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ABSTRACT 

The stability of double diffusive buoyancy driven convection in a tilted slot is investigated using linear stability 
analysis. Using the perturbation method with angle of inclination as perturbation parameter the critical Rayleigh 
number and the wave number at the critical point are determined. The results yield a unique flow pattern and the flow 
sets in becomes unstable when the temperature and salinity differences exceeds certain critical values. Some similarity 
can be noted between this problem and the problem when the planes are exactly horizontal and in fact some of the 
results are almost identical. However, owing to the existence of disturbances due to the inclined surfaces the system 
imparts a definite structure to the undisturbed system. The graphs presented for the velocity, temperature and solutal 
distributions for various parameter values will determine results in the secondary flow pattern and convection results 
in the form transverse rolls problem under investigation. 
 
Keywords Double-diffusive convection· Buoyancy-Driven convection · Convection in an inclined slot 
 
 
NOMENCLATURE 
Cp0:        heat capacity, evaluated at the temperature T0 
D:           depth of fluid layer 
𝜅𝜅0:           thermalconductivity of fluid, evaluated at temperature T0 
P’:           pressure associated with the basic flow, i.e, undisturbed flow 𝑃𝑃 = 𝑃𝑃′

𝜌𝜌0𝑈𝑈𝑐𝑐2
 

T1, T2:     the temperatures at respectively, the lower and upper plane 
T0 :          the arithmetic mean temperature 𝑇𝑇1+𝑇𝑇2

2
 

x, y, z:    dimensionless Cartesian coordinates 
u , v , w: dimensionless velocity components in the x , y , z direction respectively 
Uc:          characteristic velocity = 𝜅𝜅0

𝜌𝜌0𝑐𝑐𝑐𝑐0𝑑𝑑
 

U(y):       the basic; i.e, velocity profile (dimensionless) 
RT:          Thermal Rayleigh number = 𝜌𝜌𝜌𝜌𝑝𝑝𝑔𝑔𝛼𝛼𝑇𝑇(𝑇𝑇1−𝑇𝑇0)𝑑𝑑3

𝜈𝜈𝜈𝜈
 

g:            gravitational acceleration  
𝛼𝛼𝑇𝑇           is the coefficient of volumetric expansion of temperature 
RS:          Solutal Rayleigh number = 𝜌𝜌𝜌𝜌𝑝𝑝𝑔𝑔𝛼𝛼𝑆𝑆(𝑆𝑆1−𝑆𝑆0)𝑑𝑑3

𝜈𝜈𝜈𝜈
 

𝛼𝛼𝑆𝑆            is the coefficient of volumetric expansion of concentration 
α & β       are wave numbers in the x & z direction, respectively 
θ:            dimensionless temperature= 𝑇𝑇−𝑇𝑇0

𝑇𝑇1−𝑇𝑇0
 

φ:            dimensionless concentration = 𝑆𝑆−𝑆𝑆0
𝑆𝑆1−𝑆𝑆0

 
𝜈𝜈:            is the kinematic viscosity 
𝑘𝑘𝑇𝑇 :          thermal diffusivity 
𝑘𝑘𝑆𝑆:          solutal diffusivity 
ρ:            fluid density  
σ:            Prandtl number = 𝑐𝑐𝑝𝑝𝜌𝜌𝜌𝜌

𝜅𝜅
 (physical property evaluated at T0) 

ϕ:            angle of inclination of the slot with respect to horizontal 
𝛾𝛾 ∶          𝑘𝑘𝑆𝑆

 𝑘𝑘𝑇𝑇
 is the ratio of diffusivities 
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1. INTRODUCTION 
 

Doubly diffusive instabilities have been observed in a variety of fluid systems and have been hypothesized to occur in 
still others (Turner 1974; Schechter, Verlde & Platten 1974). These problems are of practical importance in mixing of 
different water masses and general mixing processes, crystallization processes, design of solar ponds, engineering 
systems, oceanography, metallurgy etc. Baines and Gill (1969) solved the linear thermohaline stability problem for 
constant vertical gradients of temperature and salinity. They found in addition to the salt finger instability of 
Stern(1960), the overstability wave instability alluded by Stommel (1962) and demonstrated experimentally by Turner 
and Stommel (1964).  
 
In the early years the focus was on one dimensional problems in which both the thermal and solutal gradients are in the 
vertical directions. Convective motions can occur either in the finger regime in which the more slowly diffusing 
component is heavy on top, or in the diffusive regime in which the component with the larger diffusivity is heavy on 
top. In either case, there is a tendency for horizontal convecting layers to develop. Later these studies were extended to 
two dimensional.  
 
Brakke (1955) observed, and correctly explained, a doubly diffusive instability that occurs when a solution of a slowly 
diffusing protein is layered over a denser solution of more rapidly diffusing sucrose. Thorpe, Hutt & Souls by (1969) 
and Hart (1971) considered a two dimensional configuration of a fluid with vertical salinity gradient confined within a 
narrow slot whose two walls are held at different temperatures. Paliwal & Chen (1980) considered the slot inclined at 
an angle to the vertical. By using the linear stability theory he predicts for the observed critical Rayleigh number and 
wavelength of the steady convection he showed that there is no over stability. However, the motion consists of 
convection rolls with alternating directions of rotation. Experimental evidence indicates that all convection rolls have 
the same sense of rotation, rising along the hot wall and descending along the cold wall. A nonlinear treatment of the 
problem (Thangam, Zebib & Chen 1982) revealed that the cells with wrong sense of rotation (descending along the hot 
wall) are quickly squeezed in to interfaces between cells with correct sense of rotation.  
 
Liang & Acrivos (1969) investigated the buoyancy driven convection in a slot and in a fluid layer bounded by the 
infinite parallel surfaces, tilted at a small angle ϕ, with respect to the horizontal. Here the instability sets in whenever 
the temperature difference between the two planes exceeds a certain critical value. The similarity between this and the 
usual case in which the planes are exactly is of course evident; in fact, both the method of solution and some of the 
principal results of the linear stability analysis are almost identical. However, it will be seen that, although the critical 
wave number will remain unaffected by tilting the planes small amount, a preferred mode will emerge in the form of 
rolls having their axes along the direction of the mean motion. Hence, owing to the existence of this basic flow which 
imparts a definite structure to the undisturbed system, the degeneracy usually associated with convection problems of 
this type will be removed. 
 
In this paper the investigation is to study double diffusive convection driven by both temperature and salinity gradients 
in an inclined slot bounded by two infinite parallel plates inclined at an angle ϕ to the horizontal. The critical Rayleigh 
number expression using the linear stability analysis and the perturbation method is obtained on the lines of weakly 
nonlinear theory. Within the transition range of the angle of inclination when it is small but finite lead to a rather 
complicated dependence of the critical Rayleigh numbers RT and RS on 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 which leads to longitudinal rolls with 
their axis aligned in the direction of the mean flow. This is in contrast to the problem in a vertical slot in which the 
secondary flow pattern is known to consist of transvers rolls, their axes normal to the mean motion. 
 
2. MATHEMATICAL FORMULATION 

 
We consider two-component Newtonian fluid-saturated horizontal layer confined between two boundary surfaces  
𝑦𝑦′ = 0 ,𝑑𝑑 are taken to be free and tilted at a small angle ϕ with respect to the horizontal. The layer is heated and salted 
from below. The configuration is as shown in figure 1.  The boundary surfaces are maintained at constant temperatures 
T1 and T2 and solutal concentrations S1 and S2 respectively. The basic governing equations of the problem under the 
Boussinesq approximations are the following.  
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Fig 1. Physical configuration of the system 

 
Conservation of mass:   ∇ ∙ 𝑞⃗𝑞 = 0                      (1) 
 
Momentum equations:  𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝑞⃗𝑞� = −∇p + ρg + μ∇2𝑞⃗𝑞                               (2) 
 
Energy equation:         𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝑇𝑇� = 𝜅𝜅𝑇𝑇∇2𝑇𝑇                                (3) 
 
Concentration equation:  𝜌𝜌0𝑐𝑐𝑐𝑐0 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝑆𝑆� = 𝜅𝜅S∇2𝑆𝑆                                 (4) 
 
Equation of state:   𝜌𝜌 = 𝜌𝜌0[1 − 𝛼𝛼𝑇𝑇(𝑇𝑇 − 𝑇𝑇0) + 𝛼𝛼𝑆𝑆(𝑆𝑆 − 𝑆𝑆0)].                  (5) 
 
The following non-dimensional quantities are introduced into equations (1) to (5) and using Boussinesq approximations  
 

( x , y , z ) = �𝑥𝑥
′

𝑑𝑑
 , 𝑦𝑦

′

𝑑𝑑
 , 𝑧𝑧

′

𝑑𝑑
�,    𝑞⃗𝑞 = (𝑢𝑢 , 𝑣𝑣 , 𝑤𝑤) = �𝑢𝑢

′

𝑈𝑈𝑐𝑐
 , 𝑣𝑣 ′

𝑈𝑈𝑐𝑐
 , 𝑤𝑤 ′

𝑈𝑈𝑐𝑐
� = �𝑞𝑞

′���⃗

𝑈𝑈𝑐𝑐
� ,    𝑃𝑃 = 𝑃𝑃′

𝜌𝜌0𝑈𝑈𝑐𝑐2
, 

 
𝑡𝑡 = 𝑡𝑡 ′𝑈𝑈𝑐𝑐

𝑑𝑑
 , 𝜃𝜃 = 𝑇𝑇−𝑇𝑇0

𝑇𝑇1−𝑇𝑇0
 ,𝜙𝜙 = 𝑆𝑆−𝑆𝑆0

𝑆𝑆1−𝑆𝑆0
, 𝑇𝑇0 = 𝑇𝑇1+𝑇𝑇2

2
 

 
in which a prime refers to a dimensional variables and a script ‘0’ to a physical quantity evaluated at the temperature 
T0. 
∇ ∙ 𝑞⃗𝑞 = 0                                                                                                           (6) 
 
𝜕𝜕𝑞𝑞�⃗
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝑞⃗𝑞 = −∇p + σ 𝑅𝑅𝑇𝑇θg − σ 𝑅𝑅𝑆𝑆𝜙𝜙g + σ ∇2𝑞⃗𝑞                                                                           (7) 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝜃𝜃 = ∇2𝜃𝜃                                                                (8) 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑞⃗𝑞 ∙ ∇)𝜙𝜙 = 𝛾𝛾 ∇2𝜙𝜙                                                                (9) 
 
where𝑅𝑅𝑇𝑇 = 𝜌𝜌𝜌𝜌𝑝𝑝𝑔𝑔𝛼𝛼𝑇𝑇(𝑇𝑇1−𝑇𝑇0)𝑑𝑑3

𝜈𝜈𝜈𝜈
 is the Thermal Rayleigh number, 

          𝑅𝑅𝑠𝑠 = 𝜌𝜌𝜌𝜌𝑝𝑝𝑔𝑔𝛼𝛼𝑆𝑆(𝑆𝑆1−𝑆𝑆0)𝑑𝑑3

𝜈𝜈𝜈𝜈
 Solutal Rayleigh number 

And    𝛾𝛾 = 𝑘𝑘𝑆𝑆
𝑘𝑘𝑇𝑇

is the ratio of diffusivities i.e Lewes number 
 
3. BASIC STATE SOLUTION OF THE PROBLEM 

 
Using the basic state u = U(y) , v = w = 0 and 𝜃𝜃 = 𝜃𝜃(𝑦𝑦) and boundary conditions 𝑇𝑇 = 𝑇𝑇1  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0   𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 =
𝑇𝑇2  𝑎𝑎𝑎𝑎 𝑦𝑦 = 1 on equation (8)  we get 
     𝜃𝜃 = 1 − 2𝑦𝑦                   (10) 
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and 𝜙𝜙 = 𝜙𝜙(𝑦𝑦)  and boundary conditions  𝑆𝑆 = 𝑆𝑆1  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆 = 𝑆𝑆2  𝑎𝑎𝑎𝑎 𝑦𝑦 = 1  on equation (8), we get  
 
     𝜙𝜙 = 1 − 2𝑦𝑦                   (11) 
 
The two boundary surfaces are free, we have 𝜕𝜕𝜕𝜕(𝑦𝑦)

𝜕𝜕𝜕𝜕
= 0  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0 &  1  

  
𝑈𝑈(𝑦𝑦) = (𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑆𝑆) sin𝜑𝜑 �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
�                                                            (12) 

 
𝑃𝑃 = 𝑃𝑃0 + 𝜎𝜎(𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑆𝑆) cos𝜑𝜑 (𝑦𝑦 − 𝑦𝑦2) = 𝑃𝑃(𝑦𝑦)                                                           (13) 
 
where P0 is a constant, RT is the thermal Rayleigh number, RS is the solute Rayleigh number and σ the Prandtl number.  
 
This solution indicates that no matter how small the inclined angle ϕ, a shear-like flow in the x-direction  [u = U(y)] 
will always be established, and that even in the presence of such a motion, the transport of heat from lower to the upper 
plane will be due to conduction alone provided no lateral boundaries exist. 
 
4. LINEAR STABILITY ANALYSIS 
 
On the basic state, we superpose small perturbations about the basic state in the form, 
 
𝑢𝑢 = 𝑈𝑈(𝑦𝑦) + 𝑢𝑢�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) , 𝑣𝑣 = 𝑣𝑣�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) ,𝑤𝑤 = 𝑤𝑤�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) ,𝑃𝑃 = 𝑃𝑃(𝑦𝑦) + 𝑝̂𝑝(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧), 
𝜃𝜃 = 1 − 2𝑦𝑦 + 𝜃𝜃�(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧)     𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙 = 1 − 2𝑦𝑦 +    𝜙𝜙� (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 )                                                          (14) 
 
where the caret quantities indicate small perturbations. Substituting Eq. (14) into Eqs. (7)- (9), and neglecting the non-
linear terms and dropping the carets yields  
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝑅𝑅𝑇𝑇𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 − 𝜎𝜎𝑅𝑅𝑆𝑆  ϕ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎∇2𝑢𝑢                                            (15) 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝑅𝑅𝑇𝑇𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 − 𝜎𝜎𝑅𝑅𝑆𝑆ϕ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜎𝜎∇2𝑣𝑣                                                          (16) 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜎𝜎∇2𝑤𝑤                                                             (17) 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2𝑣𝑣 = ∇2𝜃𝜃                                                                            (18) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈(𝑦𝑦) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2𝑣𝑣 = γ∇2𝜙𝜙                                                             (19) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                                                             (20) 
 
where 𝐷𝐷 = 𝑑𝑑

𝑑𝑑𝑑𝑑
    𝑎𝑎𝑎𝑎𝑎𝑎  ∇2= 𝜕𝜕2 

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 

𝜕𝜕𝑧𝑧2 
 
Cross differentiating and eliminating the pressure term, and further eliminating u and w from the equations give  
 
𝜎𝜎∇4𝑣𝑣 − 𝜕𝜕

𝜕𝜕𝜕𝜕
(∇2𝑣𝑣) − 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝜕𝜕
(∇2𝑣𝑣) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐷𝐷2𝑈𝑈(𝑦𝑦) = − 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎(𝑅𝑅𝑇𝑇∇1

2𝜃𝜃 − 𝑅𝑅𝑆𝑆∇1
2ϕ) + 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 �𝑅𝑅𝑇𝑇

𝜕𝜕2𝜃𝜃
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝑅𝑅𝑆𝑆
𝜕𝜕2ϕ
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�           (21) 
 
�∇2 − 𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝜃𝜃 + 2𝑣𝑣 = 0                                                                            (22) 

 
�γ∇2 − 𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑈𝑈(𝑦𝑦) 𝜕𝜕

𝜕𝜕𝜕𝜕
� ϕ + 2𝑣𝑣 = 0                                                                           (23) 

 
where∇1

2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2 
 
Using the normal mode analysis, the dependent variables are assumed in the following form  
𝑣𝑣(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝑡𝑡) = 𝑉𝑉(𝑦𝑦) exp{𝑖𝑖(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐)} 
𝜃𝜃(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝑡𝑡) = 𝜃𝜃(𝑦𝑦) exp{𝑖𝑖(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐)}                                               (24) 
ϕ(𝑥𝑥,𝑦𝑦 , 𝑧𝑧, 𝑡𝑡) = ϕ(𝑦𝑦) exp{𝑖𝑖(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 − 𝑐𝑐𝑐𝑐)} 
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whose real parts represent the actual physical quantities. The wave numbers 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are real and the growth rate c, is 
generally complex. Substituting equations (24) into equations (21) to (23) yields the following equations  
 
�𝜎𝜎(𝐷𝐷2 − 𝛼𝛼2 − 𝛽𝛽2)2 − 𝑖𝑖𝑖𝑖 ��𝑈𝑈(𝑦𝑦) −

𝑐𝑐
𝛼𝛼
� (𝐷𝐷2 − 𝛼𝛼2 − 𝛽𝛽2) − 𝐷𝐷2𝑈𝑈(𝑦𝑦)�� 𝑉𝑉(𝑦𝑦) 

                                               = 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 𝑖𝑖𝑖𝑖{𝑅𝑅𝑇𝑇𝐷𝐷𝐷𝐷(𝑦𝑦) − 𝑅𝑅𝑆𝑆𝐷𝐷ϕ(𝑦𝑦)} + Μ𝜎𝜎(𝛼𝛼2 + 𝛽𝛽2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑅𝑅𝑇𝑇𝜃𝜃(𝑦𝑦) − 𝑅𝑅𝑆𝑆ϕ(𝑦𝑦)}             (25) 
 

[(𝐷𝐷2 − 𝛼𝛼2 − 𝛽𝛽2) + 𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖(𝑦𝑦)]𝜃𝜃(𝑦𝑦) + 2𝑉𝑉(𝑦𝑦) = 0                                                           (26) 
 
[γ(𝐷𝐷2 − 𝛼𝛼2 − 𝛽𝛽2) + 𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖(𝑦𝑦)]ϕ(𝑦𝑦) + 2𝑉𝑉(𝑦𝑦) = 0                                                           (27) 
 
The boundary conditions of the problem are   
 
𝑉𝑉(𝑦𝑦) = 𝐷𝐷2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = 𝜙𝜙(𝑦𝑦) = 0  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0 , 1                                                           (28) 
 
Equations (25) to (27) are the familiar Orr-Sommerfeld equation coupled with the energy and concentration equations. 
Here, since the present study is restricted to small inclined angles ϕ, the above equation will be solved by using 
perturbation technique with sinϕ as a small parameter perturbation quantity. Thus, expanding all the following 
quantities in terms of the perturbation expansions 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐
𝛼𝛼
𝛽𝛽
𝑅𝑅𝑇𝑇
𝑅𝑅𝑆𝑆
𝑉𝑉(𝑦𝑦)
𝜃𝜃(𝑦𝑦)
ϕ(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐0
𝛼𝛼0
𝛽𝛽0
𝑅𝑅𝑇𝑇0
𝑅𝑅𝑆𝑆0
𝑉𝑉0(𝑦𝑦)
𝜃𝜃0(𝑦𝑦)
ϕ0(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

+

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐1
𝛼𝛼1
𝛽𝛽1
𝑅𝑅𝑇𝑇1
𝑅𝑅𝑆𝑆1
𝑉𝑉1(𝑦𝑦)
𝜃𝜃1(𝑦𝑦)
ϕ1(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑐𝑐2
𝛼𝛼2
𝛽𝛽2
𝑅𝑅𝑇𝑇2
𝑅𝑅𝑆𝑆2
𝑉𝑉2(𝑦𝑦)
𝜃𝜃2(𝑦𝑦)
ϕ2(𝑦𝑦)⎭

⎪
⎪
⎬

⎪
⎪
⎫

𝑠𝑠𝑠𝑠𝑠𝑠2 φ + ⋯… … … … …                                                        (29) 

 
At zero th order the system off equations are  
 
�𝜎𝜎�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
+ 𝑖𝑖𝑐𝑐0�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�� 𝑉𝑉0(𝑦𝑦) = 𝜎𝜎�𝛼𝛼0

2 + 𝛽𝛽0
2��𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�                            (30) 

 
��𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝑖𝑖𝑐𝑐0�𝜃𝜃0(𝑦𝑦) + 2𝑉𝑉0(𝑦𝑦) = 0                                              (31) 

 
��𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝑖𝑖𝑐𝑐0�ϕ0(𝑦𝑦) + 2𝑉𝑉0(𝑦𝑦) = 0                                              (32) 

 
with the boundary conditions 𝑉𝑉(𝑦𝑦) = 𝐷𝐷2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = 𝜙𝜙(𝑦𝑦) = 0  𝑎𝑎𝑎𝑎 𝑦𝑦 = 0 , 1As the principle of the exchange of 
stabilities is valid, c0 is real and the marginal state is characterized by c0 = 0. 
 
The solution for the system of equations (30) to (32) are given by  
 
𝑉𝑉0(𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝜃𝜃0(𝑦𝑦) = 4

3𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , ϕ0(𝑦𝑦) = 4
γ3𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,    

𝛼𝛼0
2 + 𝛽𝛽0

2 = 𝜋𝜋2

2
 ,    𝑅𝑅𝑇𝑇0 = 1

𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝜋𝜋4

8
                                               (33) 

 
Prior to solving the higher order equations, it is first necessary to solve the homogeneous adjoint problem.  
 
�𝜎𝜎�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
� 𝑉𝑉∗(𝑦𝑦) + 2𝜃𝜃∗(𝑦𝑦) + 2ϕ∗(𝑦𝑦) = 0                              

�𝐷𝐷2 − 𝛼𝛼0
2 − 𝛽𝛽0

2�𝜃𝜃∗(𝑦𝑦) − 𝜎𝜎�𝛼𝛼0
2 + 𝛽𝛽0

2�𝑅𝑅𝑇𝑇0𝑉𝑉∗(𝑦𝑦) = 0                                             (34) 
𝛾𝛾�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�ϕ∗(𝑦𝑦) +  𝜎𝜎�𝛼𝛼0

2 + 𝛽𝛽0
2�𝑅𝑅𝑆𝑆0𝑉𝑉∗(𝑦𝑦) = 0 

 
With the boundary conditions are the same as before 
 
𝑉𝑉(𝑦𝑦) = 𝐷𝐷2𝑉𝑉(𝑦𝑦) = 𝜃𝜃(𝑦𝑦) = ϕ(𝑦𝑦) = 0     𝑎𝑎𝑎𝑎  𝑦𝑦 = 0, 1 

 
Hence       
 
𝑉𝑉∗(𝑦𝑦) = 𝑉𝑉0(𝑦𝑦) = sin𝜋𝜋𝜋𝜋 ,      𝜃𝜃∗(𝑦𝑦) = −𝜎𝜎

3
𝑅𝑅𝑇𝑇0 sin𝜋𝜋𝜋𝜋 ,  ϕ∗(𝑦𝑦) = 𝜎𝜎

3𝛾𝛾
𝑅𝑅𝑆𝑆0 sin𝜋𝜋𝜋𝜋                                                        (35) 
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Substituting equation (29) in to equations (25) to (27), we next obtain for the first order equations  
 
�𝜎𝜎�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�

2
+ 𝑖𝑖𝑐𝑐0�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�� 𝑉𝑉1(𝑦𝑦)

+ �𝜎𝜎�−4(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝐷𝐷2 − 𝛼𝛼0
2 − 𝛽𝛽0

2��

− 𝑖𝑖 �
2𝑐𝑐0(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) +

[−𝑐𝑐1 + ℎ(𝑦𝑦)𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)]�𝐷𝐷2 − 𝛼𝛼0
2 − 𝛽𝛽0

2� − 𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝐷𝐷2ℎ��𝑉𝑉0(𝑦𝑦) 

 
 

                           = 𝑖𝑖𝑖𝑖𝛼𝛼0�𝑅𝑅𝑇𝑇0𝐷𝐷𝜃𝜃0 − 𝑅𝑅𝑆𝑆0𝐷𝐷ϕ0� + 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 �
�𝛼𝛼0

2 + 𝛽𝛽0
2��𝑅𝑅𝑇𝑇0𝜃𝜃1+𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ1 − 𝑅𝑅𝑆𝑆1ϕ0�

+2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�
�             (36) 

 
��𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝑖𝑖𝑐𝑐0�𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) = {2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) − 𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ}𝜃𝜃0                  (37) 

 
�𝛾𝛾�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2� + 𝑖𝑖𝑐𝑐0�ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦)      = {2𝛾𝛾(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) − 𝑖𝑖𝑐𝑐1 + 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ}ϕ0              (38) 

 
On using c0 = 0, and  𝛼𝛼0 + 𝛽𝛽0 = 𝜋𝜋2

2
 we get  

 

�𝜎𝜎 �𝐷𝐷2 − 𝜋𝜋2

2
�

2
� 𝑉𝑉1(𝑦𝑦) − 𝜎𝜎 �𝜋𝜋

2

2
�𝑅𝑅𝑇𝑇0𝜃𝜃1 − 𝑅𝑅𝑆𝑆0ϕ1�� = 𝜎𝜎 �4(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1) �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉0(𝑦𝑦)� − 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉0𝐷𝐷2ℎ 

                                                           +𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉0 − 𝑖𝑖𝑐𝑐1 �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉0 + 𝑖𝑖𝛼𝛼0𝜎𝜎�𝑅𝑅𝑇𝑇0𝐷𝐷𝜃𝜃0 − 𝑅𝑅𝑆𝑆0𝐷𝐷ϕ0� 

                                        +𝜎𝜎 𝜋𝜋2

2
�𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝑅𝑅𝑆𝑆1ϕ0� + 2𝜎𝜎(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)�𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝑅𝑅𝑆𝑆0ϕ0�                              (39)  

 
�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ𝜃𝜃0 − 𝑖𝑖𝑐𝑐1𝜃𝜃0 + 2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝜃𝜃0                            (40) 

 
𝛾𝛾�𝐷𝐷2 − 𝛼𝛼0

2 − 𝛽𝛽0
2�ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎϕ0 − 𝑖𝑖𝑐𝑐1ϕ0 + 2𝛾𝛾(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)ϕ0                           (41) 

 
where ℎ(𝑦𝑦) = 𝑈𝑈(𝑦𝑦)

(𝑅𝑅𝑇𝑇−𝑅𝑅𝑆𝑆)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑦𝑦3

3
− 𝑦𝑦2

2
+ 1

12
                                               (42) 

 

𝜎𝜎 �𝐷𝐷2 −
𝜋𝜋2

2
�

2

𝑉𝑉1(𝑦𝑦) − 𝜎𝜎𝑅𝑅𝑇𝑇0
𝜋𝜋2

2
𝜃𝜃1 + 𝜎𝜎𝜎𝜎𝑆𝑆0

𝜋𝜋2

2
ϕ1 

                    = 3𝜎𝜎𝜋𝜋2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷2ℎ − 𝑖𝑖𝛼𝛼0
3𝜋𝜋2

2
ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 −𝑖𝑖𝑐𝑐1
3𝜋𝜋2

2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑖𝑖𝛼𝛼0𝜎𝜎

9𝜋𝜋3

2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜎𝜎 2

3
�𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                (43) 

 
�𝐷𝐷2 − 𝜋𝜋2

2
� 𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦)  = 𝑖𝑖𝛼𝛼0

4
3𝜋𝜋2 ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑖𝑖𝑐𝑐1

4
3𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8

3𝜋𝜋2 (𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠             (44) 
 
𝛾𝛾 �𝐷𝐷2 − 𝜋𝜋2

2
� ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0

4
3𝜋𝜋2𝛾𝛾

ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑖𝑖𝑐𝑐1
4

3𝜋𝜋2𝛾𝛾
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8

3𝜋𝜋2𝛾𝛾
(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠               (45) 

 
Since the inhomogeneous part of equation must be orthogonal to the homogeneous adjoint solution, the eigen value 𝑅𝑅1, 
can be computed as follows: Multiplying the equation (43) by 𝑉𝑉∗, (44) by 𝜃𝜃∗ and equation (45) by 𝜙𝜙∗, summing and 
then integrating from y = 0 to y = 1, yields  
 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1 = −𝑖𝑖𝑐𝑐1 �

9𝜋𝜋2

4
1
𝜎𝜎

+ 2
3𝜋𝜋2 �

1
𝛾𝛾
𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾2 𝑅𝑅𝑆𝑆0��                                                           (46) 

 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1 = −𝑖𝑖𝑐𝑐1 �

9𝜋𝜋2

4
1
𝜎𝜎

+ 2
3𝜋𝜋2 �

1
𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝜋𝜋4

8
− 1

𝛾𝛾2 𝑅𝑅𝑆𝑆0��                                             (47) 
 
Since 𝑅𝑅𝑇𝑇1&𝑅𝑅𝑆𝑆1 are real, C1 must be imaginary. Thus to this order there is no oscillatory motion and the neutral state C1  

and hence 𝑅𝑅𝑇𝑇1 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆1 must equal to zero.  

 
𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1= 0                                                                              (48) 
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In view of equation (34) and the fact that  𝑅𝑅𝑇𝑇1 ,𝑅𝑅𝑆𝑆1𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶1    𝑅𝑅𝑇𝑇1 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆1= 0 , equations (44) to (46)  becomes  

𝜎𝜎 �𝐷𝐷2 −
𝜋𝜋2

2
�

2

𝑉𝑉1(𝑦𝑦) − 𝜎𝜎𝑅𝑅𝑇𝑇0
𝜋𝜋2

2
𝜃𝜃1 + 𝜎𝜎𝜎𝜎𝑆𝑆0

𝜋𝜋2

2
ϕ1 

                                 = 3𝜎𝜎𝜋𝜋2(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑖𝑖𝛼𝛼0𝜎𝜎
9𝜋𝜋3

2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑖𝑖𝛼𝛼0(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �3𝜋𝜋2

2
ℎ + 𝐷𝐷2ℎ� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠           (49) 

 
�𝐷𝐷2 − 𝜋𝜋2

2
� 𝜃𝜃1(𝑦𝑦)  + 2𝑉𝑉1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0

4
3𝜋𝜋2 ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8

3𝜋𝜋2 (𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                            (50) 
 
𝛾𝛾 �𝐷𝐷2 − 𝜋𝜋2

2
� ϕ1(𝑦𝑦) + 2𝑉𝑉1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0

4
3𝜋𝜋2𝛾𝛾

ℎ(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 8
3𝜋𝜋2𝛾𝛾

(𝛼𝛼0𝛼𝛼1 + 𝛽𝛽0𝛽𝛽1)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                          (51) 
 
Further elimination of 𝜃𝜃1 𝑎𝑎𝑎𝑎𝑎𝑎 ϕ1 yields  

��𝐷𝐷2 − 𝜋𝜋2

2
�

3
+ 27𝜋𝜋6

8
� 𝑉𝑉�1(𝑦𝑦)  = 1

𝜎𝜎
�
(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
� �𝜎𝜎 2

3
�𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾2 𝑅𝑅𝑆𝑆0� + 9𝜋𝜋4

4
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   

                    −�(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)3𝜋𝜋3 �𝑦𝑦 − 𝑦𝑦2 − 4
𝜋𝜋2� − 𝜎𝜎 27𝜋𝜋5

4
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�                           (52) 

 
where 𝑉𝑉1� (𝑦𝑦) = 1

𝑖𝑖𝛼𝛼0
𝑉𝑉1(𝑦𝑦)                                                 (53)          

 
With boundary conditions 
 
𝑉𝑉1� (𝑦𝑦) = 𝐷𝐷2𝑉𝑉1� = 0at y  = 0, 1 
 
Equation (50) and (51) can be simplified by substituting  
 
𝜃𝜃1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0𝜃̅𝜃1(𝑦𝑦) + 2(𝛼𝛼1𝛼𝛼0 + 𝛽𝛽1𝛽𝛽0)𝜃𝜃�1(𝑦𝑦)                                                            (54) 
 
ϕ1(𝑦𝑦) = 𝑖𝑖𝛼𝛼0𝜙𝜙�1(𝑦𝑦) + 2(𝛼𝛼1𝛼𝛼0 + 𝛽𝛽1𝛽𝛽0)𝜙𝜙�1(𝑦𝑦)                                                            (55) 
 
Then  
 
�𝐷𝐷2 − 𝜋𝜋2

2
� 𝜃̅𝜃1(𝑦𝑦)  = −2𝑉𝑉�1(𝑦𝑦) + 4

3𝜋𝜋2 (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦
3

3
− 𝑦𝑦2

2
+ 1

12
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                             (56) 

 
�𝐷𝐷2 − 𝜋𝜋2

2
� 𝜃𝜃�1(𝑦𝑦) = 4

3𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                (57) 
 
Clearly,   𝜃𝜃�1(𝑦𝑦) = − 8

9𝜋𝜋4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                  (58) 
 
𝛾𝛾 �𝐷𝐷2 − 𝜋𝜋2

2
�𝜙𝜙�1(𝑦𝑦)  = −2𝑉𝑉�1(𝑦𝑦) + 4

3𝜋𝜋2𝛾𝛾
(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0) �𝑦𝑦

3

3
− 𝑦𝑦2

2
+ 1

12
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                           (59) 

 
𝛾𝛾 �𝐷𝐷2 − 𝜋𝜋2

2
�𝜙𝜙�1(𝑦𝑦)  = 4

3𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                  (60) 
 
Clearly,  𝜙𝜙�1(𝑦𝑦)  = − 8

9𝜋𝜋4𝛾𝛾
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                  (61) 

 
As for 𝑉𝑉1� (𝑦𝑦),  𝜃̅𝜃1(𝑦𝑦) 𝑎𝑎𝑎𝑎𝑎𝑎 ϕ�1(𝑦𝑦), these had to be obtained via a numerical solution of equations (52), (56) and (59) are 
shown in figures. As required by their governing equations and the associated boundary conditions, the functions are 
anti-symmetric conditions with respect to mid-point y = 0.5. Also, it is apparent from figure that, for Prandtl number 
higher than 1.0.  
 
Considering the second order terms in 𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑 we get, 

𝜎𝜎 �𝐷𝐷2 −
𝜋𝜋2

2
�

2

𝑉𝑉2 − 𝜎𝜎
𝜋𝜋2

2
𝑅𝑅𝑇𝑇0𝜃𝜃2 + 𝜎𝜎

𝜋𝜋2

2
𝑅𝑅𝑆𝑆0ϕ2 

=  𝛼𝛼0
2 �(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉�1𝐷𝐷2ℎ + (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝐷𝐷2 −

𝜋𝜋2

2
�𝑉𝑉�1 − 𝑅𝑅𝑇𝑇0𝜎𝜎𝜎𝜎𝜃̅𝜃1  +   𝑅𝑅𝑆𝑆0𝜎𝜎𝜎𝜎ϕ�1� 

+𝑖𝑖𝛼𝛼0𝜉𝜉 �𝑅𝑅𝑇𝑇0𝜎𝜎𝜎𝜎𝜃𝜃�1 − 𝑅𝑅𝑆𝑆0𝜎𝜎𝜎𝜎ϕ�1 − (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ𝑉𝑉0 + 2𝜎𝜎 �𝐷𝐷2 −
𝜋𝜋2

2
�𝑉𝑉�1 + 𝜎𝜎𝑅𝑅𝑇𝑇0𝜃̅𝜃1 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1� 
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                       −𝑖𝑖 3𝜋𝜋2

2
𝑐𝑐2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜉𝜉2�𝜎𝜎𝜎𝜎𝑇𝑇0𝜃𝜃�1 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1 − 𝜎𝜎𝑉𝑉0� + 𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑇𝑇2𝜃𝜃0 − 𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑆𝑆2ϕ0 

                      +𝑖𝑖𝛼𝛼1 �(𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)ℎ �𝐷𝐷2 − 𝜋𝜋2

2
� 𝑉𝑉0 − (𝑅𝑅𝑇𝑇0 − 𝑅𝑅𝑆𝑆0)𝑉𝑉0𝐷𝐷2ℎ + 𝜎𝜎𝑅𝑅𝑇𝑇0𝐷𝐷𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆0𝐷𝐷ϕ0� 

                      +𝜁𝜁 �2𝜎𝜎 �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉0 + 𝜎𝜎𝑅𝑅𝑇𝑇0𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆0ϕ0�  + 𝑖𝑖𝛼𝛼0 �

(𝑅𝑅𝑇𝑇1 − 𝑅𝑅𝑆𝑆1)ℎ �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉0 − (𝑅𝑅𝑇𝑇1 − 𝑅𝑅𝑆𝑆1)𝑉𝑉0𝐷𝐷2ℎ +

𝜎𝜎𝑅𝑅𝑇𝑇1𝐷𝐷𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆1𝐷𝐷ϕ0 + 𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑇𝑇1𝜃̅𝜃1 − 𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑆𝑆1ϕ�1

� 

                      +𝜉𝜉 �𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑇𝑇1𝜃𝜃�1 − 𝜎𝜎 𝜋𝜋2

2
𝑅𝑅𝑆𝑆1ϕ�1 + 𝜎𝜎𝑅𝑅𝑇𝑇1𝜃𝜃0 − 𝜎𝜎𝑅𝑅𝑆𝑆1ϕ0�                                  (62) 

 

�𝐷𝐷2 −
𝜋𝜋2

2
�𝜃𝜃2 + 2𝑉𝑉2 = − 𝑖𝑖𝑐𝑐2𝜃𝜃0 + 𝜉𝜉2𝜃𝜃�1 + 𝜁𝜁𝜃𝜃0 + 𝑖𝑖𝛼𝛼0𝜉𝜉 (𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ 𝜃𝜃�1 − 𝑖𝑖𝛼𝛼0𝜉𝜉𝜃̅𝜃1 

                                          − 𝛼𝛼0
2(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0)ℎ 𝜃̅𝜃1 +  𝑖𝑖𝛼𝛼1(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ 𝜃𝜃0  +  𝑖𝑖𝛼𝛼0 (𝑅𝑅𝑇𝑇1 −  𝑅𝑅𝑆𝑆1)ℎ 𝜃𝜃0             (63) 

 

𝛾𝛾 �𝐷𝐷2 −
𝜋𝜋2

2
� ϕ2 + 2𝑉𝑉2 = − 𝑖𝑖𝑐𝑐2ϕ0 + 𝛾𝛾𝜉𝜉2ϕ�1 + 𝛾𝛾𝛾𝛾ϕ0 + 𝑖𝑖𝛼𝛼0𝜉𝜉 (𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ ϕ�1  − 𝑖𝑖𝛼𝛼0𝛾𝛾𝛾𝛾ϕ�1 

                                                 − 𝛼𝛼0
2(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0)ℎ ϕ�1 +  𝑖𝑖𝛼𝛼1(𝑅𝑅𝑇𝑇0 −  𝑅𝑅𝑆𝑆0) ℎ ϕ0  +  𝑖𝑖𝛼𝛼0 (𝑅𝑅𝑇𝑇1 −  𝑅𝑅𝑆𝑆1)ℎ ϕ0             (64) 

 
where 𝜉𝜉 = 2𝛼𝛼1𝛼𝛼0 + 2𝛽𝛽1𝛽𝛽0 ,           𝜁𝜁 = 2𝛼𝛼2𝛼𝛼0 + 𝛼𝛼1

2 + 2𝛽𝛽2𝛽𝛽0 + 𝛽𝛽𝛽𝛽1
2                                                         (65) 

 
Again, multiplying the first equation by V*, the second by 𝜃𝜃∗  and the third by ϕ∗, summing and integrating, yields  we 
gets 

𝑅𝑅𝑇𝑇2 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 𝜁𝜁 �

9𝜋𝜋2

2
+

4
3𝜋𝜋2 �𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆0�� +

9
2
𝜉𝜉2 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎) − 3𝑖𝑖𝛼𝛼0𝜉𝜉𝑘𝑘3(𝜎𝜎) 

                               +𝑖𝑖𝑐𝑐2 �
9𝜋𝜋2

4
1
𝜎𝜎
−  2

3𝜋𝜋2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾2 𝑅𝑅𝑆𝑆0�� − 𝑖𝑖𝛼𝛼0

3𝜋𝜋2

2
�𝑅𝑅𝑇𝑇1 ∫ 𝑉𝑉∗ 𝜃𝜃�1

1
0  𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑆𝑆1 ∫ 𝑉𝑉∗ϕ�1

1
0  𝑑𝑑𝑑𝑑�                       (66) 

where  
𝑘𝑘1(𝜎𝜎) = 3

𝜎𝜎 ∫ ��𝑉𝑉�1𝐷𝐷2ℎ − ℎ �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉�1 − 𝜎𝜎𝜎𝜎𝜃̅𝜃1� 𝑉𝑉∗ − ℎ𝜃̅𝜃1𝜃𝜃∗ − ℎϕ�1ϕ∗� 𝑑𝑑𝑑𝑑 1

0                                                         (67) 
 
𝑘𝑘2(𝜎𝜎) = 3

𝜎𝜎 ∫ ��𝑉𝑉�1𝐷𝐷2ℎ − ℎ �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉�1 − 𝜎𝜎𝜎𝜎ϕ�1� 𝑉𝑉

∗ − ℎ𝜃̅𝜃1𝜃𝜃∗ − ℎϕ�1ϕ∗� 𝑑𝑑𝑑𝑑   1
0                                            (68) 

 
𝑘𝑘3(𝜎𝜎) = 1

𝜎𝜎 ∫ ��2𝜎𝜎 �𝐷𝐷2 − 𝜋𝜋2

2
�𝑉𝑉�1 + 𝜎𝜎𝑅𝑅𝑇𝑇0 𝜃̅𝜃1 −  𝜎𝜎𝑅𝑅𝑆𝑆0ϕ�1�𝑉𝑉

∗ + 𝜃̅𝜃1𝜃𝜃∗ + 𝛾𝛾ϕ�1ϕ∗� 𝑑𝑑𝑑𝑑    1
0                                           (69) 

 
At the neutral state, c2 must be real, since  𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 is real, imaginary and real parts of equations becomes 

 
𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 𝜁𝜁 �9𝜋𝜋2

2
+ 4

3𝜋𝜋2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾
𝑅𝑅𝑆𝑆0�� + 9

2
𝜉𝜉2 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎)                                          (70) 

 
And 
𝑐𝑐2 �

9𝜋𝜋2

4
1
𝜎𝜎
−  2

3𝜋𝜋2 �𝑅𝑅𝑇𝑇0 −
1
𝛾𝛾2 𝑅𝑅𝑆𝑆0�� = 3𝛼𝛼0𝜉𝜉𝑘𝑘3(𝜎𝜎) + 𝛼𝛼0

3𝜋𝜋2

2
�𝑅𝑅𝑇𝑇1 ∫ 𝑉𝑉∗ 𝜃𝜃�1

1
0  𝑑𝑑𝑑𝑑 − 𝑅𝑅𝑆𝑆1 ∫ 𝑉𝑉∗ϕ�1

1
0  𝑑𝑑𝑑𝑑�                           (71) 

 
Since  𝑅𝑅𝑇𝑇0 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆0 = 27𝜋𝜋4

8
 

 
𝑅𝑅𝑇𝑇2 −

1
𝛾𝛾
𝑅𝑅𝑆𝑆2 = 9

2
𝜉𝜉2 + 9𝜋𝜋2𝜁𝜁 − 𝛼𝛼0

2𝑅𝑅𝑇𝑇0𝑘𝑘1(𝜎𝜎) + 𝛼𝛼0
2𝑅𝑅𝑆𝑆0𝑘𝑘2(𝜎𝜎)                                             (72) 

 
5. RESULTS AND DISCUSSION 
 
This is the problem of buoyancy driven convection when both the temperature and solutal concentration suffer from the 
differences in the lower and upper surfaces and also convection caused by the effect of inclination of the tilted surfaces 
from the horizontal direction. The critical Rayleigh number at neutral state depends on various parameters on the wave 
number, solutal Rayleigh number and the angle of inclination etc. The minimum critical Rayleigh number value is               
𝑅𝑅𝑇𝑇0 = 1

𝛾𝛾
𝑅𝑅𝑆𝑆0 + 27𝜋𝜋4

8
 for a steady longitudinal roll disturbance. For other disturbances, when 𝛼𝛼0  ≠ 0, the critical 

Rayleigh number is given by equation (72) shows that oscillatory motions can be excluded. The results obtained shows 
interesting prediction that if the Rayleigh number  increased past the critical value, the convective instability for small 
values of 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 will lead to steady parallel rolls having definite wave length and with their axis in the x-direction 
rather than being oscillatory. The critical Rayleigh number sharply increases with solutal Rayleigh number and 
decreases due to the presence of Lewes number.  
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The critical Rayleigh number is the same as that for double diffusive convection for longitudinal disturbances having 
their axes aligned in the direction of mean flow. i.e. 𝛼𝛼0 = 0. For other disturbances (𝛼𝛼0  ≠ 0) which generally lead to 
oscillatory instability in single as well as double diffusive components for horizontal, inclined fluid layers and inclined 
slots as well. The critical Rayleigh number expression found to depend on various parameters and remains stationary 
for all other disturbance wave numbers. For the disturbance with 𝛼𝛼0  ≠ 0  shows sharp dependence on the various 
parameters such as Prandtl numbers, RS0, RT0 and 𝐾𝐾1 = 𝐾𝐾1( 𝜎𝜎 ,𝑅𝑅𝑆𝑆0 , 𝛾𝛾 ) and 𝐾𝐾2 = 𝐾𝐾2( 𝜎𝜎 ,𝑅𝑅𝑆𝑆0 , 𝛾𝛾 ). It can be readily 
seen from the graphs  𝐾𝐾1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾2  they reach the asymptotic values and thus the critical Rayleigh number also reaches 
asymptotic values and are negative and positive. The numerical solution obtained for 𝑉𝑉�1(𝑦𝑦), 𝜃̅𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are 
depicted graphically in figures 2 to 27. As requires by their governing equations and boundary conditions show that 
𝑉𝑉�1(𝑦𝑦)and  𝜃̅𝜃1(𝑦𝑦)  are antisymmetric and 𝜃̅𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are symmetric but not identically similar. It is apparent that 
for Prandtl numbers higher than 1.0 the magnitude of 2𝑉𝑉1 is much less than one would expect  𝜃̅𝜃1(𝑦𝑦) and 𝜙𝜙�1(𝑦𝑦) are 
intensive to the Prandtl number.  
 
The predicted flow pattern at the neutral state seems to depend primarily on both the hydrodynamic as well as thermal 
convection. Thermal instability occurs when the layer is nearly horizontal and is heated from below. In contrast when 
the mechanism of instability is hydrodynamic when it is vertical or when it is positioned at an angle tshat it corresponds 
to two opposing convective streams. Within the transition range of the angle of inclination both mechanisms are active 
and lead to rather complicated dependence of the critical Rayleigh number ϕ and σ and solutal Rayleigh number which 
leads to the special case of transverse rolls.  
 
The present analysis and the principle conclusions from this study would not have been affected by the use of more 
realistic boundary conditions. 
 

 
Figure: 2 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 3 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 4 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 5 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 6 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 7 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 8 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 9 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 
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Figure: 10 Variation of 𝑉𝑉�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 11 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of RS0 

 
 

 
Figure: 12 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of RS0 
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Figure: 13 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 14 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 15 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 
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Figure: 16 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 17 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 18 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 
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Figure: 19 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 20 Variation of 𝜃̅𝜃1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 21 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of RS0 
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Figure: 22 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of RS0 

 

 
Figure: 23 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 
 

 
Figure: 24 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 
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Figure: 25 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 26 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 

 
Figure: 27 Variation of 𝜙𝜙�1(𝑦𝑦) with y for different values of σ 

 
 
 



P. M. Balagondar1 and Suresha M.2* / Double Diffusive Convective Instability driven by Thermal and Solutal gradients in an 
Inclined Slot / IJMA- 4(11), Nov.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                      183   

 
Figure: 28 Variation of K1 verses ratio of diffusivities 

 

 
Figure: 29 Variation of K1 verses ratio of diffusivity 

 
 

 
Figure: 30 Variation of K1 verses ratio of diffusivity 
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Figure: 31 Variation of K1 verses Prandtl number  

 

 
Figure: 32 Variation of K1 verses Prandtl number 

 
 

 
Figure: 33 Variation of K2 verses ratio of diffusivity 

 
 
 



P. M. Balagondar1 and Suresha M.2* / Double Diffusive Convective Instability driven by Thermal and Solutal gradients in an 
Inclined Slot / IJMA- 4(11), Nov.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                      185   

 
Figure: 34 Variation of K2 verses ratio of diffusivity 

 

 
Figure: 35 Variation of K2 verses Prandtl number 

 

 
Figure: 36 Variation of K2 verses Prandtl number 
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