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ABSTRACT 

The stability of double diffusive buoyancy driven convection in a tilted slot is investigated using linear stability 
analysis. Using the perturbation method with angle of inclination as perturbation parameter the critical Rayleigh 
number and the wave number at the critical point are determined. The results yield a unique flow pattern and the flow 
sets in becomes unstable when the temperature and salinity differences exceeds certain critical values. Some similarity 
can be noted between this problem and the problem when the planes are exactly horizontal and in fact some of the 
results are almost identical. However, owing to the existence of disturbances due to the inclined surfaces the system 
imparts a definite structure to the undisturbed system. The graphs presented for the velocity, temperature and solutal 
distributions for various parameter values will determine results in the secondary flow pattern and convection results 
in the form transverse rolls problem under investigation. 
 
Keywords Double-diffusive convection· Buoyancy-Driven convection · Convection in an inclined slot 
 
 
NOMENCLATURE 
Cp0:        heat capacity, evaluated at the temperature T0 
D:           depth of fluid layer 
𝜅𝜅0:           thermalconductivity of fluid, evaluated at temperature T0 
P’:           pressure associated with the basic flow, i.e, undisturbed flow 𝑃𝑃 = 𝑃𝑃′

𝜌𝜌0𝑈𝑈𝑐𝑐2
 

T1, T2:     the temperatures at respectively, the lower and upper plane 
T0 :          the arithmetic mean temperature 𝑇𝑇1+𝑇𝑇2

2
 

x, y, z:    dimensionless Cartesian coordinates 
u , v , w: dimensionless velocity components in the x , y , z direction respectively 
Uc:          characteristic velocity = 𝜅𝜅0

𝜌𝜌0𝑐𝑐𝑐𝑐0𝑑𝑑
 

U(y):       the basic; i.e, velocity profile (dimensionless) 
RT:          Thermal Rayleigh number = 𝜌𝜌𝑐𝑐𝑐𝑐𝑔𝑔𝛼𝛼𝑇𝑇(𝑇𝑇1−𝑇𝑇0)𝑑𝑑3

𝜈𝜈𝜅𝜅
 

g:            gravitational acceleration  
𝛼𝛼𝑇𝑇           is the coefficient of volumetric expansion of temperature 
RS:          Solutal Rayleigh number = 𝜌𝜌𝑐𝑐𝑐𝑐𝑔𝑔𝛼𝛼𝑆𝑆(𝑆𝑆1−𝑆𝑆0)𝑑𝑑3

𝜈𝜈𝜅𝜅
 

𝛼𝛼𝑆𝑆            is the coefficient of volumetric expansion of concentration 
α & β       are wave numbers in the x & z direction, respectively 
θ:            dimensionless temperature= 𝑇𝑇−𝑇𝑇0

𝑇𝑇1−𝑇𝑇0
 

φ:            dimensionless concentration = 𝑆𝑆−𝑆𝑆0
𝑆𝑆1−𝑆𝑆0

 
𝜈𝜈:            is the kinematic viscosity 
𝑘𝑘𝑇𝑇 :          thermal diffusivity 
𝑘𝑘𝑆𝑆:          solutal diffusivity 
ρ:            fluid density  
σ:            Prandtl number = 𝑐𝑐𝑐𝑐𝜌𝜌𝜈𝜈

𝜅𝜅
 (physical property evaluated at T0) 

ϕ:            angle of inclination of the slot with respect to horizontal 
𝛾𝛾 ∶          𝑘𝑘𝑆𝑆

 𝑘𝑘𝑇𝑇
 is the ratio of diffusivities 
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1. INTRODUCTION 
 

Doubly diffusive instabilities have been observed in a variety of fluid systems and have been hypothesized to occur in 
still others (Turner 1974; Schechter, Verlde & Platten 1974). These problems are of practical importance in mixing of 
different water masses and general mixing processes, crystallization processes, design of solar ponds, engineering 
systems, oceanography, metallurgy etc. Baines and Gill (1969) solved the linear thermohaline stability problem for 
constant vertical gradients of temperature and salinity. They found in addition to the salt finger instability of 
Stern(1960), the overstability wave instability alluded by Stommel (1962) and demonstrated experimentally by Turner 
and Stommel (1964).  
 
In the early years the focus was on one dimensional problems in which both the thermal and solutal gradients are in the 
vertical directions. Convective motions can occur either in the finger regime in which the more slowly diffusing 
component is heavy on top, or in the diffusive regime in which the component with the larger diffusivity is heavy on 
top. In either case, there is a tendency for horizontal convecting layers to develop. Later these studies were extended to 
two dimensional.  
 
Brakke (1955) observed, and correctly explained, a doubly diffusive instability that occurs when a solution of a slowly 
diffusing protein is layered over a denser solution of more rapidly diffusing sucrose. Thorpe, Hutt & Souls by (1969) 
and Hart (1971) considered a two dimensional configuration of a fluid with vertical salinity gradient confined within a 
narrow slot whose two walls are held at different temperatures. Paliwal & Chen (1980) considered the slot inclined at 
an angle to the vertical. By using the linear stability theory he predicts for the observed critical Rayleigh number and 
wavelength of the steady convection he showed that there is no over stability. However, the motion consists of 
convection rolls with alternating directions of rotation. Experimental evidence indicates that all convection rolls have 
the same sense of rotation, rising along the hot wall and descending along the cold wall. A nonlinear treatment of the 
problem (Thangam, Zebib & Chen 1982) revealed that the cells with wrong sense of rotation (descending along the hot 
wall) are quickly squeezed in to interfaces between cells with correct sense of rotation.  
 
Liang & Acrivos (1969) investigated the buoyancy driven convection in a slot and in a fluid layer bounded by the 
infinite parallel surfaces, tilted at a small angle ϕ, with respect to the horizontal. Here the instability sets in whenever 
the temperature difference between the two planes exceeds a certain critical value. The similarity between this and the 
usual case in which the planes are exactly is of course evident; in fact, both the method of solution and some of the 
principal results of the linear stability analysis are almost identical. However, it will be seen that, although the critical 
wave number will remain unaffected by tilting the planes small amount, a preferred mode will emerge in the form of 
rolls having their axes along the direction of the mean motion. Hence, owing to the existence of this basic flow which 
imparts a definite structure to the undisturbed system, the degeneracy usually associated with convection problems of 
this type will be removed. 
 
In this paper the investigation is to study double diffusive convection driven by both temperature and salinity gradients 
in an inclined slot bounded by two infinite parallel plates inclined at an angle ϕ to the horizontal. The critical Rayleigh 
number expression using the linear stability analysis and the perturbation method is obtained on the lines of weakly 
nonlinear theory. Within the transition range of the angle of inclination when it is small but finite lead to a rather 
complicated dependence of the critical Rayleigh numbers RT and RS on 𝜎𝜎 𝑎𝑎𝑎𝑎𝑑𝑑 𝛾𝛾 which leads to longitudinal rolls with 
their axis aligned in the direction of the mean flow. This is in contrast to the problem in a vertical slot in which the 
secondary flow pattern is known to consist of transvers rolls, their axes normal to the mean motion. 
 
2. MATHEMATICAL FORMULATION 

 
We consider two-component Newtonian fluid-saturated horizontal layer confined between two boundary surfaces  
𝑦𝑦′ = 0 ,𝑑𝑑 are taken to be free and tilted at a small angle ϕ with respect to the horizontal. The layer is heated and salted 
from below. The configuration is as shown in figure 1.  The boundary surfaces are maintained at constant temperatures 
T1 and T2 and solutal concentrations S1 and S2 respectively. The basic governing equations of the problem under the 
Boussinesq approximations are the following.  
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Fig 1. Physical configuration of the system 

 
Conservation of mass:   ∇ ∙ �⃗�𝑞 = 0                      (1) 
 
Momentum equations:  𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)�⃗�𝑞� = −∇p + ρg + μ∇2�⃗�𝑞                               (2) 
 
Energy equation:         𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)𝑇𝑇� = 𝜅𝜅𝑇𝑇∇2𝑇𝑇                                (3) 
 
Concentration equation:  𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)𝑆𝑆� = 𝜅𝜅S∇2𝑆𝑆                                 (4) 
 
Equation of state:   𝜌𝜌 = 𝜌𝜌0[1 − 𝛼𝛼𝑇𝑇(𝑇𝑇 − 𝑇𝑇0) + 𝛼𝛼𝑆𝑆(𝑆𝑆 − 𝑆𝑆0)].                  (5) 
 
The following non-dimensional quantities are introduced into equations (1) to (5) and using Boussinesq approximations  
 

( x , y , z ) = �𝑥𝑥
′

𝑑𝑑
 , 𝑦𝑦

′

𝑑𝑑
 , 𝑧𝑧

′

𝑑𝑑
�,    �⃗�𝑞 = (𝑢𝑢 , 𝑣𝑣 , 𝑤𝑤) = �𝑢𝑢

′

𝑈𝑈𝑐𝑐
 , 𝑣𝑣 ′

𝑈𝑈𝑐𝑐
 , 𝑤𝑤 ′

𝑈𝑈𝑐𝑐
� = �𝑞𝑞

′���⃗

𝑈𝑈𝑐𝑐
� ,    𝑃𝑃 = 𝑃𝑃′

𝜌𝜌0𝑈𝑈𝑐𝑐2
, 

 
𝜕𝜕 = 𝜕𝜕 ′𝑈𝑈𝑐𝑐

𝑑𝑑
 , 𝜃𝜃 = 𝑇𝑇−𝑇𝑇0

𝑇𝑇1−𝑇𝑇0
 ,𝜙𝜙 = 𝑆𝑆−𝑆𝑆0

𝑆𝑆1−𝑆𝑆0
, 𝑇𝑇0 = 𝑇𝑇1+𝑇𝑇2

2
 

 
in which a prime refers to a dimensional variables and a script ‘0’ to a physical quantity evaluated at the temperature 
T0. 
∇ ∙ �⃗�𝑞 = 0                                                                                                           (6) 
 
𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)�⃗�𝑞 = −∇p + σ 𝑅𝑅𝑇𝑇θg − σ 𝑅𝑅𝑆𝑆𝜙𝜙g + σ ∇2�⃗�𝑞                                                                           (7) 
 
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)𝜃𝜃 = ∇2𝜃𝜃                                                                (8) 
 
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ (�⃗�𝑞 ∙ ∇)𝜙𝜙 = 𝛾𝛾 ∇2𝜙𝜙                                                                (9) 
 
where𝑅𝑅𝑇𝑇 = 𝜌𝜌𝑐𝑐𝑐𝑐𝑔𝑔𝛼𝛼𝑇𝑇(𝑇𝑇1−𝑇𝑇0)𝑑𝑑3

𝜈𝜈𝜅𝜅
 is the Thermal Rayleigh number, 

          𝑅𝑅𝑠𝑠 = 𝜌𝜌𝑐𝑐𝑐𝑐𝑔𝑔𝛼𝛼𝑆𝑆(𝑆𝑆1−𝑆𝑆0)𝑑𝑑3

𝜈𝜈𝜅𝜅
 Solutal Rayleigh number 

And    𝛾𝛾 = 𝑘𝑘𝑆𝑆
𝑘𝑘𝑇𝑇

is the ratio of diffusivities i.e Lewes number 
 
3. BASIC STATE SOLUTION OF THE PROBLEM 

 
Using the basic state u = U(y) , v = w = 0 and 𝜃𝜃 = 𝜃𝜃(𝑦𝑦) and boundary conditions 𝑇𝑇 = 𝑇𝑇1  𝑎𝑎𝜕𝜕 𝑦𝑦 = 0   𝑎𝑎𝑎𝑎𝑑𝑑 𝑇𝑇 =
𝑇𝑇2  𝑎𝑎𝜕𝜕 𝑦𝑦 = 1 on equation (8)  we get 
     𝜃𝜃 = 1 − 2𝑦𝑦                   (10) 
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and 𝜙𝜙 = 𝜙𝜙(𝑦𝑦)  and boundary conditions  𝑆𝑆 = 𝑆𝑆1  𝑎𝑎𝜕𝜕 𝑦𝑦 = 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑆𝑆 = 𝑆𝑆2  𝑎𝑎𝜕𝜕 𝑦𝑦 = 1  on equation (8), we get  
 
     𝜙𝜙 = 1 − 2𝑦𝑦                   (11) 
 
The two boundary surfaces are free, we have 𝜕𝜕𝑈𝑈(𝑦𝑦)

𝜕𝜕𝑦𝑦
= 0  𝑎𝑎𝜕𝜕 𝑦𝑦 = 0 &  1  

  
𝑈𝑈(𝑦𝑦) = (𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑆𝑆) sin𝜑𝜑 �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
�                                                            (12) 

 
𝑃𝑃 = 𝑃𝑃0 + 𝜎𝜎(𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑆𝑆) cos𝜑𝜑 (𝑦𝑦 − 𝑦𝑦2) = 𝑃𝑃(𝑦𝑦)                                                           (13) 
 
where P0 is a constant, RT is the thermal Rayleigh number, RS is the solute Rayleigh number and σ the Prandtl number.  
 
This solution indicates that no matter how small the inclined angle ϕ, a shear-like flow in the x-direction  [u = U(y)] 
will always be established, and that even in the presence of such a motion, the transport of heat from lower to the upper 
plane will be due to conduction alone provided no lateral boundaries exist. 
 
4. LINEAR STABILITY ANALYSIS 
 
On the basic state, we superpose small perturbations about the basic state in the form, 
 
𝑢𝑢 = 𝑈𝑈(𝑦𝑦) + 𝑢𝑢�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) , 𝑣𝑣 = 𝑣𝑣�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) ,𝑤𝑤 = 𝑤𝑤�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) ,𝑃𝑃 = 𝑃𝑃(𝑦𝑦) + �̂�𝑐(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧), 
𝜃𝜃 = 1 − 2𝑦𝑦 + 𝜃𝜃�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧)     𝑎𝑎𝑎𝑎𝑑𝑑 𝜙𝜙 = 1 − 2𝑦𝑦 +    𝜙𝜙� (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 )                                                          (14) 
 
where the caret quantities indicate small perturbations. Substituting Eq. (14) into Eqs. (7)- (9), and neglecting the non-
linear terms and dropping the carets yields  
 
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑣𝑣𝑈𝑈(𝑦𝑦) = −𝜕𝜕𝑐𝑐
𝜕𝜕𝑥𝑥

+ 𝜎𝜎𝑅𝑅𝑇𝑇𝜃𝜃𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑 − 𝜎𝜎𝑅𝑅𝑆𝑆  ϕ𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑 + 𝜎𝜎∇2𝑢𝑢                                            (15) 
 
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

= − 𝜕𝜕𝑐𝑐
𝜕𝜕𝑦𝑦

+ 𝜎𝜎𝑅𝑅𝑇𝑇𝜃𝜃𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 − 𝜎𝜎𝑅𝑅𝑆𝑆ϕ𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 + 𝜎𝜎∇2𝑣𝑣                                                          (16) 
 
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

= −𝜕𝜕𝑐𝑐
𝜕𝜕𝑧𝑧

+ 𝜎𝜎∇2𝑤𝑤                                                             (17) 
 
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥
− 2𝑣𝑣 = ∇2𝜃𝜃                                                                            (18) 

 
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
− 2𝑣𝑣 = γ∇2𝜙𝜙                                                             (19) 

 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

= 0                                                                             (20) 
 
where 𝑣𝑣 = 𝑑𝑑

𝑑𝑑𝑦𝑦
    𝑎𝑎𝑎𝑎𝑑𝑑  ∇2= 𝜕𝜕2 

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 

𝜕𝜕𝑧𝑧2 
 
Cross differentiating and eliminating the pressure term, and further eliminating u and w from the equations give  
 
𝜎𝜎∇4𝑣𝑣 − 𝜕𝜕

𝜕𝜕𝜕𝜕
(∇2𝑣𝑣) − 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝑥𝑥
(∇2𝑣𝑣) + 𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥
𝑣𝑣2𝑈𝑈(𝑦𝑦) = − 𝜎𝜎𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑(𝑅𝑅𝑇𝑇∇1

2𝜃𝜃 − 𝑅𝑅𝑆𝑆∇1
2ϕ) + 𝜎𝜎𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑 �𝑅𝑅𝑇𝑇

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

− 𝑅𝑅𝑆𝑆
𝜕𝜕2ϕ
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�           (21) 
 
�∇2 − 𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝑥𝑥
� 𝜃𝜃 + 2𝑣𝑣 = 0                                                                            (22) 

 
�γ∇2 − 𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝑥𝑥
� ϕ + 2𝑣𝑣 = 0                                                                           (23) 

 
where∇1

2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2 
 
Using the normal mode analysis, the dependent variables are assumed in the following form  
𝑣𝑣(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝜕𝜕) = 𝑉𝑉(𝑦𝑦) exp{𝜃𝜃(𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑧𝑧 − 𝑐𝑐𝜕𝜕)} 
𝜃𝜃(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝜕𝜕) = 𝜃𝜃(𝑦𝑦) exp{𝜃𝜃(𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑧𝑧 − 𝑐𝑐𝜕𝜕)}                                               (24) 
ϕ(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝜕𝜕) = ϕ(𝑦𝑦) exp{𝜃𝜃(𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑧𝑧 − 𝑐𝑐𝜕𝜕)} 
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whose real parts represent the actual physical quantities. The wave numbers 𝛼𝛼 𝑎𝑎𝑎𝑎𝑑𝑑 𝛽𝛽 are real and the growth rate c, is 
generally complex. Substituting equations (24) into equations (21) to (23) yields the following equations  
 
�𝜎𝜎(𝑣𝑣2 − 𝛼𝛼2 − 𝛽𝛽2)2 − 𝜃𝜃𝛼𝛼 ��𝑈𝑈(𝑦𝑦) −

𝑐𝑐
𝛼𝛼
� (𝑣𝑣2 − 𝛼𝛼2 − 𝛽𝛽2) − 𝑣𝑣2𝑈𝑈(𝑦𝑦)�� 𝑉𝑉(𝑦𝑦) 

                                               = 𝜎𝜎𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑 𝜃𝜃𝛼𝛼{𝑅𝑅𝑇𝑇𝑣𝑣𝜃𝜃(𝑦𝑦) − 𝑅𝑅𝑆𝑆𝑣𝑣ϕ(𝑦𝑦)} + Μ𝜎𝜎(𝛼𝛼2 + 𝛽𝛽2)𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑{𝑅𝑅𝑇𝑇𝜃𝜃(𝑦𝑦) − 𝑅𝑅𝑆𝑆ϕ(𝑦𝑦)}             (25) 
 

[(𝑣𝑣2 − 𝛼𝛼2 − 𝛽𝛽2) + 𝜃𝜃𝑐𝑐 − 𝜃𝜃𝛼𝛼𝑈𝑈(𝑦𝑦)]𝜃𝜃(𝑦𝑦) + 2𝑉𝑉(𝑦𝑦) = 0                                                           (26) 
 
[γ(𝑣𝑣2 − 𝛼𝛼2 − 𝛽𝛽2) + 𝜃𝜃𝑐𝑐 − 𝜃𝜃𝛼𝛼𝑈𝑈(𝑦𝑦)]ϕ(𝑦𝑦) + 2𝑉𝑉(𝑦𝑦) = 0                                                           (27) 
 
The boundary conditions of the problem are   
 
𝑉𝑉(𝑦𝑦) = 𝑣𝑣2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = 𝜙𝜙(𝑦𝑦) = 0  𝑎𝑎𝜕𝜕 𝑦𝑦 = 0 , 1                                                           (28) 
 
Equations (25) to (27) are the familiar Orr-Sommerfeld equation coupled with the energy and concentration equations. 
Here, since the present study is restricted to small inclined angles ϕ, the above equation will be solved by using 
perturbation technique with sinϕ as a small parameter perturbation quantity. Thus, expanding all the following 
quantities in terms of the perturbation expansions 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐
𝛼𝛼
𝛽𝛽
𝑅𝑅𝑇𝑇
𝑅𝑅𝑆𝑆
𝑉𝑉(𝑦𝑦)
𝜃𝜃(𝑦𝑦)
ϕ(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐0
𝛼𝛼0
𝛽𝛽0
𝑅𝑅𝑇𝑇0
𝑅𝑅𝑆𝑆0
𝑉𝑉0(𝑦𝑦)
𝜃𝜃0(𝑦𝑦)
ϕ0(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

+

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐1
𝛼𝛼1
𝛽𝛽1
𝑅𝑅𝑇𝑇1
𝑅𝑅𝑆𝑆1
𝑉𝑉1(𝑦𝑦)
𝜃𝜃1(𝑦𝑦)
ϕ1(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑 +

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐2
𝛼𝛼2
𝛽𝛽2
𝑅𝑅𝑇𝑇2
𝑅𝑅𝑆𝑆2
𝑉𝑉2(𝑦𝑦)
𝜃𝜃2(𝑦𝑦)
ϕ2(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑠𝑠𝜃𝜃𝑎𝑎2 φ + ⋯… … … … …                                                        (29) 

 
At zero th order the system off equations are  
 
�𝜎𝜎�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
+ 𝜃𝜃𝑐𝑐0�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�� 𝑉𝑉0(𝑦𝑦) = 𝜎𝜎�𝛼𝛼0

2 + 𝛽𝛽0
2��𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�                            (30) 

 
��𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝜃𝜃𝑐𝑐0�𝜃𝜃0(𝑦𝑦) + 2𝑉𝑉0(𝑦𝑦) = 0                                              (31) 

 
��𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝜃𝜃𝑐𝑐0�ϕ0(𝑦𝑦) + 2𝑉𝑉0(𝑦𝑦) = 0                                              (32) 

 
with the boundary conditions 𝑉𝑉(𝑦𝑦) = 𝑣𝑣2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = 𝜙𝜙(𝑦𝑦) = 0  𝑎𝑎𝜕𝜕 𝑦𝑦 = 0 , 1As the principle of the exchange of 
stabilities is valid, c0 is real and the marginal state is characterized by c0 = 0. 
 
The solution for the system of equations (30) to (32) are given by  
 
𝑉𝑉0(𝑦𝑦) = 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦, 𝜃𝜃0(𝑦𝑦) = 4

3𝑠𝑠2 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 , ϕ0(𝑦𝑦) = 4
γ3𝑠𝑠2 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦,    

𝛼𝛼0
2 + 𝛽𝛽0

2 = 𝑠𝑠2

2
 ,    𝑅𝑅𝑇𝑇0 = 1

𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝑠𝑠4

8
                                               (33) 

 
Prior to solving the higher order equations, it is first necessary to solve the homogeneous adjoint problem.  
 
�𝜎𝜎�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
� 𝑉𝑉∗(𝑦𝑦) + 2𝜃𝜃∗(𝑦𝑦) + 2ϕ∗(𝑦𝑦) = 0                              

�𝑣𝑣2 − 𝛼𝛼0
2 − 𝛽𝛽0

2�𝜃𝜃∗(𝑦𝑦) − 𝜎𝜎�𝛼𝛼0
2 + 𝛽𝛽0

2�𝑅𝑅𝑇𝑇0𝑉𝑉∗(𝑦𝑦) = 0                                             (34) 
𝛾𝛾�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�ϕ∗(𝑦𝑦) +  𝜎𝜎�𝛼𝛼0

2 + 𝛽𝛽0
2�𝑅𝑅𝑆𝑆0𝑉𝑉∗(𝑦𝑦) = 0 

 
With the boundary conditions are the same as before 
 
𝑉𝑉(𝑦𝑦) = 𝑣𝑣2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = ϕ(𝑦𝑦) = 0     𝑎𝑎𝜕𝜕  𝑦𝑦 = 0, 1 

 
Hence       
 
𝑉𝑉∗(𝑦𝑦) = 𝑉𝑉0(𝑦𝑦) = sin𝑠𝑠𝑦𝑦 ,      𝜃𝜃∗(𝑦𝑦) = −𝜎𝜎

3
𝑅𝑅𝑇𝑇0 sin𝑠𝑠𝑦𝑦 ,  ϕ∗(𝑦𝑦) = 𝜎𝜎

3𝛾𝛾
𝑅𝑅𝑆𝑆0 sin𝑠𝑠𝑦𝑦                                                        (35) 
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Substituting equation (29) in to equations (25) to (27), we next obtain for the first order equations  
 
�𝜎𝜎�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
+ 𝜃𝜃𝑐𝑐0�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�� 𝑉𝑉1(𝑦𝑦)

+ �𝜎𝜎�−4(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝑣𝑣2 − 𝛼𝛼0
2 − 𝛽𝛽0

2��

− 𝜃𝜃 �
2𝑐𝑐0(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) +

[−𝑐𝑐1 + ℎ(𝑦𝑦)𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)]�𝑣𝑣2 − 𝛼𝛼0
2 − 𝛽𝛽0

2� − 𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑣𝑣2ℎ��𝑉𝑉0(𝑦𝑦) 

 
 

                           = 𝜃𝜃𝜎𝜎𝛼𝛼0�𝑅𝑅𝑇𝑇0𝑣𝑣𝜃𝜃0 − 𝑅𝑅𝑆𝑆0𝑣𝑣ϕ0� + 𝜎𝜎𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 �
�𝛼𝛼0

2 + 𝛽𝛽0
2��𝑅𝑅𝑇𝑇0𝜃𝜃1+𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ1 − 𝑅𝑅𝑆𝑆1ϕ0�

+2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�
�             (36) 

 
��𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝜃𝜃𝑐𝑐0�𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) = {2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) − 𝜃𝜃𝑐𝑐1 + 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ}𝜃𝜃0                  (37) 

 
�𝛾𝛾�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝜃𝜃𝑐𝑐0�ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦)      = {2𝛾𝛾(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) − 𝜃𝜃𝑐𝑐1 + 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ}ϕ0              (38) 

 
On using c0 = 0, and  𝛼𝛼0 + 𝛽𝛽0 = 𝑠𝑠2

2
 we get  

 

�𝜎𝜎 �𝑣𝑣2 − 𝑠𝑠2

2
�

2
� 𝑉𝑉1(𝑦𝑦) − 𝜎𝜎 �𝑠𝑠

2

2
�𝑅𝑅𝑇𝑇0𝜃𝜃1 − 𝑅𝑅𝑆𝑆0ϕ1�� = 𝜎𝜎 �4(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉0(𝑦𝑦)� − 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉0𝑣𝑣2ℎ 

                                                           +𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉0 − 𝜃𝜃𝑐𝑐1 �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉0 + 𝜃𝜃𝛼𝛼0𝜎𝜎�𝑅𝑅𝑇𝑇0𝑣𝑣𝜃𝜃0 − 𝑅𝑅𝑆𝑆0𝑣𝑣ϕ0� 

                                        +𝜎𝜎 𝑠𝑠2

2
�𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝑅𝑅𝑆𝑆1ϕ0� + 2𝜎𝜎(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�                              (39)  

 
�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ𝜃𝜃0 − 𝜃𝜃𝑐𝑐1𝜃𝜃0 + 2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝜃𝜃0                            (40) 

 
𝛾𝛾�𝑣𝑣2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎϕ0 − 𝜃𝜃𝑐𝑐1ϕ0 + 2𝛾𝛾(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)ϕ0                           (41) 

 
where ℎ(𝑦𝑦) = 𝑈𝑈(𝑦𝑦)

(𝑅𝑅𝑇𝑇−𝑅𝑅𝑆𝑆)𝑠𝑠𝜃𝜃𝑎𝑎𝜑𝜑
= 𝑦𝑦3

3
− 𝑦𝑦2

2
+ 1

12
                                               (42) 

 

𝜎𝜎 �𝑣𝑣2 −
𝑠𝑠2

2
�

2

𝑉𝑉1(𝑦𝑦) − 𝜎𝜎𝑅𝑅𝑇𝑇0
𝑠𝑠2

2
𝜃𝜃1 + 𝜎𝜎𝑅𝑅𝑆𝑆0

𝑠𝑠2

2
ϕ1 

                    = 3𝜎𝜎𝑠𝑠2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 − 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦𝑣𝑣2ℎ − 𝜃𝜃𝛼𝛼0
3𝑠𝑠2

2
ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 

 −𝜃𝜃𝑐𝑐1
3𝑠𝑠2

2
𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 𝜃𝜃𝛼𝛼0𝜎𝜎

9𝑠𝑠3

2
𝑐𝑐𝜃𝜃𝑠𝑠𝑠𝑠𝑦𝑦 + 𝜎𝜎 2

3
�𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1� 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                (43) 

 
�𝑣𝑣2 − 𝑠𝑠2

2
� 𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦)  = 𝜃𝜃𝛼𝛼0

4
3𝑠𝑠2 ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 − 𝜃𝜃𝑐𝑐1

4
3𝑠𝑠2 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 8

3𝑠𝑠2 (𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦             (44) 
 
𝛾𝛾 �𝑣𝑣2 − 𝑠𝑠2

2
� ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0

4
3𝑠𝑠2𝛾𝛾

ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 − 𝜃𝜃𝑐𝑐1
4

3𝑠𝑠2𝛾𝛾
𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 8

3𝑠𝑠2𝛾𝛾
(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦               (45) 

 
Since the inhomogeneous part of equation must be orthogonal to the homogeneous adjoint solution, the eigen value 𝑅𝑅1, 
can be computed as follows: Multiplying the equation (43) by 𝑉𝑉∗, (44) by 𝜃𝜃∗ and equation (45) by 𝜙𝜙∗, summing and 
then integrating from y = 0 to y = 1, yields  
 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1 = −𝜃𝜃𝑐𝑐1 �

9𝑠𝑠2

4
1
𝜎𝜎

+ 2
3𝑠𝑠2 �

1
𝛾𝛾
𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾2 𝑅𝑅𝑆𝑆0��                                                           (46) 

 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1 = −𝜃𝜃𝑐𝑐1 �

9𝑠𝑠2

4
1
𝜎𝜎

+ 2
3𝑠𝑠2 �

1
𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝑠𝑠4

8
− 1

𝛾𝛾2 𝑅𝑅𝑆𝑆0��                                             (47) 
 
Since 𝑅𝑅𝑇𝑇1&𝑅𝑅𝑆𝑆1 are real, C1 must be imaginary. Thus to this order there is no oscillatory motion and the neutral state C1  

and hence 𝑅𝑅𝑇𝑇1 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆1 must equal to zero.  

 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1= 0                                                                              (48) 
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In view of equation (34) and the fact that  𝑅𝑅𝑇𝑇1 ,𝑅𝑅𝑆𝑆1𝑎𝑎𝑎𝑎𝑑𝑑 𝐶𝐶1    𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1= 0 , equations (44) to (46)  becomes  

𝜎𝜎 �𝑣𝑣2 −
𝑠𝑠2

2
�

2

𝑉𝑉1(𝑦𝑦) − 𝜎𝜎𝑅𝑅𝑇𝑇0
𝑠𝑠2

2
𝜃𝜃1 + 𝜎𝜎𝑅𝑅𝑆𝑆0

𝑠𝑠2

2
ϕ1 

                                 = 3𝜎𝜎𝑠𝑠2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 𝜃𝜃𝛼𝛼0𝜎𝜎
9𝑠𝑠3

2
𝑐𝑐𝜃𝜃𝑠𝑠𝑠𝑠𝑦𝑦 − 𝜃𝜃𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �3𝑠𝑠2

2
ℎ + 𝑣𝑣2ℎ� 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦           (49) 

 
�𝑣𝑣2 − 𝑠𝑠2

2
� 𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0

4
3𝑠𝑠2 ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 8

3𝑠𝑠2 (𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                            (50) 
 
𝛾𝛾 �𝑣𝑣2 − 𝑠𝑠2

2
� ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0

4
3𝑠𝑠2𝛾𝛾

ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 8
3𝑠𝑠2𝛾𝛾

(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                          (51) 
 
Further elimination of 𝜃𝜃1 𝑎𝑎𝑎𝑎𝑑𝑑 ϕ1 yields  

��𝑣𝑣2 − 𝑠𝑠2

2
�

3
+ 27𝑠𝑠6

8
� 𝑉𝑉�1(𝑦𝑦)  = 1

𝜎𝜎
�
(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
� �𝜎𝜎 2

3
�𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾2 𝑅𝑅𝑆𝑆0� + 9𝑠𝑠4

4
� 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦   

                    −�(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)3𝑠𝑠3 �𝑦𝑦 − 𝑦𝑦2 − 4
𝑠𝑠2� − 𝜎𝜎 27𝑠𝑠5

4
� 𝑐𝑐𝜃𝜃𝑠𝑠𝑠𝑠𝑦𝑦

�                           (52) 

 
where 𝑉𝑉1� (𝑦𝑦) = 1

𝜃𝜃𝛼𝛼0
𝑉𝑉1(𝑦𝑦)                                                 (53)          

 
With boundary conditions 
 
𝑉𝑉1� (𝑦𝑦) = 𝑣𝑣2𝑉𝑉1� = 0at y  = 0, 1 
 
Equation (50) and (51) can be simplified by substituting  
 
𝜃𝜃1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0�̅�𝜃1(𝑦𝑦) + 2(𝛼𝛼1𝛼𝛼0 + 𝛽𝛽1𝛽𝛽0)𝜃𝜃�1(𝑦𝑦)                                                            (54) 
 
ϕ1(𝑦𝑦) = 𝜃𝜃𝛼𝛼0𝜙𝜙�1(𝑦𝑦) + 2(𝛼𝛼1𝛼𝛼0 + 𝛽𝛽1𝛽𝛽0)𝜙𝜙�1(𝑦𝑦)                                                            (55) 
 
Then  
 
�𝑣𝑣2 − 𝑠𝑠2

2
� �̅�𝜃1(𝑦𝑦)  = −2𝑉𝑉�1(𝑦𝑦) + 4

3𝑠𝑠2 (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦
3

3
− 𝑦𝑦2

2
+ 1

12
� 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                             (56) 

 
�𝑣𝑣2 − 𝑠𝑠2

2
� 𝜃𝜃�1(𝑦𝑦) = 4

3𝑠𝑠2 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                                (57) 
 
Clearly,   𝜃𝜃�1(𝑦𝑦) = − 8

9𝑠𝑠4 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                  (58) 
 
𝛾𝛾 �𝑣𝑣2 − 𝑠𝑠2

2
�𝜙𝜙�1(𝑦𝑦)  = −2𝑉𝑉�1(𝑦𝑦) + 4

3𝑠𝑠2𝛾𝛾
(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
� 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                           (59) 

 
𝛾𝛾 �𝑣𝑣2 − 𝑠𝑠2

2
�𝜙𝜙�1(𝑦𝑦)  = 4

3𝑠𝑠2 𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                                  (60) 
 
Clearly,  𝜙𝜙�1(𝑦𝑦)  = − 8

9𝑠𝑠4𝛾𝛾
𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦                                  (61) 

 
As for 𝑉𝑉1� (𝑦𝑦),  �̅�𝜃1(𝑦𝑦) 𝑎𝑎𝑎𝑎𝑑𝑑 ϕ�1(𝑦𝑦), these had to be obtained via a numerical solution of equations (52), (56) and (59) are 
shown in figures. As required by their governing equations and the associated boundary conditions, the functions are 
anti-symmetric conditions with respect to mid-point y = 0.5. Also, it is apparent from figure that, for Prandtl number 
higher than 1.0.  
 
Considering the second order terms in 𝑠𝑠𝜃𝜃𝑎𝑎2𝜑𝜑 we get, 

𝜎𝜎 �𝑣𝑣2 −
𝑠𝑠2

2
�

2

𝑉𝑉2 − 𝜎𝜎
𝑠𝑠2

2
𝑅𝑅𝑇𝑇0𝜃𝜃2 + 𝜎𝜎

𝑠𝑠2

2
𝑅𝑅𝑆𝑆0ϕ2 

=  𝛼𝛼0
2 �(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉�1𝑣𝑣2ℎ + (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝑣𝑣2 −

𝑠𝑠2

2
�𝑉𝑉�1 − 𝑅𝑅𝑇𝑇0𝜎𝜎𝑣𝑣�̅�𝜃1  +   𝑅𝑅𝑆𝑆0𝜎𝜎𝑣𝑣ϕ�1� 

+𝜃𝜃𝛼𝛼0𝜉𝜉 �𝑅𝑅𝑇𝑇0𝜎𝜎𝑣𝑣𝜃𝜃�1 − 𝑅𝑅𝑆𝑆0𝜎𝜎𝑣𝑣ϕ�1 − (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ𝑉𝑉0 + 2𝜎𝜎 �𝑣𝑣2 −
𝑠𝑠2

2
�𝑉𝑉�1 + 𝜎𝜎𝑅𝑅𝑇𝑇0�̅�𝜃1 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1� 
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                       −𝜃𝜃 3𝑠𝑠2

2
𝑐𝑐2𝑠𝑠𝜃𝜃𝑎𝑎𝑠𝑠𝑦𝑦 + 𝜉𝜉2�𝜎𝜎𝑅𝑅𝑇𝑇0𝜃𝜃�1 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1 − 𝜎𝜎𝑉𝑉0� + 𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑇𝑇2𝜃𝜃0 − 𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑆𝑆2ϕ0 

                      +𝜃𝜃𝛼𝛼1 �(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝑣𝑣2 − 𝑠𝑠2

2
� 𝑉𝑉0 − (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉0𝑣𝑣2ℎ + 𝜎𝜎𝑅𝑅𝑇𝑇0𝑣𝑣𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆0𝑣𝑣ϕ0� 

                      +𝜁𝜁 �2𝜎𝜎 �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉0 + 𝜎𝜎𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ0�  + 𝜃𝜃𝛼𝛼0 �

(𝑅𝑅𝑇𝑇1 − 𝑅𝑅𝑆𝑆1)ℎ �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉0 − (𝑅𝑅𝑇𝑇1 − 𝑅𝑅𝑆𝑆1)𝑉𝑉0𝑣𝑣2ℎ +

𝜎𝜎𝑅𝑅𝑇𝑇1𝑣𝑣𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆1𝑣𝑣ϕ0 + 𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑇𝑇1�̅�𝜃1 − 𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑆𝑆1ϕ�1

� 

                      +𝜉𝜉 �𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑇𝑇1𝜃𝜃�1 − 𝜎𝜎 𝑠𝑠2

2
𝑅𝑅𝑆𝑆1ϕ�1 + 𝜎𝜎𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆1ϕ0�                                  (62) 

 

�𝑣𝑣2 −
𝑠𝑠2

2
�𝜃𝜃2 + 2𝑉𝑉2 = − 𝜃𝜃𝑐𝑐2𝜃𝜃0 + 𝜉𝜉2𝜃𝜃�1 + 𝜁𝜁𝜃𝜃0 + 𝜃𝜃𝛼𝛼0𝜉𝜉 (𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ 𝜃𝜃�1 − 𝜃𝜃𝛼𝛼0𝜉𝜉�̅�𝜃1 

                                          − 𝛼𝛼0
2(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0)ℎ �̅�𝜃1 +  𝜃𝜃𝛼𝛼1(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ 𝜃𝜃0  +  𝜃𝜃𝛼𝛼0 (𝑅𝑅𝑇𝑇1 −  𝑅𝑅𝑆𝑆1)ℎ 𝜃𝜃0             (63) 

 

𝛾𝛾 �𝑣𝑣2 −
𝑠𝑠2

2
� ϕ2 + 2𝑉𝑉2 = − 𝜃𝜃𝑐𝑐2ϕ0 + 𝛾𝛾𝜉𝜉2ϕ�1 + 𝛾𝛾𝜁𝜁ϕ0 + 𝜃𝜃𝛼𝛼0𝜉𝜉 (𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ ϕ�1  − 𝜃𝜃𝛼𝛼0𝛾𝛾𝜉𝜉ϕ�1 

                                                 − 𝛼𝛼0
2(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0)ℎ ϕ�1 +  𝜃𝜃𝛼𝛼1(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ ϕ0  +  𝜃𝜃𝛼𝛼0 (𝑅𝑅𝑇𝑇1 −  𝑅𝑅𝑆𝑆1)ℎ ϕ0             (64) 

 
where 𝜉𝜉 = 2𝛼𝛼1𝛼𝛼0 + 2𝛽𝛽1𝛽𝛽0 ,           𝜁𝜁 = 2𝛼𝛼2𝛼𝛼0 + 𝛼𝛼1

2 + 2𝛽𝛽2𝛽𝛽0 + 𝛽𝛽𝛽𝛽1
2                                                         (65) 

 
Again, multiplying the first equation by V*, the second by 𝜃𝜃∗  and the third by ϕ∗, summing and integrating, yields  we 
gets 

𝑅𝑅𝑇𝑇2 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 𝜁𝜁 �

9𝑠𝑠2

2
+

4
3𝑠𝑠2 �𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆0�� +

9
2
𝜉𝜉2 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎) − 3𝜃𝜃𝛼𝛼0𝜉𝜉𝑘𝑘3(𝜎𝜎) 

                               +𝜃𝜃𝑐𝑐2 �
9𝑠𝑠2

4
1
𝜎𝜎
−  2

3𝑠𝑠2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾2 𝑅𝑅𝑆𝑆0�� − 𝜃𝜃𝛼𝛼0

3𝑠𝑠2

2
�𝑅𝑅𝑇𝑇1 ∫ 𝑉𝑉∗ 𝜃𝜃�1

1
0  𝑑𝑑𝑦𝑦 − 𝑅𝑅𝑆𝑆1 ∫ 𝑉𝑉∗ϕ�1

1
0  𝑑𝑑𝑦𝑦�                       (66) 

where  
𝑘𝑘1(𝜎𝜎) = 3

𝜎𝜎 ∫ ��𝑉𝑉�1𝑣𝑣2ℎ − ℎ �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉�1 − 𝜎𝜎𝑣𝑣�̅�𝜃1� 𝑉𝑉∗ − ℎ�̅�𝜃1𝜃𝜃∗ − ℎϕ�1ϕ∗� 𝑑𝑑𝑦𝑦 1

0                                                         (67) 
 
𝑘𝑘2(𝜎𝜎) = 3

𝜎𝜎 ∫ ��𝑉𝑉�1𝑣𝑣2ℎ − ℎ �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉�1 − 𝜎𝜎𝑣𝑣ϕ�1� 𝑉𝑉

∗ − ℎ�̅�𝜃1𝜃𝜃∗ − ℎϕ�1ϕ∗� 𝑑𝑑𝑦𝑦   1
0                                            (68) 

 
𝑘𝑘3(𝜎𝜎) = 1

𝜎𝜎 ∫ ��2𝜎𝜎 �𝑣𝑣2 − 𝑠𝑠2

2
�𝑉𝑉�1 + 𝜎𝜎𝑅𝑅𝑇𝑇0 �̅�𝜃1 −  𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1�𝑉𝑉

∗ + �̅�𝜃1𝜃𝜃∗ + 𝛾𝛾ϕ�1ϕ∗� 𝑑𝑑𝑦𝑦    1
0                                           (69) 

 
At the neutral state, c2 must be real, since  𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 is real, imaginary and real parts of equations becomes 

 
𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 𝜁𝜁 �9𝑠𝑠2

2
+ 4

3𝑠𝑠2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆0�� + 9

2
𝜉𝜉2 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎)                                          (70) 

 
And 
𝑐𝑐2 �

9𝑠𝑠2

4
1
𝜎𝜎
−  2

3𝑠𝑠2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾2 𝑅𝑅𝑆𝑆0�� = 3𝛼𝛼0𝜉𝜉𝑘𝑘3(𝜎𝜎) + 𝛼𝛼0

3𝑠𝑠2

2
�𝑅𝑅𝑇𝑇1 ∫ 𝑉𝑉∗ 𝜃𝜃�1

1
0  𝑑𝑑𝑦𝑦 − 𝑅𝑅𝑆𝑆1 ∫ 𝑉𝑉∗ϕ�1

1
0  𝑑𝑑𝑦𝑦�                           (71) 

 
Since  𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆0 = 27𝑠𝑠4

8
 

 
𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 9

2
𝜉𝜉2 + 9𝑠𝑠2𝜁𝜁 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎)                                             (72) 

 
5. RESULTS AND DISCUSSION 
 
This is the problem of buoyancy driven convection when both the temperature and solutal concentration suffer from the 
differences in the lower and upper surfaces and also convection caused by the effect of inclination of the tilted surfaces 
from the horizontal direction. The critical Rayleigh number at neutral state depends on various parameters on the wave 
number, solutal Rayleigh number and the angle of inclination etc. The minimum critical Rayleigh number value is               
𝑅𝑅𝑇𝑇0 = 1

𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝑠𝑠4

8
 for a steady longitudinal roll disturbance. For other disturbances, when 𝛼𝛼0  ≠ 0, the critical 

Rayleigh number is given by equation (72) shows that oscillatory motions can be excluded. The results obtained shows 
interesting prediction that if the Rayleigh number  increased past the critical value, the convective instability for small 
values of 𝜎𝜎 𝑎𝑎𝑎𝑎𝑑𝑑 𝛾𝛾 will lead to steady parallel rolls having definite wave length and with their axis in the x-direction 
rather than being oscillatory. The critical Rayleigh number sharply increases with solutal Rayleigh number and 
decreases due to the presence of Lewes number.  
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The critical Rayleigh number is the same as that for double diffusive convection for longitudinal disturbances having 
their axes aligned in the direction of mean flow. i.e. 𝛼𝛼0 = 0. For other disturbances (𝛼𝛼0  ≠ 0) which generally lead to 
oscillatory instability in single as well as double diffusive components for horizontal, inclined fluid layers and inclined 
slots as well. The critical Rayleigh number expression found to depend on various parameters and remains stationary 
for all other disturbance wave numbers. For the disturbance with 𝛼𝛼0  ≠ 0  shows sharp dependence on the various 
parameters such as Prandtl numbers, RS0, RT0 and 𝐾𝐾1 = 𝐾𝐾1( 𝜎𝜎 ,𝑅𝑅𝑆𝑆0 , 𝛾𝛾 ) and 𝐾𝐾2 = 𝐾𝐾2( 𝜎𝜎 ,𝑅𝑅𝑆𝑆0 , 𝛾𝛾 ). It can be readily 
seen from the graphs  𝐾𝐾1 𝑎𝑎𝑎𝑎𝑑𝑑 𝐾𝐾2  they reach the asymptotic values and thus the critical Rayleigh number also reaches 
asymptotic values and are negative and positive. The numerical solution obtained for 𝑉𝑉�1(𝑦𝑦), �̅�𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are 
depicted graphically in figures 2 to 27. As requires by their governing equations and boundary conditions show that 
𝑉𝑉�1(𝑦𝑦)and  �̅�𝜃1(𝑦𝑦)  are antisymmetric and �̅�𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are symmetric but not identically similar. It is apparent that 
for Prandtl numbers higher than 1.0 the magnitude of 2𝑉𝑉1 is much less than one would expect  �̅�𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are 
intensive to the Prandtl number.  
 
The predicted flow pattern at the neutral state seems to depend primarily on both the hydrodynamic as well as thermal 
convection. Thermal instability occurs when the layer is nearly horizontal and is heated from below. In contrast when 
the mechanism of instability is hydrodynamic when it is vertical or when it is positioned at an angle tshat it corresponds 
to two opposing convective streams. Within the transition range of the angle of inclination both mechanisms are active 
and lead to rather complicated dependence of the critical Rayleigh number ϕ and σ and solutal Rayleigh number which 
leads to the special case of transverse rolls.  
 
The present analysis and the principle conclusions from this study would not have been affected by the use of more 
realistic boundary conditions. 
 

 
Figure: 2 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 3 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 4 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 5 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 6 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 7 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 8 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 9 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 10 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 11 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of RS0 

 
 

 
Figure: 12 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of RS0 
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Figure: 13 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 14 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 15 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 
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Figure: 16 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 17 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 18 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 
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Figure: 19 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 20 Variation of �̅�𝜃1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 21 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of RS0 
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Figure: 22 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 23 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 24 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 
 



P. M. Balagondar1 and Suresha M.2* / Double Diffusive Convective Instability driven by Thermal and Solutal gradients in an 
Inclined Slot / IJMA- 4(11), Nov.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                      182   

 
Figure: 25 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 26 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 27 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 
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Figure: 28 Variation of K1 verses ratio of diffusivities 

 

 
Figure: 29 Variation of K1 verses ratio of diffusivity 

 
 

 
Figure: 30 Variation of K1 verses ratio of diffusivity 
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Figure: 31 Variation of K1 verses Prandtl number  

 

 
Figure: 32 Variation of K1 verses Prandtl number 

 
 

 
Figure: 33 Variation of K2 verses ratio of diffusivity 
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Figure: 34 Variation of K2 verses ratio of diffusivity 

 

 
Figure: 35 Variation of K2 verses Prandtl number 

 

 
Figure: 36 Variation of K2 verses Prandtl number 
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