𝐴𝐴𝐴
𝑥𝑥=0

1
𝑧𝑧=0   𝑅𝑅31 +  𝑅𝑅𝑎𝑎0 𝑇𝑇�1𝑅𝑅32]𝑎𝑎𝑥𝑥𝑎𝑎𝑧𝑧 = 0                                                                                                                    (36) 

 
Now substituting Eqs. (33)- (35) into the Eq.(36), we get the autonomous Ginzburg- Landau equation for stationary 
instability with a time periodic coefficient in the form 
 

�
𝜋𝜋2(𝐴𝐴𝐴𝐴2 + 1)
𝑉𝑉𝑎𝑎𝐴𝐴𝐴𝐴2 + 𝑅𝑅𝑎𝑎0

𝐴𝐴𝐴𝐴2

𝜋𝜋2(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)2�
𝑎𝑎𝐴𝐴(𝜏𝜏)
𝑎𝑎𝜏𝜏

− 𝑓𝑓(𝜏𝜏)𝐴𝐴(𝜏𝜏) +
𝑅𝑅𝑎𝑎0

8(𝜂𝜂 + 𝐴𝐴𝐴𝐴2)2 𝐴𝐴
3(𝜏𝜏) = 0                                                         (37) 

where 
𝑓𝑓(𝜏𝜏) = 𝑅𝑅𝑎𝑎2+𝑅𝑅𝑎𝑎0𝛿𝛿1 cos (𝜔𝜔𝜏𝜏 )

𝜂𝜂+𝐴𝐴𝐴𝐴2                                                                                                                                                                    (38) 
 
The solution of Eq.(37) is obtained using fourth order Runge-Kutta method numerically subject to the initial condition 
𝐴𝐴(0) = 𝑎𝑎0,  where 𝑎𝑎0 is a chosen initial amplitude of convection. We have assumed that 𝑅𝑅𝑎𝑎2 = 𝑅𝑅𝑎𝑎0 to keep the 
parameters to be minimum. 
 
4. RESULT AND DISCUSSIONS 
 
In this paper, we have studied the effect of gravity modulation on thermal instability in anisotropic porous cavity. A 
weakly non linear instability analysis is done to study the heat transfer under different regimes. The effect of different 
parameters Vadasz number (Va), thermal anisotropic parameter (𝜂𝜂), mechanical anisotropic parameter (𝜉𝜉), amplitude of 
gravity modulation (𝛿𝛿1), frequency of modulation (𝜔𝜔) and Aspect ratio (Ar) on heat transfer with respect to rescaled 
time is done. The effect of gravity modulation on heat transport is shown in figures (1) to (6) by varying one by one 
each parameter. The values of different intrinsic and extrinsic parameters of the system are taken  Va = 1, 𝜂𝜂 = 0.5,
  𝜉𝜉=0.5,  𝛿𝛿1=0.1,  𝜔𝜔=2,  Ar=1  from Bhadauria et.al. [2] so that it has physical significance. The graph of Nusselt 
number (Nu) with respect to rescaled time  (𝜏𝜏) is drawn. The figures show that the gravity modulation destabilizes the 
onset of convection i.e. heat transport is more in case of absence of gravity modulation. The results obtained are in line 
with Yang [29], Malashetty et. al. [20], [21] and Bhadauria et.al. [2]. 
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1. Effect of Vadasz number (Va) is to destabilize the system as it increase with increase in heat transfer. From fig.1, 

we observe that as the Vadasz number increases from 0.5 to 1.5, the rate of heat transport increase. So, Vadasz 
number and heat transfer are proportional for the smaller values of time. After some time the heat transfer becomes 
constant independent of Vadasz number (Va).The result coincides with Vadasz [27] and Bhadauria et.al. [2]. 

2. Increase in the Thermal anisotropic parameter (𝜂𝜂) suppresses the heat transport. Fluid flow through porous cavity 
decreases in vertical direction in comparison to the horizontal direction. This delays the convection and thus 
decreases the heat transport. From fig.2, we observe that as the anisotropic parameter (𝜂𝜂) increases from 0.5 to 1.5, 
the rate of heat transfer decreases as the time passes. 

3. Increase in Mechanical anisotropic parameter (𝜉𝜉) is in line with heat transfer which is compatible with result of 
Ephere [12] and Bhadauria et. al. [2]. From fig.3, we observe that when mechanical anisotropic parameter (𝜉𝜉) 
increases from 0.5 to 1.5, at small time the effect of mechanical anisotropic parameter (𝜉𝜉) is similar to that of 
thermal anisotropic parameter ( 𝜂𝜂 ). When time passes the heat transfer becomes constant independent of 
mechanical anisotropic parameter. We find that an increment in mechanical anisotropic parameter decreases heat 
transfer that suppress the convection and thus decreases the heat transfer. 

4. From fig.4, we observe that when amplitude of gravity modulation (𝛿𝛿1) increases from 0.1 to 0.3, the heat transfer 
increases. It is observed that effect of increase in amplitude of gravity modulation is to increase the heat transfer 
and thus advances the convection. 

5. From fig.5, it is observed that increase in the frequency of modulation (𝜔𝜔) decreases the magnitude of Nusselt 
number and shortens the wavelength of oscillation. As the frequency of modulation (𝜔𝜔) increases from 1.5 to 15, 
the magnitude of Nusselt number decreases and the effect of modulation in heat transfer diminishes. On further 
increasing the value of frequency of modulation, the effect of gravity modulation in thermal instability suppresses 
convection. The result is in line with Yang [29]. 

6. From fig.6, it is found that as the Aspect ratio (Ar) of the anisotropic porous cavity increases from 0.5 to 15, the 
heat transfer decreases in first phase. But after sometime the effect on heat transfer diminishes with increase in 
Aspect ratio and becomes steady. 

 
5. CONCLUSIONS  
 
In this paper, we have investigated the effect of gravity modulation as Bernard- Darcy convection in anisotropic porous 
cavity and performed a weak non linear stability analysis using Ginzburg- landau amplitude equation. The conclusion is 
that by properly adjusting the different parameters in model we can control the heat transfer. They are as follows: 
 
(1) Effect of gravity modulation is oscillatory in nature on heat transport. 
(2) Effect of Vadasz number (Va) is to increase the heat transport in beginning of convection but reaches to steady 

state afterwards. 
(3) Heat transport decreases with increase in mechanical anisotropic parameter (𝜉𝜉) which is similar to that of thermal 

anisotropic parameter (𝜂𝜂) in the beginning of convection but differs afterwards. 
(4) Effect of an increment in the amplitude of modulation ( 𝛿𝛿1) is to increase the heat transport. 
(5) Increase in frequency of modulation (𝜔𝜔) decreases the heat transport. 
(6) Heat transport increases with increase in Aspect ratio (Ar) in starting of convection but becomes steady after some 

time. 
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  Figure 1: Effect of Vadasz number                                              Figure 2: Effect of Thermal anisotropic parameter 

 

 
 
 
 
 
 
 
 
 
 
 
 
  Figure: 3: Effect of Mechanical anisotropic parameter             Figure: 4: Effect of Amplitude of modulation 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure: 5: Effect of Frequency of modulation                               Figure: 6: Effect of Aspect ratio 
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