wgα-closed and wαg-closed in Ideal Topological Spaces

K. Indirani¹, V. Rajendran² and P. Sathishmohan^{3*}

¹Department of Mathematics, Nirmala college for woman, Coimbatore, (T.N.), India.

^{2,3}Department of Mathematics, KSG college, Coimbatore, (T.N.), India.

(Received on: 02-10-13; Revised & Accepted on: 16-11-13)

ABSTRACT

In this paper some properties of wg \alpha-I-closed sets and w\alphag-I-closed sets are studied.

Keywords: gα-I-closed, αg-I-closed, wgα-I-closed, wαg-I-closed.

1. INTRODUCTION AND PRELIMINARIES

An ideal I on a topological space (X,τ) is a non-empty collection of subsets of X which satisfies the following properties. (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset $A \subseteq X$, $A^*(I,\tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau (X,x)\}$ is called the local function of A with respect to I and τ [7]. We simply write A^* in case there is no chance for confusion. A kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$ called the *- topology, finer than τ is defined by $cl^*(A) = A \cup A^*$ [11]. If $A \subseteq X$, cl(A) and int(A) will respectively, denote the closure and interior of A in (X,τ) .

Definition: 1.1 A subset A of a topological space (X, τ) is called

- 1. α -closed [10], if $cl(int(cl(A))) \subseteq A$
- 2. αg -closed [5], if α cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ)
- 3. ga-closed [5], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ)
- 4. wg α -closed [6], if α cl (int(A)) \subseteq U whenever A \subseteq U and U is α -open in(X, τ).
- 5. wag-closed [6], if α cl (int(A)) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 6. g-closed [8], if cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 7. gs-closed [1], if scl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 8. sg-closed [3], if scl (int(A)) \subseteq U whenever A \subseteq U and U is semi open in (X, τ)
- 9. β -closed [10], if $int(cl(int(A))) \subseteq A$

The complements of the above mentioned closed sets are called their respective open sets.

Definition: 1.3 A subset A of an ideal topological spaces (X,τ,I) is said to be

- 1. α I closed [4], if cl (int*(cl(A))) \subseteq A
- 2. $g\alpha$ I closed [9], if α I cl(A) \subseteq U whenever A \subseteq U and U is α open in X.
- 3. αg I closed [9], if α I cl(A) \subseteq U whenever A \subseteq U and U is open in X.

The complements of the above mentioned closed sets are called their respective open sets.

2. wgaI-closed and wagI-closed sets

Definition: 2.1 A subset A of an Ideal topological space (X, τ, I) is said to be

- 1) wg αI -closed set, if $\alpha Icl(Int(A)) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.
- 2) wagI-closed set, if α Icl(Int(A)) \subseteq U whenever A \subseteq U and U is open in X.

Corresponding author: P. Sathishmohan^{3*}
^{2,3}Department of Mathematics, KSG college, Coimbatore, (T.N.), India.

K. Indirani¹, V. Rajendran² and P. Sathishmohan³*/ wgα-closed and wαg-closed in Ideal Topological Spaces/ IJMA- 4(11), Nov.-2013.

Proposition: 2.2 Every α -I-closed set is wg α I-closed set but not conversely.

Proof: Assume that a subset A of (X, τ, I) is α -I-closed set. Let U be an α -open set containing A. Then $\alpha Icl(A) \subseteq U$ as A is α -I-closed. So $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$. This implies that $\alpha Icl(Int(A)) \subseteq U$. Hence A is wg αI -closed.

Example: 2.3 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}\}$ and $I = \{\phi, \{c\}\}$. Then $A = \{c\}$ is a wg αI -closed but not αI -closed.

Proposition: 2.4 Every gα-closed set is wgαI-closed set but not conversely.

Proof: Let A be a subset of (X, τ) which is $g\alpha$ -closed and Let U be an α -open set containing A. Since A is $g\alpha$ -closed , α cl $(A) \subseteq U$, α Icl $(A) \subseteq \alpha$ cl $(A) \subseteq U$. This implies that α Icl $(A) \subseteq \alpha$ Icl $(A) \subseteq U$. Hence A is wgal-closed.

Example: 2.5 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is a wg αI -closed but not g α -closed.

Proposition: 2.6 Every $g\alpha$ -I-closed set is $wg\alpha$ I-closed set but not conversely.

Proof: Assume that a subset A of (X, τ, I) is $g\alpha$ -I-closed set. Let U be an α -open set containing A. Therefore $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$, therefore A is $wg\alpha$ -I-closed.

Example: 2.7 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is a Wg α I-closed but not $g\alpha$ -I-closed.

Remark: 2.8 suppose $I = \{\phi\}$, then the notion of $wg\alpha I$ -closed and $w\alpha gI$ -closed sets coinside with $wg\alpha$ -closed and $w\alpha g$ -closed set.

Remark: 2.9 The following examples show that the concepts of g-closed and wgαI-closed sets are independent.

Example: 2.10 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a,b\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is a wg α I-closed but not g-closed set.

Example: 2.11 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}\}$ and $I = \{\phi, \{c\}\}$. Then $A = \{a, b\}$ is a g-closed but not wg α -I-closed.

Remark: 2.12 The following examples show that the concepts of sg-closed and $wg\alpha I$ -closed sets are independent.

Example: 2.13 Let $X = \{a, b, c\}, \tau = \{\phi, \{a,b\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is a wgal-closed but not sg-closed.

Example: 2.14 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is a sg-closed but not $wg\alpha$ -I-closed.

Remark: 2.15 The following examples show that the concept of gs-closed and wgαI-closed sets is independent.

Example: 2.16 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{c\}$ is a gs-closed but not wg α -I-closed.

Example: 2.17 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{a\}$ is a wgaI-closed but not gs-closed.

Proposition: 2.18 Every α -I-closed set is wagI-closed set but not conversely.

Proof: Assume that a subset A of (X, τ, I) is α -I-closed set. Let U be an α -open set containing A. Then $\alpha Icl(A) \subseteq U$, as A is α -I-closed. So $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$. This implies that $\alpha Icl(Int(A)) \subseteq U$. Hence A is wagI-closed.

Example: 2.19 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, b\}$ is a wag-I-closed but not α -I-closed.

Proposition: 2.20 Every ag-closed set is wagI-closed set but not conversely.

Proof: Assume that a subset A of (X,τ) is αg -closed set. Let U be an open set containing A. Then $\alpha cl(A) \subseteq U$, as A is αg -closed. Since every α -I-closed set is $\alpha closed$, $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$. Hence A is $\alpha closed$.

K. Indirani¹, V. Rajendran² and P. Sathishmohan³*/ wgα-closed and wαg-closed in Ideal Topological Spaces/ IJMA- 4(11), Nov.-2013.

Example: 2.21 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{a\}$ is a wag-I-closed but not ag-closed.

Proposition: 2.22 Every agI-closed set is wagI-closed set but not conversely.

Proof: Assume that a subset A of (X,τ, I) is αgI -closed set. Let U be an open set containing A. Then $\alpha Icl(A) \subseteq U$ and $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$. Hence A is wagI-closed.

Example: 2.23 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{a, c\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{c\}$ is a wag-I-closed but not α g-I-closed.

Remark: 2.24 The following examples show that the concept of β -closed and wagI-closed sets are independent.

Example: 2.25 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}\}$ and $I = \{\phi, \{b\}\}$. Then $A = \{a, b\}$ is a wag-I-closed but not β -closed.

Example: 2.26 Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}\}$ and $I = \{\phi, \{c\}\}$. Then $A = \{a\}$ is β -closed but not wag-I-closed.

Remark: 2.27 The following examples show that the concepts of sg-closed and wαgI-closed sets are independent.

Example: 2.28 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}\}$ and $I = \{\phi, \{a\}\}.$ Then $A = \{a, b\}$ is a wag-I-closed but not sg-closed.

Example: 2.29 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}. X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b\}$ is sg-closed but not wag-I-closed.

Remark: 2.30 The following examples show that the concepts of gs-closed and w α gI-closed sets are independent.

Example: 2.31 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}\}$ and $I = \{\phi, \{c\}\}$. Then $A = \{c\}$ is gs-closed but not wag-I-closed.

Example: 2.32 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}$. $X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{a\}$ is wag-I-closed but not gs-closed.

Proposition: 2.33 Every g-closed set is wagI-closed set but not conversely.

Proof: Assume that a subset A of (X,τ) is g-closed set. Let U be an open set containing A. Then $cl(A) \subseteq U$, as A is g-closed. Then $\alpha cl(A) \subseteq cl(A) \subseteq U$. Since every α -I-closed set is α -closed. $\alpha Icl(A) \subseteq \alpha cl(A) \subseteq cl(A) \subseteq U$. So $\alpha Icl(Int(A)) \subseteq \alpha Icl(A) \subseteq U$. Hence A is wagI-closed.

Example: 2.34 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{a, c\}, X\}\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{c\}$ is wag-I-closed but not in g-closed.

Proposition: 2.35 Every gal-closed set is wagl-closed set but not conversely.

Proof: Assume that a subset A of (X,τ,I) is $g\alpha I$ -closed set. Let U be α -open set containing A. From the above theorems, $\alpha Icl(Int(A)) \subseteq U$. Since every open set is α -open. Hence A is w αI -closed.

Example: 2.36 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}\}$. Then $A = \{a, c\}$ is wag-I-closed but not in $g\alpha$ I-closed.

Proposition: 2.37 Every wgαI-closed set is wαgI-closed set but not conversely.

Proof. Let A be a $wg\alpha I$ -closed set in (X,τ,I) and Let U be an open set containing A. Since A is $w\alpha g I$ -closed. So $\alpha Icl(Int(A)) \subseteq U$. Hence A is $w\alpha g I$ -closed in (X,τ,I) .

Example: 2.38 Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}\}$ and $I = \{\phi, \{c\}\}$. Then $A = \{a, b\}$ is wag-I-closed but not in wgaI-closed.

K. Indirani¹, V. Rajendran² and P. Sathishmohan³*/ $wg\alpha$ -closed and $w\alpha g$ -closed in Ideal Topological Spaces/IJMA- 4(11), Nov.-2013.

REFERENCES

- 1. Arya.S.P and Nour.T.M., Characterizations of S-Normal Spaces, Indian.J.Pure, Appl.Math., 21(1990), 717-719.
- 2. Abd El-Monsef.M.E,el-Deep.S.N and Mahmoud.R.A., β -open sets and β -continuous mappings, Bull. Fac. sci, Asscut.Univ.,12(1983), 77-90.
- 3. Bhattacharya.P and Lahivi.B.K., Semi-generalised closed setsin topology, Indian.J.Math., 29(1987), 375-382.
- 4. E.Hatir and T.Noiri, On Decomposition of continuity via idealization, Acta Math.Hunger., 96(2002), 341-349.
- 5. H.Maki, R.devi and K.Balachandran, Associate topologies if generalized α -closed sets and α -generalized closedsets, Mem.Fac,Kochi,Univ,Ser., (1994), 51-63.
- 6. K.Ramasamy, A.Viswanathan and A.Parvathi., On Weakly $g\alpha$ -closed sets and weakly αg -closed sets intopological spaces, AJM(to appear).
- 7. Kuratowski, Topology, Vol. I, Academic press, Newyork (1966).
- 8. Levine.N., Generalized Closedsets in topology. Rend. Circ.Mat. Palermo. 19(1970), 89-96.
- 9. M.Rajamani and V.Rajendran, A Study on gα-closed sets in ideal topological spaces, Mphil., Thesis(2009).
- 10. Njastad.O. On some classes of nearly open sets, Pacific. J. Math., 15(1965), 1961-70.
- 11. R.Vaidynathaswamy, Set topology, Chelsea, Publishing company, Newyork (1960).

Source of support: Nil, Conflict of interest: None Declared