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ABSTRACT 
A Numerical approach has been carried out for the study of Soret and Dufour effects on mixed convection heat and 
mass transfer past a vertical heated plate embedded in a Newtonian fluid saturated sparsely packed porous medium 
with variable fluid properties such as variable porosity, permeability and thermal conductivity. The boundary layer 
flow in the porous medium is governed by Lapwood-Brinkmann extended Darcy model. Similarity transformations are 
employed and the resulting ordinary differential equations are solved using shooting technique with Runge–Kutta-
Fehlberg scheme to obtain velocity, temperature and concentration distributions. The features of fluid flow, heat and 
mass transfer characteristics are analyzed by plotting the graphs and the physical aspects are discussed in detail to 
interpret the effect of various significant parameters of the problem. The results obtained show that the impact of 
buoyancy ratio parameter (N), Soret number (Sr), Dufour number (Df), Prandtl number (Pr), Schmidt number (Sc) and 
other parameters plays an important role in the fluid flow through porous medium. Further, the obtained results under 
the limiting conditions were found to be in good agreement with the existing results. 
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1. INTRODUCTION  
 

Soret and Dufour effects are interesting macroscopically the physical phenomenon in fluid mechanics, when heat and 
mass transfer occur simultaneously in a moving fluid, the relation between the fluxes and the driving potentials are of 
more intricate nature.  It has been found that an energy flux can be generated not only by temperature gradients but by 
composition gradients as well. The heat transfer caused by concentration gradient is called the diffusion-thermo or 
Dufour effect. On the other hand, mass transfer caused by temperature gradients is called Soret or thermal diffusion 
effect. Thus soret effect is referred to species differentiation developing in an initial homogeneous mixture submitted to 
a thermal gradient and the Dufour effect referred to the heat flux produced by a concentration gradient. The effect of 
the Dufour parameter on the local surface temperature becomes more significant and the effect of Soret parameter leads 
to an increase in the local surface concentration. 
 
In most of the studies related to heat and mass transfer process, soret and Dufour effects are neglected on the basis that 
they are of a smaller order of magnitude than the effects described by Fourier’s and Fick’s laws.  But these effects are 
considered as second order phenomena and may become significant in areas such as hydrology, petrology, geosciences, 
etc.  The soret effect, for instance, has been utilized for isotope separation and in mixture between gases with very light 
molecular weight and of medium molecular weight. The Dufour effect was recently found to be of order of 
considerable magnitude so that it cannot be neglected (see Eckert and Drake [9]).  Several authors have studied the 
problem of mixed convection about different surface geometrics. The analysis of convective transport in a porous 
medium with the inclusion of non–Darcian effects has also been a matter of study in recent years. The inertia effect is 
expected to be important at a higher flow rate and it can be accounted for through the addition of a velocity squared 
term in the momentum equation, which is known as the Forchheimer’s extension of the Darcy’s law. A detailed review 
of convective heat transfer in Darcy and non-Darcy porous medium can be found in the book by Nield and Bejan [15]. 
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Anghel et al [2] investigated the Dufour and Soret effects on free convection boundary layer over a vertical surface 
embedded in a porous medium.  Recently, Postelnicu [17] studied numerically the Influence of magnetic field on heat 
and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects.  
Govardhan et al [12] has analyzed the effect of soret and Dufour effects on MHD free convection Heat and Mass 
transfer in a Doubly stratified darcy porous medium with viscous dissipation and found that and Soret and Dufour 
effects are receiving much attention with velocity, temperature and concentration of the fluids. Gnaneswara and 
Bhaskar [10] studied Soret and Dufour effects on steady MHD free convection flow past a semi infinite moving vertical 
plate in a porous medium with viscous dissipation and analysis that effect of Dufour and Soret numbers rises in the skin 
friction coefficient whereas rise in Sherwood number and fall in Nusselt number and rise in Nusselt number and fall in 
the Sherwood number respectively. Hence Soret and Dufour effects cannot be neglected. Later Gnaneswara and 
Bhaskar [11] made finite element analysis of Soret and Dufour effects on unsteady MHD free convection flow past an 
impulsively started vertical porous plate with viscous dissipation.  
 
Alam and Rahman [1] made numerical study of the Dufour and Soret effects on mixed convection flow past a semi-
infinite vertical flat plate embedded in a porous medium using the Brinkman model, who found that wall suction 
reduces the boundary layer velocity, the thermal and also the solute concentration growth. Balasubrahmanyam et al [4] 
examines the Soret effect on mixed convective heat and mass transfer through a porous medium confined in a 
cylindrical annulus under a radial magnetic field in the presence of a constant heat source / sink.  The Double-diffusive 
convection in a horizontal layer work including inertial effects was made by Awad et al [3] using the modified Darcy-
Brinkman model to investigate double diffusive convection in a Maxwell fluid in the presence of Dufour and Soret 
effects in a highly porous medium. 
 
In some industrial applications, such as fixed-bed catalytic reactors, packed bed heat exchangers and drying, the value 
of the porosity is maximum at the wall and minimum away from the wall, so the porosity of the porous medium should 
be taken as non – uniform.  Porosity measurements by Shwartz and Smith [18] and Benenati and Brosilow [5] show 
that porosity is not constant but varies from the wall to the interior of the porous medium due to which permeability 
also varies. Chandrasekhara et al [6, 7] has incorporated the variable permeability to study the flow past and through a 
porous medium and have shown that the variation of porosity and permeability has greater influence on velocity 
distribution and on heat transfer.  Nevertheless, the inertia effects become important in a sparsely packed porous 
medium and hence their effect on mixed convection problems needs to be investigated. Mohammadein and El-shaer 
[13] studied mixed convective flow past a semi-infinite vertical plate embedded in a porous medium incorporating the 
variable permeability in Darcy’s model.  Recently, Pal and Shivakumar [16] analyzed mixed convection heat transfer 
from a vertical heated plate embedded in a Newtonian fluid sparsely packed porous medium by considering the 
variation of permeability, porosity and thermal conductivity. Dulal Pal [8] studied magneto hydrodynamic non-Darcy 
mixed convection heat transfer from a vertical heated plate embedded in a porous medium with variable porosity, by 
taking the viscous dissipation term in the energy equation. Nalinakshi et al [14] analyzed numerically Double Diffusive 
mixed convection with variable fluid properties. 
  
The main objective of the present investigation is to study systematically and numerically the Soret and Dufour effects 
on mixed convection heat and mass transfer for a Newtonian fluid flow past a semi infinite vertical heated plate 
embedded in a sparsely packed porous medium incorporating the variable porosity, permeability and thermal 
conductivity. To achieve this objective our plan of work is, in the analysis highly coupled non-linear partial differential 
equations governing the physical system are first reduced by a similarity transformations to the ordinary differential 
equations and then the resultant boundary value problem is converted into the system of seven simultaneous equations 
of first-order for seven unknowns. These equations are solved numerically by shooting technique by Runge-Kutta 
Methods to obtain velocity, temperature and concentration profiles for various physical parameters. The local Nusselt 
number and local Sherwood number variations are also shown graphically. The computed results here verify the 
accuracy of the method used under the limiting conditions which agree well with the existing ones. 
 
2. MATHEMATICAL FORMULATION 

 
A two-dimensional steady combined free-forced convective and mass transfer flow of a laminar, viscous, 
incompressible fluid over an isothermal semi-infinite vertical porous flat plate embedded in a sparsely packed porous 
medium of variable porosity, permeability and thermal conductivity is considered. The x-coordinate is measured along 
the plate from its leading edge, and y-coordinate normal to it. Let  

oU  be the velocity of the fluid in the upward 
direction and the gravitational field, g, is acting in the downward direction. The surface of the plate is maintained at a 
uniform constant temperature wT  and a uniform constant concentration wC  of a  fluid, which are higher than the free 
stream values existing far away from the plate (i.e., Tw > T∞, Cw > C∞).  It is also assumed that the free stream velocity 
U0, parallel to the vertical plate, is constant.   
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Considering the theory of boundary layer effect for sparsely packed porous medium with high porosity ε  (but less than 
unity), the general vectorial equations for the conservation of mass, momentum, energy and species concentration for 
steady, viscous, incompressible, Newtonian fluid flow can be written as: 
Continuity equation: 
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Momentum equation: 
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Energy equation: 
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Concentration equation: 
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u  and v  are the velocity components along the x and y directions, respectively. ρ is the density 

of the fluid, 
→
g is the acceleration due to gravity, p is the pressure, T is the temperature of the fluid, C is the 

concentration of the fluid, µ is the effective viscosity of the fluid, µ is the fluid viscosity, pC  is the specific heat at 

constant pressure, κ  is the variable thermal conductivity, sκ is the  solutal diffusivity, Tβ  is the coefficient of volume 
expansion and Cβ  is the volumetric coefficient of expansion with species concentration. Equation (2.2) is the well-
known Darcy-Brinkman equation which includes the boundary layer effect in the momentum equation. φ  is the viscous 
dissipation term, D12 is the term caused by a concentration gradient (i.e., Dufour coefficient) and D21 is the term caused 
by a temperature gradient (i.e., Soret coefficient). 
 
With the assumptions: (a) the Bousinesque approximation is valid i.e., density is constant everywhere in the momentum 
equation except in the buoyancy force (b) permeability, porosity and thermal resistance are functions of the vertical 
coordinate y, and (c) local thermal equilibrium exists between fluid and solid phase, the governing basic equations (2.1) 
– (2.4) for steady two-dimensional flow can be written in the form: 
Continuity equation: 
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Momentum equation: 
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Concentration equation: 
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, )(yk  the variable permeability of the porous medium is, )(yε  is 

the variable porosity of the saturated porous medium, )(yα is the variable effective thermal diffusivity of the medium 

and *γ is the effective solutal diffusivity.  
 
To determine the flow field the above governing equations need to be solved subject to the boundary conditions. The 
different types of rigid surfaces boundary conditions have been stated to describe flow characteristics at the boundary, 
near the plate and far away from the plate embedded in a sparsely packed porous medium.  The following are the 
boundary conditions on velocity and temperature fields: 

                                 0,yat ,,0,0 ===== WW CCTTvu                                                              (2.9)

             ∞→==== ∞∞ yCCTTvUu o as,,0,  ,                                                   (2.10) 
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Since the flow field is uniform at a sufficiently large distance from the porous surface, in the free stream 0Uu = , where 

0
U  is the free stream velocity and ∞T is the ambient temperature, then equation (2.6) reduces to  

                                                              ,
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Eliminating 
x
p
∂
∂ in equation (2.6) by using equation (2.11), we finally obtain the momentum equations as: 
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Equations (2.7), (2.8) & (2.12) are highly nonlinear partial differential equations, in order to solve them the following 
dimensionless variables φθ  and  , f  and as well as the similarity variable η  are introduced (see Mohammadein and 
El-shaer [13]): 
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 , such that the continuity equation (5) is satisfied 

automatically and the velocity components are given by 

  ( ),ηfUu o ′=      ( ))()(
2
1 ηηη ff

x
vUv o ′−−= ,                                  (2.14) 

where, a prime represents differentiation with respect to η  ,  
 
Following Chandrashekhara and Namboodiri [7], the variable permeability ( )ηk , the variable porosity ( )ηε  and 
variable effective thermal conductivity ( )ηα  are given by 
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where ok , oε  and oα  are the permeability, porosity and thermal conductivity at the edge of the boundary layer 

respectively, *σ  is the ratio of the thermal conductivity of solid to the conductivity of the fluid, d  and *d  are treated 
as constants having values 3.0 and 1.5 respectively for variable permeability and d = d*= 0 for uniform permeability. 
 
Substituting (2.13) and (2.14) in Equations (2.7), (2.8) & (2.12) and using (2.15) – (2.17), we get the following 
transformed equations 
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parameter, 23)( vxTTgGr wTT ∞−= β  is the thermal Grashof  number, 23)( νβ xCCgGr wCc ∞−=  is the solutal 

Grashof number, ( )
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The transformed boundary conditions are: 
 

,0=f       ,0=′f     1=θ ,   1=φ        at   0=η                                             (2.21)               
,1=′f      0=θ  ,     0=φ   as    ∞→η                                                     (2.22) 

once the velocity, temperature and concentration distributions are known, the skin friction and the rate of heat and mass 
transfer can be calculated respectively by  
 

Re)0(f ′′−=τ    ,        )0(Reθ ′−=Nu   and    (0) Re φ ′−=Sh                                   (2.23) 
where τ  is the skin friction , Nu is the Nusselt number and Sh is the Sherwood number. 
 
3   NUMERICAL METHOD 
 
The boundary value problems arising due to vertical heated plate are highly coupled non linear equations which are 
difficult to solve analytically, hence numerical method by shooting technique is employed. Equations (2.18)-(2.20) with 
the boundary conditions (2.22) and (2.23) have been solved by using Newton-Raphson shooting technique along with 
Runge-Kutta fourth order integration scheme. Equations (2.19) - (2.21) constitute a highly non-linear coupled boundary 
value problem of third and second order respectively, they are transformed into system of simultaneous equations of 
first order. Further, they are transformed into initial value problem by applying shooting technique. The obtained initial 
value problem is then solved by employing Runge-Kutta fourth order integration scheme.  The method is illustrated as 
given below: 
1. Decision on ∞  
2. Converting BVP to IVP by choosing suitable initial condition for φθ & ,f  
3. (0)& (0), )0( φθ ′′′′f  required for the solution of initial value problem are chosen by the classical, explicit    

  Runge-Kutta method of fourth order.  
 

The decision on an appropriate ‘∞’ for the problem depends on the proper parameter values chosen. In view of this, for 
each parameter combination, the appropriate value of ‘∞’ has to be decided. The algorithm for the shooting method 
with Runge-Kutta fourth order approximating is used. 
 
Initially, we chose guess values as R.(0) and  Q(0)  ,)0( =′=′=′′ φθPf . The process of obtaining P, Q & R 
accurately involves iteration process and can be calculated, repeating the same calculation we get another improved 
value, but these chosen guess values are not the most accurate values and hence there is a need to redefine. The better 
guess can be obtained by using the Newton-Raphson method. We solve the equations (2.19)-(2.21) with initial 
conditions 

                                                                             ,0)0( =f ,0)0( =′f  ,)0( Pf =′′  

                                                                             ,1)0( =θ   ,)0( Q=′θ  

                          R(0)   ,1)0( =′= φφ .                                                                                    (3.1) 
  
Due to crude choice of (0)& (0), )0( φθ ′′′′f , the solution at ‘∞’ does not match with those given in the problem 
using the classical explicit Runge-Kutta method of fourth order. Thus, the coupled nonlinear boundary value problem 
of third-order in f and second-order in  θ  and φ  has been reduced to a system of five simultaneous equations of first-
order for five unknowns as follows : 
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where ,1 ff =   ,2 ff ′= ,3 ff ′′=  ,4 θ=f θ ′=5f  , ,7 φ=f φ′=8f  and a prime denotes differentiation with 
respect to η . 
 
The boundary conditions (2.21) and (2.22) now take the form  
 

                Rfffffff ======= )0(,1)0(Q,(0)1,(0)P,(0)0,(0),0)0(
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To solve the system of first-order differential equations along with boundary conditions, we need seven initial 
conditions, but we have only two initial conditions on f, one initial condition on θ and one initial condition on .φ   The 

third condition on f ( ))0(.. fei ′′ , second condition on ( ))0(.. θθ ′ei and second condition on (0)) (i.e., φφ ′ are 
not prescribed, which are determined by employing numerical shooting method and using the ending boundary 
condition given in equation (3.4).  The selection of an appropriate finite value of ∞η is to be made.  A good guess of the 
initial condition in the shooting technique is to be made on which the convergence depends. The accuracy of the 
assumed initial conditions is checked by comparing the calculated values of the dependent variable at the terminal point 
with its given value at that point. If any difference exists, improved values of the assumed initial conditions must be 
obtained and the process is repeated.  The iterative process is terminated when the difference between two successive 
values reached 10-6, then the solution is said to have converged results. The slight deviation in the values may be due to 
the use of Runge-Kutta-Fehlberg method which has fifth order accuracy whereas; Mohammadein and El-Shaer [13] 
have used fourth-order Runge-Kutta method which has only fourth order accuracy who has analysed the influence of 
variable permeability with heat transfer. Thus the present results are more accurate compared to their results.  
 
4 RESULTS AND DISCUSSION 
 
The system of first-order differential equations (3.2) are solved numerically using shooting technique with Runge-
Kutta-Fehlberg method. In order to know the accuracy of the method used, computed values of )0(f ′′ , )0(θ ′  and 

)0(φ′ were obtained by varying the values of buoyancy ratio N, β*, Re* σα , 2ReGr for uniform permeability (d = 
0.0, d*= 0.0) and variable permeability (d=3.0, d*=1.5) cases.  The values are tabulated in Table 1 with few fixed values 
like 0.22Sc 71.0Pr,1.0,4.0 ==== andEcoε . 

 
A representative set of numerical results is shown graphically in Figures 1- 21, to illustrate the influence of physical 
parameters namely, Dufour and Soret number, the Richardson number 2ReGr , second order resistance β*, buoyancy 
ratio N, Re* σα , Prandtl number Pr and Schmidt number Sc on the velocity, temperature and concentration. Also the 
variations of local Nusselt number and local Sherwood number are shown graphically. 
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For different values of the Dufour number fD and Soret number rS the velocity, temperature and concentration 

profiles are plotted in figures 1 - 3. The Dufour number fD  signifies the contribution of the concentration gradients to 

the thermal energy flux in the flow. The influence of Soret number rS defines the effect of the temperature gradients 
inducing significant mass diffusion effects. It is observed that an increase in the Dufour number fD and decrease in the 

Soret number rS  causes a rise in the velocity throughout the boundary layer as shown in figure 1.  For fD  > 1, a 
distinct velocity overshoot exists near the plate, and thereafter the profile reaches the edge of the boundary layer. The 
increase in Dufour number fD and decrease in Soret number rS causes an increase of temperature throughout the 

boundary layer. For fD < 1, the temperature profiles decay smoothly from the surface to the free stream value. 

However for fD  > 1, the temperature profile falls to zero at the edge of the boundary layer very rapidly as observed in 

Fig. 2.  Fig. 3 demonstrates the dimensionless concentration for different values of Soret number rS and Dufour 
number fD . It is seen that concentration of the fluid increases within the boundary layer with decrease of Dufour 
number or increase of Soret number. 
 
The effect of various values of N which defines the ratio of concentration buoyancy force to thermal buoyancy force 
parameters can be observed from Figs. 4 – 6. The Buoyancy ratio parameter N decreases the boundary layer increasing 
the velocity distributions significantly and decreases with temperature and concentration distributions. For fixed Dufour 
number 0.2=fD and Soret number 03.0=rS parameters, the velocity overshoot is observed for positive values of N 
ranging from 0 to 10, as N increases the overshoot increases. This is due to the fact that physically the assisting 
buoyancy force acts as a favourable pressure gradient which accelerates the fluid for lower Prandtl number                   
Pr = 0.71causing the velocity profile within the boundary layer. This is observed in Fig. 4. The effects of N on the 
temperature and concentration profiles are very small due to the fact that the physical parameter N appears only in the 
momentum equation. Increase in the value of N decreases the temperature and concentration profiles.  
 
The effect of different values of second order resistance β* which is expressed with the forchheimer term and the ratio 
of porosity to the permeability can be observed from Figs. 7- 9.  The velocity distributions are shown in  figure 7, 
increase in β* leads to increase in the velocity profiles. At β* = 0.0, the boundary layer shows the linear behavior and 
as β* increases the boundary layer shows the exponential form reaching far away from the plate. Fig. 8 and 9 depicts 
the temperature and concentration profiles for different values of β*. It is observed that as β* increases the temperature 
profiles decreases rapidly whereas the concentration profiles decreases proportionally with the increase of β*. 
 
The mixed convection parameter i.e., the Richardson number 2Re/Gr effects are shown in figures 10 to 12.  Increase 
in the buoyancy force leads to higher 2Re/Gr which accelerates the fluid leads the velocity closer to the vertical heated 
plate, and the free convection currents from the heated plate are carried away to the free stream with a downward 
acceleration acting leading the velocity to increase as observed in figure 10. Decrease in the parameter enhances the 
temperature and concentration in the boundary layer for both uniform and variable permeability cases as observed in 
figures 11 and 12. It is clearly observed that the variable permeability is little more dominant when compared to 
uniform permeability.  
 
The effects of parameter Re* σα for velocity, temperature and concentration variations are shown in Figs. 13 to 15.  
Increase in the ratio of Re* σα leads to increase in the velocity profiles as shown in figure 13. This is due to the 
presence of low Reynolds number multiplied with ratio of viscosities resulting in the range of 0.0 to 0.5 in the 
momentum equation causing the velocity to overshoot increasingly. The variable permeability is more dominant 
compared to uniform permeability with the slight differences in the profiles.  The effects of the parameter Re* σα on 
the temperature and concentration profiles as in observed in figures 14 and 15 are very small due to the fact that 

Re* σα appears only in the momentum equation. The temperature and concentration profiles decrease with increase in 
the parameter Re* σα  and almost overlaps or very small difference with different increased value of Re* σα for both 
uniform and variable permeability cases.  
 
The effects of Prandtl number Pr on velocity and temperature profiles are displayed in Figs. 16 and 17. Figure 16 shows 
the significant overshoot in the velocity profiles near the wall for lower Prandtl number fluid but for higher Prandtl 
number fluid the velocity overshoot is not much significant. The magnitude of the overshoot decreases as the Prandtl 
number increases. The effect is more in low Prandtl number fluid (air, Pr = 0.71) due to the low viscosity of the fluid, 
which increases the velocity within the boundary layer. The velocity profiles is not much significant for higher Prandtl 
number fluids (water, Pr = 7.0) because of more viscous fluid. The effects of Prandtl number Pr results into the  
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thinner thermal boundary layer as the higher Prandtl number has a lower thermal conductivity as shown in figure 17.  
The variations in the concentration profiles due to the effects of Prandtl number Pr are very less, hence the variations in 
the concentration profiles for the effects of Schmidt number Sc are displayed in figure 18.  Increase in the Schmidt 
number Sc results in decrease of the concentration profiles. The effect of Schmidt number is not very prominent on 
temperature distribution for different values of Sc. 
 
The variations in temperature profiles for different values of σ* are displayed in 19. Increase in σ* leads to decrease in 
thermal boundary layer due to higher thermal conductivity. The variations of the Nusselt number and Sherwood 
number as a function of for various fD values of rS are shown in Figs. 20 and 21.  Figure 20 describes the behavior of 

local Nusselt number with changes in the values of  
fD and rS .  It is observed that the effect of increasing 

fD is to 

increase the Nusselt number for the increasing values of rS for both uniform and variable permeability cases. From 

figure 21, it is observed that the values of local Sherwood number increase with increase in the value of rS for both 

uniform and variable permeability cases. Also, higher the value of rS , greater its effect on Sherwood number for all 
values of  fD as observed in the figure 21 i.e., the effect of Dufour number on Sherwood number is appreciable in the 
solutal boundary layer, which increases with increase in the Dufour number. 
 
5 CONCLUSIONS 
  
The problem of steady laminar, viscous, incompressible two-dimensional mixed convection flow due to vertical heated 
plate embedded in a Newtonian fluid sparsely packed porous medium in the presence of Soret and Dufour effects with 
variable fluid properties such as variable porosity, permeability and thermal conductivity is investigated.  The resulting 
partial differential equations, describing the problem, are transformed into ordinary differential equations by using 
similarity transformations. These equations are more conveniently solved numerically by Runge-Kutta-Fehlberg 
method with shooting technique for the computation of fluid flow, heat and mass transfer characteristics, skin-friction 
coefficient, heat transfer rate and mass transfer rate for various values of the Soret and Dufour number, Buoyancy ratio, 
second order resistance, mixed convection parameter, ratio of viscosities to Reynolds number, etc. for both uniform 
permeability and variable permeability cases. Comparisons of the present results with previously published works on 
limiting cases in the absence of many parameters but with the variable fluid properties as shown in chapter 3 were 
performed and results were found to be in excellent agreement. From this investigation the following conclusions are 
drawn: 
 
(i) Increase in the mixed convection parameter 2Re/Gr increases the fluid flow velocity near the vertical heated plate 

in the momentum boundary layer and slowly asymptotes towards the free stream, whereas its effect is reversed in 
the thermal and solutal boundary layer as the 2Re/Gr parameter increases. 

(ii) Velocity increases with the increase of Dufour number (and decrease of Soret number), whereas decrease in 
Dufour number (increase of Soret number) leads to decrease the temperature and increase in Dufour number 
(decrease of Soret number) leads to decrease in concentration. 

(iii) As the Buoyancy ratio N increases the velocity increases, temperature profiles decreases and concentration 
decreases. 

(iv) The increase in the non-Darcy parameter *β , implies that the porous medium is offering more resistance to the 
fluid flow, hence velocity increases as we increase the parameter and temperature and concentration decreases as 
we increase the parameter. 

(v) Increase in Prandtl number leads to decrease in the velocity profiles, it is observed that at low Prandtl number the 
velocity overshoot is more significant. The temperature profiles are decreasing with the increase in Prandtl 
number. It is found that the concentration profiles decreases with increasing the values of Schmidt number Sc due 
to decrease in the solutal boundary layer thickness. 

(vi) Local Nusselt number decreases with decrease in the value of Soret number as the Dufour number increases. 
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Fig. 1 Velocity profiles for different values of Soret  and 
Dufour numbers for VP case 

 
 
 
 
 
 
 

 
Fig. 2 Temperature profiles for different values of          

Soret and Dufour numbers for VP case 

Table 1 Results for   (0)- and )0(),0( φθ ′′−′′f  for   4.0,1.0,22.0,71.0Pr ==== oEcSc ε  for 
Uniform Permeability (UP) and Variable Permeability (VP) cases.  

 
 
 
 
 
                                       

fD , rS  
N  

 

 
 

 
 *β  

Uniform Permeability (UP) Variable Permeability (VP) 
 

 
  
 

 
  
 

  
    
 

 
  
 

 

2.00,0.03 
 

1 2 0.2 0.1 0.0 0.449345 0.378450 0.377500 0.452345 0.381450 0.378500 
0.1 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
0.5 0.554567 0.438780 0.429500 0.564567 0.441780 0.436500 
1.5 0.647800 0.507030 0.499900 0.657800 0.510030 0.509900 

0.0 0.1 0.423450 0.351340 0.348020 0.433450 0.361340 0.350020 
0.1 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
0.5 0.534560 0.458250 0.457210 0.554560 0.463450 0.461110 

0.0 0.1 0.1 0.397800 0.279800 0.273700 0.367800 0.291340 0.281780 
0.2 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
1.0 0.715650 0.518900 0.500050 0.720050 0.502903 0.491050 
2.0 0.843560 0.541250 0.538500 0.851260 0.540250 0.531200 

2.0 0.2 0.1 0.1 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
4.0 0.495678 0.411780 0.408010 0.501548 0.423280 0.410010 
6.0 0.552453 0.431789 0.425897 0.569870 0.443219 0.433164 

0.0 2.0 0.2 0.1 0.1 0.399450 0.312450 0.310010 0.401250 0.323900 0.320010 
1.0 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
5.0 0.745640 0.441890 0.440010 0.731240 0.450018 0.448410 
10.0000000 0.889070 0.491050 0.491550 0.895070 0.509070 0.498550 

2.00,0.03 1.0 2.0 0.2 0.1 0.1 0.464565 0.394567 0.390004 0.474565 0.404567 0.393564 
1.00,0.06 0.481120 0.400250 0.399500 0.483120 0.413453 0.400134 
0.40,0.15 0.494500 0.416700 0.412020 0.498500 0.420054 0.418945 
0.15,0.40 0.528900 0.421890 0.420040 0.531670 0.429918 0.427896 
0.06,1.00 0.548965 0.434560 0.430010 0.557891 0.438763 0.433981 
0.03,2.00 0.565678 0.451780 0.449010 0.569821 0.463789 0.457654 

2Re/Gr Re/* σα

*σ

)0(f ′′ )0(θ ′− )0(φ′− )0(f ′′ )0(θ ′− )0(φ′−
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Fig. 3 Concentration profiles for different values of Soret 
and Dufour numbers for VP case 

 

 
 

Fig. 4 Velocity profiles for different value of                                                                                                                                                                    
buoyancy ratio N for VP case 

 

 
 

Fig. 5 Temperature profiles for different values                                                                                                                                                                
of buoyancy ratio N for VP case 

 
 

 
Fig. 6 Concentration profiles for different values of 

buoyancy ratio N for VP case 
 

 

 
 

Fig. 7 Velocity variations for various values of second 
order resistance *β for VP case 

 

 
 
Fig. 8 Temperature variations for various values of second 

order resistance *β for VP case 
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Fig. 9 Concentration variations for various values of  

second order resistance *β for VP case 
 
 

Fig. 10 Velocity distributions for different values of 
2Re/Gr for UP and VP cases 

 

 
Fig. 11 Temperature distributions for different values of 

2Re/Gr for UP and VP cases 
 

 
Fig. 12 Concentration distributions for                                                                      

different values of 2Re/Gr for UP and VP cases 
 
 

  Fig. 13 Velocity profiles for various values of  
Re/* σα for UP and VP cases 

Fig. 14 Temperature profiles for various  
values of Re/* σα for UP and VP cases 
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Fig. 15 Concentration profiles for various values of 

Re/* σα for UP and VP cases 
 

Fig. 16 Velocity profiles for various values of  Pr for UP 
and VP cases 

 

Fig. 17 Temperature profiles for various values of Prandtl 
number Pr for UP and VP case 

 

 
Fig. 18 Concentration profiles for various values of 

Schmidt number Sc for UP and VP cases 
 

 

Fig. 19 Temperature profiles for various values of                             
σ*for UP and VP cases 

 

Fig. 20 Variations in local Nusselt number  with Df  for 
various values of Sr for UP and VP cases 
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