(Ca) MA Available online through www.ijma.info ISSN 2229-5046

CONNECTED DOMINATION POLYNOMIAL OF A GRAPH

*Dhananjaya Murthy B. V.
Department of Mathematics, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, India.

Deepak G.
Acharya Institute of Graduate Studies, Soldevanhalli, Achitnagar, Bangalore -107, India.

N. D. Soner
Department of Studies in Mathematics, University of Mysore, Mysore - 570 006, India.

(Received on: 08-10-13; Revised \& Accepted on: 29-11-13)

Abstract

$\boldsymbol{L}_{\text {et }} G=(V, E)$ be a simple connected graph of order n. A connected dominating set of G is a set S of vertices of G such that every vertex in $V-S$ is adjacent to some vertex in S and the induced subgraph $\langle S\rangle$ is connected. The connected domination number $r_{c}(G)$ is the minimum cardinality of a connected dominating set of G. In this paper we introduce the connected domination polynomial of G. The connected domination polynomial of a connected graph G of order n is the polynomial $D_{c}(G, x)=$ $\sum_{\mathrm{i}=\mathrm{Y}_{\mathrm{c}}(\mathrm{G})}^{\mathrm{n}} \mathrm{d}_{\mathrm{c}}(\mathrm{G}, \mathrm{i}) \mathrm{x}^{\mathrm{i}}$, where $d_{c}(G, i)$ is the number of connected dominating set of G of size i and $r_{c}(G)$ is

 the connected domination number of G. We obtain some basic properties of the connected domination polynomial and compute this polynomial and its roots for some standard graphs.Keywords: Connected dominating set, connected domination polynomial, connected domination roots.
Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Throughout this paper we will consider only a simple connected graphs finite and undirected, without loops and multiple edges. As usual $p=|V|$ and $q=|E|$ denote the number of vertices and edges of a graph G, respectively. In general, we use $\langle\mathrm{X}\rangle$ to denote the subgraph induced by the set of vertices X. $\mathrm{N}(\mathrm{v})$ and $\mathrm{N}[\mathrm{v}]$ denote the open and closed neighbourhood of a vertex v , respectively. A set D of vertices in a graph G is a dominating set if every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to some vertex in D . The domination number $\Upsilon(G)$ is the minimum cardinality of a dominating set of G. For terminology and notations not specifically defined here we refer reader to [4]. For more details about domination number and its related parameters, we refer to [5], [7], and [9].

A dominating set S of G is called a connected dominating set if the induced subgraph $\langle\mathrm{S}\rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\Upsilon_{c}(\mathrm{G})$ [8].

A dominating set with cardinality $\Upsilon_{c}(G)$ is called Υ_{c}-set. We denote the family of dominating sets of a graph G with cardinality i by $\mathrm{D}_{\mathrm{c}}(\mathrm{G}, \mathrm{i})$.

Corresponding author: *Dhananjaya Murthy B. V.
Department of Mathematics, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, India.

Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ be two graphs. Then their union $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ is a graph with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. The join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets X_{1} and X_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. A spider is a tree T with the property that the removal of all end paths of length two of T results in an isolated vertex, called the head of spider. For any real number $x,\lceil x\rceil$ denotes the smallest integer greater than or equal to x, and $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.

The domination polynomial of a graph is introduced by Saeid Alikhani and Yee- hock Peng [1].
In this paper motivated by domination polynomial of a graph [1], we introduce the connected domination polynomial of G, we obtain some properties of the connected domination polynomial and compute this polynomial and its roots for some standard graphs.

2. CONNECTED DOMINATION POLYNOMIAL OF A GRAPH

Definition: 2.1 Let G be a connected graph of order n and let $\mathrm{d}_{\mathrm{c}}(\mathrm{G}$, i) denoted the number of connected dominated sets with cardinality i. Then the connected domination polynomial $D_{c}(G, x)$ of G is defined as:

$$
D_{c}(G, x)=\sum_{i=v_{c}(G)}^{n} d_{c}(G, i) x^{i},
$$

where $\Upsilon_{c}(G)$ is the connected domination number of G. The roots of the connected domination polynomial are called the connected domination roots of G and denoted by $\mathrm{Z}\left(\mathrm{D}_{\mathrm{c}}(\mathrm{G}, \mathrm{X})\right)$.

Example: 2.2 Let G be the graph in the Figure 1, $\mathrm{V}(\mathrm{G})=\{1,2,3,4\}$. Then the connected domination number is one and the connected dominating set of size two are $\{1,2\},\{2,3\},\{2,4\}$, the connected dominating sets of size three are $\{1,2,3\},\{1,2,4\},\{2,3,4\}$ and one connected dominating set of size four. Hence

$$
\mathrm{D}_{\mathrm{c}}(\mathrm{G}, \mathrm{x})=\mathrm{x}\left(\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1\right),
$$

and the connected dominating roots of G are 0 and -1 with three multiplicities.

Figure 1: G
Theorem: 2.3 For any path P_{n} on $\mathrm{n} \geq 3$ vertices,

$$
\mathrm{D}_{\mathrm{c}}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right)=\mathrm{x}^{\mathrm{n}}+2 \mathrm{x}^{\mathrm{n}-1}+\mathrm{x}^{\mathrm{n}-2},
$$

and the connected dominating roots are 0 with multiplicity $\mathrm{n}-2$ and -1 with multiplicity 2 .
Proof: Let G be path P_{n} with $\mathrm{n} \geq 3$ and let $\mathrm{P}_{\mathrm{n}}=\left\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. The connected domination number of P_{n} is $\mathrm{n}-2$ and there is only one connected domination set of order $\mathrm{n}-2$. That means $\mathrm{d}_{\mathrm{c}}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{n}-2\right)=1$.

Also there are only two connected dominating sets of order $\mathrm{n}-1$ namely $\left\{\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right\}$. Therefore $d_{c}(\mathrm{Pn}, \mathrm{n}-1)=2$ and clearly there is only one connected dominating set of order n . Hence $D_{c}\left(P_{n}, x\right)=x^{n}+2 x^{n-1}+x^{n-2}$ and it is clear that the roots of the polynomial $x^{n}+2 x^{n-1}+x^{n-2}$ are 0 with multiplicity $\mathrm{n}-2$ and -1 with multiplicity 2 .

Theorem: 2.4 For any cycle C_{n} with n vertices,

$$
\mathrm{D}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{x}\right)=\mathrm{x}^{\mathrm{n}-2}\left(\mathrm{x}^{2}+\mathrm{nx}+\mathrm{n}\right),
$$

and the connected dominating roots are 0 with multiplicity $(n-2)$ and $\frac{-n+\sqrt{n^{2}-4 n}}{2}$, $\frac{-\mathrm{n}-\sqrt{\mathrm{n}^{2}-4 \mathrm{n}}}{2}$

Proof: Let G be a cycle C_{n} with n and let $\mathrm{C}_{\mathrm{n}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right\}$. The connected domination number of C_{n} is $\mathrm{n}-2$ and there are n possibilities for the connected dominating set of size ($n-2$). That means $\mathrm{d}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{n}-2\right)=\mathrm{n}$.

Also there are only n connected dominating sets of order $\mathrm{n}-1$ namely $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \ldots$, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}-1\}}\right\}$. Therefore $\mathrm{d}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{n}-1\right)=\mathrm{n}$ and clearly there is only one connected dominating set of order n. Hence $D_{c}\left(C_{n}, x\right)=x^{n}+n x^{n-1}+n x^{n-2}=x^{n-2}\left(x^{2}+n x+n\right)$ and the roots of this polynomial are 0 with multiplicity $n-2$ and

$$
\frac{-\mathrm{n}+\sqrt{\mathrm{n}^{2}-4 \mathrm{n}}}{2}, \frac{-\mathrm{n}-\sqrt{\mathrm{n}^{2}-4 \mathrm{n}}}{2}
$$

Theorem: 2.5 For any star graph $K_{1, n}$ with $n+1$ vertices, where $n \geq 2, D_{c}\left(K_{1}, n, x\right)=x(1+x)^{n}$ and the connected dominating roots are 0 and -1 with multiplicity n.

Proof: Let G be star graph of size $\mathrm{n}+1$ and $\mathrm{n} \geq 2$. By labeling the vertices of G as $\mathrm{v} 0, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$, where v_{0} is the vertex of degree n , then clearly there is only one connected dominating set of size one and there are n connected dominating set of size two namely $\left\{\mathrm{v}_{0}, \mathrm{v}_{1}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{3}\right\}, \ldots,\left\{\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}\right\}$. Similarly for the connected dominating set of size three we need to select the vertex v_{0} and two vertices from the set of vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{vn}\right\}$.

That means there are $\binom{\mathrm{n}}{2}$ connected dominating sets. In general
$\mathrm{d}_{\mathrm{c}}(\mathrm{G}, \mathrm{i})=\binom{\mathrm{n}}{\mathrm{i}-1}$
Hence

$$
\begin{aligned}
D_{c}\left(K_{1, n, 2} x\right) & =x+n x^{2}+\binom{n}{2} x^{3}+\binom{n}{3} x^{4}+\ldots .+\binom{n}{n} x^{n+1} \\
& =x\left[1+n x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{2}\right] \\
& =x \sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& =x(1+x)^{n}
\end{aligned}
$$

Thus, the connected dominating roots are 0 and -1 with multiplicity n .
Theorem: 2.6 For any complete graph K_{n} of n vertices,

$$
\mathrm{D}_{\mathrm{c}}\left(\mathrm{~K}_{\mathrm{n}}, \mathrm{x}\right)=(1+\mathrm{x})^{\mathrm{n}}-1 .
$$

Proof: Let G be a complete graph K_{n}. Then for any $1 \leq i \leq n$, it is easy to see that $d_{c}\left(K_{n}, i\right)=\binom{n}{i}$. Therefore

$$
\begin{aligned}
D_{c}\left(K_{n,} x\right) & =\sum_{i=1}^{n}\binom{n}{i} x^{i} \\
& =n x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\binom{n}{4} x^{4}+\ldots+\binom{n}{n} x^{n} \\
& =\left[\sum_{i=0}^{n}\binom{n}{i} x^{i}\right]-1 \\
& =(x+1)^{n}-1
\end{aligned}
$$

Theorem: 2.7 Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ be two graphs of orders n_{1} and n_{2} respectively. Then

$$
\mathrm{D}_{\mathrm{c}}\left(\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right), \mathrm{x}\right)=\mathrm{D}_{\mathrm{c}}\left(\mathrm{G}_{1}, \mathrm{x}\right)+\mathrm{D}_{\mathrm{c}}\left(\mathrm{G}_{2}, \mathrm{x}\right)+\left[(1+\mathrm{x})^{\mathrm{n}_{1}}-1\right]\left[(1+\mathrm{x})^{\mathrm{n}_{2}}-1\right]
$$

Proof: From the definition of $\left(G_{1}+G_{2}\right)$ if $D 1$ be any connected dominating set of G_{1}, then D_{1} is connected dominating set of $\left(G_{1}+G_{2}\right)$, similarly if $D 2$ be any connected dominating set of G_{2}, then D_{2} is connected dominating set of $\left(G_{1}+G_{2}\right)$ and also $D_{1} \cup D_{2}$ is connected dominating set of $\left(G_{1}+G_{2}\right)$,
then

$$
\begin{aligned}
D_{c}\left(\left(G_{1}+G_{2}\right), x\right) & =D_{c}\left(G_{1}, x\right)+D_{c}\left(G_{2}, x\right) \\
& +\binom{n_{1}}{1}\binom{n_{2}}{1} x^{2}+\binom{n_{1}}{1}\binom{n_{2}}{1} x^{3} \\
& +\binom{n_{1}}{2}\binom{n_{2}}{1} x^{3}+\binom{n_{1}}{1}\binom{n_{2}}{3} x^{4}+\binom{n_{2}}{2}\binom{n_{2}}{2} x^{4} \\
& +\binom{n_{1}}{3}\binom{n_{2}}{1} x^{4}+\binom{n_{1}}{1}\binom{n_{2}}{4} x^{5}+\binom{n_{1}}{2}\binom{n_{2}}{3} x^{5} \\
& +\binom{n_{1}}{3}\binom{n_{2}}{2} x^{5}+\binom{n_{1}}{4}\binom{n_{2}}{1} x^{5} \\
& +\ldots+\left(\binom{n_{1}}{1}\binom{n_{2}}{n_{1}+n_{2}-1}+\ldots+\binom{n_{1}}{n_{1}+n_{2}-1}\binom{n_{2}}{1}\right] x^{n_{1}+n_{2}} \\
& =\left[\binom{n_{1}}{1} x+\binom{n_{1}}{2} x^{2}+\ldots+\binom{n_{1}}{n_{1}} x^{n_{1}}\binom{n_{2}}{1} x+\binom{n_{2}}{2} x^{2}+\ldots+\binom{n_{2}}{n_{2}} x^{n_{2}}\right] \\
& +D_{c}\left(G_{1}, x\right)+D_{c}\left(G_{2}, x\right) \\
& =D_{c}\left(G_{1}, x\right)+D_{c}\left(G_{2}, x\right)+\sum_{i=1}^{n_{1}}\binom{n_{1}}{i} x^{i} \sum_{i=1}^{n_{2}}\binom{n_{2}}{i} x^{i} \\
& =D_{c}\left(G_{1}, x\right)+D_{c}\left(G_{2}, x\right)+\left[(1+x)^{n_{1}}-1\right]\left[(1+x)^{n_{2}}-1\right]
\end{aligned}
$$

Corollary: 2.8 Let G be any wheel graph W_{n} with n vertices. Then

$$
D_{c}(G, x)=x(1+x)^{n-1}+x^{n-1}+(n-1) x^{n-2}+(n-1) x^{n-3}
$$

Proof: It is known that $\mathrm{W}_{\mathrm{n}} \cong \mathrm{C}_{\mathrm{n}}-1+\mathrm{K}_{1}$ and by using Theorem 2.7, we have
$\mathrm{D}_{\mathrm{c}}\left(\left(\mathrm{C}_{\mathrm{n}-1}+\mathrm{K}_{1}\right), \mathrm{x}\right)=\mathrm{D}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{n}-1}, \mathrm{x}\right)+\mathrm{D}_{\mathrm{c}}\left(\mathrm{K}_{1}, \mathrm{x}\right)+\left[(1+\mathrm{x})^{\mathrm{n}-1}-1\right]\left[(1+\mathrm{x})^{1}-1\right]$
Also by using Theorems 2.4 and 2.6, we get

$$
\begin{aligned}
\mathrm{D}_{\mathrm{c}}\left(\left(\mathrm{C}_{\mathrm{n}-1}+\mathrm{K}_{1}\right), \mathrm{x}\right) & =\mathrm{D}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{n}-1}, \mathrm{x}\right)+\mathrm{D}_{\mathrm{c}}\left(\mathrm{~K}_{1}, \mathrm{x}\right)+\left[(1+\mathrm{x})^{\mathrm{n}-1}-1\right]\left[(1+\mathrm{x})^{1}-1\right] \\
& =\mathrm{x}^{\mathrm{n}-1}+(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-2}+(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-3}+\mathrm{x}+\mathrm{x}\left[(1+\mathrm{x})^{\mathrm{n}-1}-1\right] \\
& =\mathrm{x}(1+\mathrm{x})^{\mathrm{n}-1}+\mathrm{x}^{\mathrm{n}-1}+(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-2}+(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-3} .
\end{aligned}
$$

Theorem: 2.9 Let G be any complete bipartite graph $K_{m, n}$, where $1<m \leq n$. Then

$$
D_{c}(G, x)=\left[(1+x)^{m}-1\right]\left[(1+x)^{n}-1\right]
$$

Proof: If G is complete bipartite graph with partite sets V_{1} and V_{2}, then any connected dominating set of G contains atleast one vertex from V_{1} and at least one vertex from V_{2}. So as in Theorem 2.7, we have

$$
\begin{aligned}
D_{c}(G, x)= & \binom{m}{1}\binom{n}{1} x^{2}+\binom{m}{1}\binom{n}{2} x^{3}+\binom{m}{2}\binom{n}{1} x^{3} \\
& +\ldots+\left[\binom{m}{1}\binom{n}{m+n-1}+\ldots+\binom{m}{n+m-1}\binom{n}{1}\right] x^{m+n} \\
& =\left[\binom{m}{1} x+\binom{m}{2} x^{2}+\ldots+\binom{m}{m} x^{m}\right]\left[\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}\right] \\
& =\sum_{i=1}^{m}\binom{m}{i} x^{i} \sum_{i=1}^{n}\binom{n}{i} x^{i} \\
& =\left[(1+x)^{m}-1\right]\left[(1+x)^{n}-1\right] .
\end{aligned}
$$

Theorem: 2.10 For any connected graph G with n vertices,

$$
\mathrm{D}_{\mathrm{c}}\left(\mathrm{G} \circ \mathrm{~K}_{1}, \mathrm{x}\right)=\left(\mathrm{x}^{2}+\mathrm{x}\right)^{\mathrm{n}}
$$

Proof: Let $H=G \circ K_{1}$. Then clearly $Y_{c}(H)=n$ and it is easy to see that there are $\binom{n}{i}$ possibilities to extend the connected dominating into connected dominating set of size $n+i$. Hence

$$
\begin{aligned}
D_{c}(H, x) & =x^{n}+\binom{n}{1} x^{n+1}+\binom{n}{2} x^{n+2}+\ldots+x^{2 n} \\
& =x^{n}\left(1+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+x^{n}\right) \\
& =x^{n}\left(\sum_{k=0}^{n}\binom{n}{k} x^{k}\right) \\
& =x^{n} \sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& =\left(x^{2}+x\right)^{n} .
\end{aligned}
$$

Theorem: 2.11 For any connected graph G with n vertices,

$$
\mathrm{Dc}\left(\mathrm{G} \circ \overline{\mathrm{~K}_{\mathrm{m}}}, \mathrm{x}\right)=\mathrm{x}^{\mathrm{n}}(1+\mathrm{x})^{\mathrm{mn}}
$$

Proof: Let $H=G \circ \overline{K_{m}}$, Then clearly $\Upsilon_{c}(H)=n$ and it is obvious that $\binom{\mathrm{mn}}{\mathrm{i}}$ possibilities to extend the connected dominating into connected dominating set of size $n+i$, where $1 \leq i \leq m n$. Hence

$$
\begin{aligned}
D_{c}(H, x) & =x^{n}+\binom{m n}{1} x^{n+1}+\binom{m n}{2} x^{n+2}+\ldots+x^{n(m+1)} \\
& =x^{n}\left(1+\binom{m n}{1} x+\binom{m n}{2} x^{2}+\ldots+x^{m n}\right) \\
& =x^{n}\left(\sum_{i=1}^{m n}\binom{m n}{i} x^{i}\right) \\
& =x^{n}(1+x)^{m n}
\end{aligned}
$$

A bi-star is a tree obtained from the graph K_{2} with two vertices u and v by attaching m pendant edges in u and n pendant edges in v and denoted by $B(m, n)$.

Theorem: 2.12 Let G be a bi-star graph $B(m, n)$ as in Figure 2. Then

$$
\mathrm{D}_{\mathrm{c}}(\mathrm{~B}(\mathrm{~m}, \mathrm{n}), \mathrm{x})=\mathrm{x}^{2}(1+\mathrm{x})^{\mathrm{m}+\mathrm{n}} .
$$

Figure 2:
Proof: Let G be a bi-star and with labeling as in Figure 2. Then $\Upsilon_{c}(B(m, n))=2$ namely the set $\{u, v\}$ is the only unique minimum connected dominating set. Hence $d_{c}\left(B(m, n), \Upsilon_{c}\right)=1$, and it is obvious that any other connected dominating set must be contain the two vertices u and v. Hence there are $\binom{m+n}{1}$ possibilities to extend the connected dominating into connected dominating set of size 3 , and there are $\binom{m+n}{2}$ possibilities to extend the connected dominating into connected dominating set of size 4. In general it is easy to see that there are $\binom{m+n}{i-2}$ possibilities to extend the connected dominating into connected dominating set of size i. Therefore

$$
\begin{aligned}
D_{c}(B(m, n), x) & =x^{2}+\binom{m+n}{1} x^{3}+\binom{m+n}{2} x^{4}+\ldots+x^{n+m+2} \\
& =x^{2}\left(1+\binom{m+n}{1} x+\binom{m+n}{2} x^{2}+\binom{m+n}{3} x^{3} \ldots+x^{m+n}\right) \\
& =x^{2}(1+x)^{m+n} .
\end{aligned}
$$

REFERENCES

[1] Saeid Alikhani and Yee-hock Peng, Introduction to domination polynomial of a graph, arXiv: 0905. 2251 V 1 (2009).
[2] J. Bondy and U. Murthy, Graph Theory with applications, North Holland, New York, (1976).
[3] C. Godsil and G. Royle, Algebraic graph theory, vol. 207 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.
[4] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
[6] S. R. Jayaram, Line domination in graphs, Graphs Combin. 3 (1987), 357-363.
[7] E. Sampathkumar and P. S. Neeralagi, The neighbourhood number of a graph, Indian J. Pure and Appl. Math. 16 (2) (1985) 126-132.
[8] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci., 13(1979), 607-613.
[9] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory of domination in graphs, Mehta Research Institute, Alahabad, MRI Lecture Notes in Math. 1 (1979).

Source of support: Nil, Conflict of interest: None Declared

