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ABSTRACT 
In this paper, we prove a common fixed point theorem in Menger spaces by using five compatible mappings.  
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I. INTRODUCTION AND PRELIMINARIES 
 
There have been a number of generalizations of metric space. One such generalization is Menger space in which, used 
distribution functions instead of nonnegative real numbers as value of metric. A Menger space is a space in which the 
concept of distance is considered to be a probabilistic, rather than deterministic. For detail discussion of Menger spaces 
and their applications we refer to Schweizer and Sklar [16]. The theory of Menger space is fundamental importance in 
probabilistic functional analysis.   
 
The important development of fixed point theory in Menger spaces were due to Sehgal and Bharucha-Reid [13]. A  
probabilistic metric space shortly 𝑃𝑃𝑃𝑃-Space, is an ordered pair (𝑋𝑋,𝐹𝐹) consisting of a non empty set 𝑋𝑋 and a mapping 𝐹𝐹 
from 𝑋𝑋 ×  𝑋𝑋 to 𝐿𝐿, where 𝐿𝐿 is the collection of all distribution functions (a distribution function 𝐹𝐹 is non decreasing and 
left continuous mapping of reals in to [0,1] with properties, 𝑖𝑖𝑖𝑖𝑖𝑖 𝐹𝐹(𝑥𝑥) = 0 and 𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹(𝑥𝑥) = 1).   
 
The value of 𝐹𝐹 at (𝑥𝑥,𝑦𝑦) ∈  𝑋𝑋 ×  𝑋𝑋 is represented by 𝐹𝐹𝑥𝑥 ,𝑦𝑦 . The function 𝐹𝐹𝑥𝑥 ,𝑦𝑦  are assumed satisfy the following 
conditions: 
(FM-0) 𝐹𝐹𝑥𝑥 ,𝑦𝑦  (𝑡𝑡)  = 1, for all 𝑡𝑡 > 0, iff 𝑥𝑥 = 𝑦𝑦;  
(FM-1) 𝐹𝐹𝑥𝑥 ,𝑦𝑦  (0) = 0, if 𝑡𝑡 = 0; 
(FM-2) 𝐹𝐹𝑥𝑥 ,𝑦𝑦(𝑡𝑡) =𝐹𝐹𝑦𝑦 ,𝑥𝑥(𝑡𝑡); 
(FM-3) 𝐹𝐹𝑥𝑥 ,𝑦𝑦  (𝑡𝑡)  =  1 and  𝐹𝐹𝑦𝑦 ,𝑧𝑧  (𝑠𝑠)  =  1 then 𝐹𝐹𝑥𝑥 ,𝑧𝑧  (𝑡𝑡 +  𝑠𝑠) = 1. 
 
A mapping 𝑇𝑇: [0,1] × [0,1] → [0,1] is a 𝑡𝑡-norm, if it satisfies the following conditions: 
(FM-4) 𝑇𝑇(𝑎𝑎, 1) = 𝑎𝑎 for every 𝑎𝑎 ∈ [0,1]; 
(FM-5) 𝑇𝑇(0, 0) = 0, 
(FM-6) 𝑇𝑇(𝑎𝑎, 𝑏𝑏) = 𝑇𝑇(𝑏𝑏, 𝑎𝑎) for every 𝑎𝑎, 𝑏𝑏 ∈ [0,1]; 
(FM-7) 𝑇𝑇(𝑐𝑐,𝑑𝑑)  ≥ 𝑇𝑇(𝑎𝑎, 𝑏𝑏)for 𝑐𝑐 ≥ 𝑎𝑎 and 𝑑𝑑 ≥ 𝑏𝑏 
(FM-8) 𝑇𝑇(𝑇𝑇(𝑎𝑎, 𝑏𝑏), 𝑐𝑐) = 𝑇𝑇(𝑎𝑎,𝑇𝑇(𝑏𝑏, 𝑐𝑐)) where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ [0,1]. 
 
A Menger space is a triplet (𝑋𝑋,𝐹𝐹,𝑇𝑇), where (𝑋𝑋,𝐹𝐹) is a 𝑃𝑃𝑃𝑃-Space, 𝑋𝑋 is a non-empty set and a 𝑡𝑡 − norm satisfying 
instead of (FM-8) a stronger requirement. 
(FM-9)  𝐹𝐹𝑥𝑥 ,𝑧𝑧  (𝑡𝑡 +  𝑠𝑠) ≥ 𝑇𝑇 �𝐹𝐹𝑥𝑥 ,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦 ,𝑧𝑧(𝑠𝑠)� for all 𝑥𝑥 ≥ 0, 𝑦𝑦 ≥ 0. 
 
For a given metric space (𝑋𝑋,𝑑𝑑) with usual metric 𝑑𝑑, one can put 𝐹𝐹𝑥𝑥 ,𝑦𝑦  (𝑡𝑡)  =  𝐻𝐻 (𝑡𝑡 − 𝑑𝑑(𝑥𝑥,𝑦𝑦)) for all 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 and 
t > 0. where 𝐻𝐻 is defined as:  

𝐻𝐻(𝑡𝑡)  =  �1  𝑖𝑖𝑖𝑖 𝑠𝑠 > 0,
 0  𝑖𝑖𝑖𝑖 𝑠𝑠 ≤ 0.

� 

and 𝑡𝑡-norm 𝑇𝑇 is defined as 𝑇𝑇(𝑎𝑎, 𝑏𝑏) =  𝑚𝑚𝑚𝑚𝑚𝑚 {𝑎𝑎, 𝑏𝑏}.  
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For the proof of our result we required the following definitions. 
 
Definition: 1.1 [11] Let (𝑋𝑋,𝐹𝐹,∗) be a Menger space and ∗ be a continuous 𝑡𝑡-norm. 
a) A sequence {𝑥𝑥𝑛𝑛} in 𝑋𝑋 is said to be converge to a point 𝑥𝑥 in 𝑋𝑋 (written 𝑥𝑥𝑛𝑛→𝑥𝑥) iff for every 𝜀𝜀 > 0 and λ ∈

 (0, 1), there exists an integer 𝑛𝑛0 =  𝑛𝑛0(𝜀𝜀, 𝜆𝜆) such that 𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥(𝜀𝜀) > 1 − λ for all 𝑛𝑛 ≥  𝑛𝑛0. 
 

b) (b) A sequence {𝑥𝑥𝑛𝑛} in 𝑋𝑋 is said to be Cauchy if for every ε > 0 and 𝜆𝜆 ∈ (0, 1), there exists an integer 𝑛𝑛0 = 
𝑛𝑛0(ε, λ) such that 𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+𝑝𝑝  (ε) > 1 − λ for all 𝑛𝑛 ≥  𝑛𝑛0 and 𝑝𝑝 >  0. 
 

c) A Menger space in which every Cauchy sequence is convergent is said to be complete. 
 
Remark: 1.2 If ∗ is a continuous t-norm, it follows from (𝐹𝐹𝐹𝐹 − 4) that the limit of sequence in Menger space is 
uniquely determined. 
 
Definition: 1.3[15] Self maps 𝐴𝐴 and 𝐵𝐵 of a Menger space (𝑋𝑋,𝐹𝐹,∗) are said to be weakly compatible (or coincidentally 
commuting) if they commute at their coincidence points, i.e. if 𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 for some 𝑥𝑥 ∈  𝑋𝑋 then 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵𝐵𝐵. 
 
Definition: 1.4[11] Self maps 𝐴𝐴 and 𝐵𝐵 of a Menger space (𝑋𝑋,𝐹𝐹,∗) are said to be compatible if F𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛 ,(𝑡𝑡)  →  1 for 
all 𝑡𝑡 >  0, whenever {𝑥𝑥𝑛𝑛} is a sequence in 𝑋𝑋 such that 𝐴𝐴𝑥𝑥𝑛𝑛 →  𝑥𝑥, 𝐵𝐵𝑥𝑥𝑛𝑛  →  𝑥𝑥 for some 𝑥𝑥 in 𝑋𝑋 as 𝑛𝑛 → ∞. 
 
Remark: 1.5 If self maps 𝐴𝐴 and 𝐵𝐵 of a Menger space (𝑋𝑋,𝐹𝐹,∗) are compatible then they are weakly compatible.  
 
The following is an example of pair of self maps in a Menger space which are weakly compatible but not compatible. 
 
Example: 1.6 Let (𝑋𝑋,𝑑𝑑) be a metric space where 𝑋𝑋 =  [0, 2] and (𝑋𝑋,𝐹𝐹,∗) be the induced Menger space with            
 𝐹𝐹𝑥𝑥 ,𝑦𝑦  (𝑡𝑡) =  𝐻𝐻�𝑡𝑡 − 𝑑𝑑(𝑥𝑥,𝑦𝑦)�,∀ 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 and ∀ 𝑡𝑡 >  0.  
 
Define self maps A and B as follows: 
 

𝐴𝐴𝐴𝐴 =  �2 − 𝑥𝑥, 𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥 < 1,
 2          𝑖𝑖𝑖𝑖 1 ≤ 𝑥𝑥 ≤ 2,

�      and    𝐵𝐵𝐵𝐵 =  �𝑥𝑥,          𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥 < 1,
 2          𝑖𝑖𝑖𝑖 1 ≤ 𝑥𝑥 ≤ 2,

� 

 
Take 𝑥𝑥𝑛𝑛  =  1 − 1/𝑛𝑛. Then F𝐴𝐴𝐴𝐴𝑛𝑛+1,(𝑡𝑡) =  𝐻𝐻 (𝑡𝑡 − (1/𝑛𝑛)) and lim⁡𝑛𝑛 → ∞F𝐴𝐴𝐴𝐴 𝑛𝑛+1,(𝑡𝑡) =  𝐻𝐻 (𝑡𝑡)  =  1.  
 
Hence 𝐴𝐴𝑥𝑥𝑛𝑛  →  ∞ as 𝑛𝑛 →  ∞. Similarly, 𝐵𝐵𝑥𝑥𝑛𝑛  →  ∞ as 𝑛𝑛 →  ∞. Also 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛  (𝑡𝑡) =  𝐻𝐻 (𝑡𝑡 − (1 − 1/𝑛𝑛)) 
and lim𝑛𝑛→∞ F𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 ,𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛 ,(𝑡𝑡) →  1 =𝐻𝐻(𝑡𝑡 −  1)  ≠  1,∀ 𝑡𝑡 >  0.  
 
Hence the pair (𝐴𝐴,𝐵𝐵) is not compatible. Set of coincidence points of 𝐴𝐴 and 𝐵𝐵 is [1, 2]. Now for any 𝑥𝑥 ∈  [1, 2], 
𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 = 2, and 𝐴𝐴𝐴𝐴(𝑥𝑥) = 𝐴𝐴 (2) = 2 = 𝑆𝑆(2) = 𝑆𝑆𝑆𝑆(𝑥𝑥). Thus 𝐴𝐴 and 𝐵𝐵 are weakly compatible but not compatible. 
 
Lemma: 1.7 Let {𝑥𝑥𝑛𝑛} be a sequence in a Menger space(𝑋𝑋,𝐹𝐹,∗) with continuous 𝑡𝑡-norm ∗ and 𝑡𝑡 ∗  𝑡𝑡  𝑡𝑡. If there exists a 
constant 𝑘𝑘 ∈ (0, 1) such that 
 
𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1 (𝑘𝑘𝑘𝑘) ≥  𝐹𝐹𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛 (𝑡𝑡)   
 
for all 𝑡𝑡 > 0 and 𝑛𝑛 = 1, 2. . ., then {𝑥𝑥𝑛𝑛} is a Cauchy sequence in 𝑋𝑋. 
 
Lemma: 1.8[15] Let (𝑋𝑋,𝐹𝐹,∗) be a Menger space. If there exists 𝑘𝑘 ∈ (0, 1) such that 
 
 𝐹𝐹𝑥𝑥 ,𝑦𝑦(𝑘𝑘𝑘𝑘)  ≥  𝐹𝐹𝑥𝑥 ,𝑦𝑦  (𝑡𝑡)  
 
for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑡𝑡 >  0, then 𝑥𝑥 = 𝑦𝑦. 
 
2. MAIN RESULTS 
 
Theorem:  2.1 Let 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇  and 𝑃𝑃 be self maps on a complete Menger space (𝑋𝑋,𝐹𝐹,∗) with 𝑡𝑡 ∗  𝑡𝑡 ≥  𝑡𝑡 for all           
𝑡𝑡 ∈  [0, 1], satisfying: 
(a) 𝑃𝑃(𝑋𝑋)  ⊆  𝐴𝐴𝐴𝐴(𝑋𝑋),𝑃𝑃(𝑋𝑋)  ⊆  𝑆𝑆𝑆𝑆(𝑋𝑋); 

 
(b) there exists a constant 𝑘𝑘 ∈  (0, 1) such that 
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𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃 , (𝑘𝑘𝑘𝑘 ) ≥  𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗
𝑀𝑀𝑃𝑃𝑃𝑃 ,𝐴𝐴𝐴𝐴𝑥𝑥 ,(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝑡𝑡)

𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 ,𝐴𝐴𝐴𝐴𝐴𝐴 ,(𝑡𝑡)
∗  𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(3 − 𝛼𝛼)𝑡𝑡 

for all 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋,𝛼𝛼 ∈ (0,3) and 𝑡𝑡 > 0, 
 

(c) 𝑃𝑃𝑃𝑃 = 𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇,𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 and 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇,  
 
(d) 𝐴𝐴 and 𝐵𝐵 are continuous, 
 
(e) the pair (𝑃𝑃,𝐴𝐴𝐴𝐴) is compatible (if compatible then it is weak compatible) 
 
Then 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and 𝑃𝑃 have a common fixed point in 𝑋𝑋. 
 
Proof: Since 𝑃𝑃(𝑋𝑋) ⊂ 𝐴𝐴𝐴𝐴(𝑋𝑋), for 𝑥𝑥0𝜖𝜖 𝑋𝑋, we can choose a point 𝑥𝑥0𝜖𝜖 𝑋𝑋 such that 𝑃𝑃𝑃𝑃0 = 𝐴𝐴𝐴𝐴𝐴𝐴1. Since  𝑃𝑃(𝑋𝑋) ⊂ ST(X), for 
this point 𝑥𝑥1, we can choose a point 𝑥𝑥2𝜖𝜖 𝑋𝑋 such that 𝑃𝑃𝑃𝑃1 = 𝑆𝑆𝑆𝑆𝑆𝑆2.  Thus by induction, we can define a sequence 𝑦𝑦𝑛𝑛𝜖𝜖𝜖𝜖 as 
follows:  
    
𝑦𝑦2𝑛𝑛 = 𝑃𝑃𝑃𝑃2𝑛𝑛 = 𝐴𝐴𝐴𝐴𝐴𝐴2𝑛𝑛+1 and 𝑦𝑦2𝑛𝑛+1 = 𝑃𝑃𝑃𝑃2𝑛𝑛+1 = 𝑆𝑆𝑆𝑆𝑆𝑆2𝑛𝑛+1  
 
for 𝑛𝑛 = 1,2, … . from (b), 
 
For all 𝑡𝑡 > 0 and 𝛼𝛼 = 2 − 𝑞𝑞 with 𝑞𝑞 ∈ (0, 2), we have   
 
𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑘𝑘𝑘𝑘) = 𝑀𝑀𝑃𝑃𝑃𝑃2𝑛𝑛+1,𝑃𝑃𝑃𝑃2𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) 

                  ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗
𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛 ,(𝑡𝑡)∗𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡)

𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛 ,(𝑡𝑡)
 

                              ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+2,(1 + 𝑞𝑞)𝑡𝑡, 
 
𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+2,(1 + 𝑞𝑞)𝑡𝑡 
 
                             ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗  𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑞𝑞𝑞𝑞) 
 
                             ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡)* 𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(t) 
 
as 𝑞𝑞 → 1.Since∗is continuous and 𝑀𝑀𝑥𝑥 ,𝑦𝑦(∗) is continuous, letting 𝑞𝑞 → 1 in above eq., we get 
 
𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛 ,𝑦𝑦2𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑡𝑡) … …                                                                                                (1) 
 
Similarly, we have 
 
 𝑀𝑀𝑦𝑦2𝑛𝑛+2,𝑦𝑦2𝑛𝑛+3,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦2𝑛𝑛+2,𝑦𝑦2𝑛𝑛+2,(𝑡𝑡) … …                                                                                            (2) 
 
Thus from (1) and (2), it follows that 
 
𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2,(𝑡𝑡) 
 
for 𝑛𝑛 = 1,2, … and then for positive integers 𝑛𝑛 and 𝑝𝑝, 
 

 𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1,(𝑡𝑡) ∗ 𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2, �
𝑡𝑡
𝑘𝑘𝑝𝑝
�. 

 
Thus, since 𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+1, �

𝑡𝑡
𝑘𝑘𝑝𝑝
� → 1 as  𝑝𝑝 → ∞ we have 

 
𝑀𝑀𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1,(𝑡𝑡). 
 
𝑦𝑦𝑛𝑛  is Cauchy sequence in 𝑋𝑋 and since 𝑥𝑥 is complete,𝑦𝑦𝑛𝑛  converges to a point 𝑧𝑧 𝜖𝜖 𝑋𝑋.   
 
Since 𝑃𝑃𝑃𝑃𝑛𝑛 ,𝐴𝐴𝐴𝐴𝐴𝐴2𝑛𝑛+1 and 𝑆𝑆𝑆𝑆𝑆𝑆2𝑛𝑛+2 are subsequences of 𝑦𝑦𝑛𝑛 , they also converge to the point 𝑧𝑧, since 𝐴𝐴,𝐵𝐵 are continuous 
and pair {𝑃𝑃,𝐴𝐴𝐴𝐴} is compatible and also weak compatible, we have 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑛𝑛+1 = 𝐴𝐴𝐴𝐴𝐴𝐴  and  𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞(𝐴𝐴𝐴𝐴)2 𝑥𝑥2𝑛𝑛+1 = 𝐴𝐴𝐴𝐴𝐴𝐴, 
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From (𝑏𝑏) with 𝛼𝛼 = 2, we get 
 
𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑛𝑛+1,   𝑃𝑃𝑃𝑃 2𝑛𝑛+2,,

(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,
(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 2𝑛𝑛+2,,

(𝑡𝑡) 

                                      ∗ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 2𝑛𝑛+2,,
(𝑡𝑡) ∗

𝑀𝑀𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵 2𝑛𝑛+1,(𝐴𝐴𝐴𝐴 )2 𝑥𝑥2𝑛𝑛+1,
(𝑡𝑡)∗𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 2𝑛𝑛+2,,

(𝑡𝑡)

𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 2𝑛𝑛+2,(𝐴𝐴𝐴𝐴 )2 𝑥𝑥2𝑛𝑛+1,
 (𝑡𝑡)

 

                                      ∗ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,   𝑃𝑃𝑃𝑃 2𝑛𝑛+2,,
(𝑡𝑡) 

which implies that 
𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑧𝑧(𝑘𝑘𝑘𝑘) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞  𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑛𝑛+2,  (𝑘𝑘𝑘𝑘) 
 
                   ≥ 1 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑧𝑧 , (𝑡𝑡) ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑧𝑧 , (𝑡𝑡) ∗

1∗𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑧𝑧  (𝑡𝑡)
𝑀𝑀𝑧𝑧 ,𝐴𝐴𝐴𝐴𝐴𝐴  (𝑡𝑡)

∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑧𝑧 ,𝑧𝑧  (𝑡𝑡) 
 
We have  
𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑧𝑧, since  𝑀𝑀𝑧𝑧 ,,𝑆𝑆𝑆𝑆𝑧𝑧  (𝑡𝑡) ≥ 𝑀𝑀𝑧𝑧 ,𝐴𝐴𝐴𝐴𝐴𝐴 (𝑡𝑡) = 1 for all 𝑡𝑡 > 0,  
 
We get 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑧𝑧. again by (b) with 𝛼𝛼 = 2,  
 
We have 
𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑛𝑛+1, 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1,,

(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 , ,,
(𝑡𝑡) 

                              ∗ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 , ,,
(𝑡𝑡) ∗

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1,(𝐴𝐴𝐴𝐴 )2 𝑥𝑥2𝑛𝑛+1,
(𝑡𝑡)∗𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1,   𝑆𝑆𝑆𝑆𝑆𝑆 , ,,

(𝑡𝑡)

𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝐴𝐴𝐴𝐴 )2 𝑥𝑥2𝑛𝑛+1,
 (𝑡𝑡)

 

                              ∗ 𝑀𝑀(𝐴𝐴𝐴𝐴)2𝑥𝑥2𝑛𝑛+1,   𝑃𝑃𝑃𝑃 ,,
(𝑡𝑡) 

 
which implies that 
𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞  𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2𝑛𝑛+1, 𝑃𝑃𝑃𝑃 ,  (𝑘𝑘𝑘𝑘) 
 
                        ≥ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(𝑡𝑡) 
 
                        ≥ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(𝑡𝑡). 
 
We have 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝑃𝑃.Now, we show that 𝐵𝐵𝐵𝐵 = 𝑧𝑧.Infact, from (b) with 𝛼𝛼 = 2, and (𝑐𝑐) we get, 
 
𝑀𝑀𝐵𝐵𝐵𝐵 ,𝑧𝑧 ,(𝑘𝑘𝑘𝑘) = 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 ,𝑃𝑃𝑃𝑃 ,(𝑘𝑘𝑘𝑘) 
 
                  = 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃 ,(𝑘𝑘𝑘𝑘) 
 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃 ,(𝑘𝑘𝑘𝑘) ≥ 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗ 𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑆𝑆𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗
𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ,(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑧𝑧 ,𝑧𝑧  (𝑡𝑡)

𝑀𝑀𝑧𝑧 ,𝑃𝑃𝑃𝑃𝑃𝑃 , (𝑡𝑡)
∗ 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑧𝑧(𝑡𝑡) 

 
                     = 1 ∗ 𝑀𝑀𝐵𝐵𝐵𝐵 ,𝑧𝑧 , (𝑡𝑡) ∗  𝑀𝑀𝐵𝐵𝐵𝐵 ,𝑧𝑧 , (𝑡𝑡) ∗ 1 ∗ 𝑀𝑀𝐵𝐵𝐵𝐵 ,𝑧𝑧 , (𝑡𝑡) 
 
                     = 𝑀𝑀𝐵𝐵𝐵𝐵 ,𝑧𝑧 , (𝑡𝑡). 
 
which implies that 𝐵𝐵𝐵𝐵 = 𝑧𝑧.Since 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑧𝑧,  
 
we have 𝐴𝐴𝐴𝐴 = 𝑧𝑧.Next, we show that 𝑇𝑇𝑇𝑇 = 𝑧𝑧. Indeed from (𝑏𝑏) with 𝛼𝛼 = 2, and (𝑐𝑐) we get 
 
𝑀𝑀𝑇𝑇𝑇𝑇 ,𝑧𝑧 , (𝑘𝑘𝑘𝑘) = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑃𝑃𝑃𝑃 ,(𝑘𝑘𝑘𝑘) = 𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃 , (𝑘𝑘𝑘𝑘) 
 
                  ≥ 1 ∗ 𝑀𝑀𝑧𝑧 ,𝑇𝑇𝑇𝑇 , (𝑡𝑡) ∗  𝑀𝑀𝑧𝑧 ,𝑇𝑇𝑇𝑇 , (𝑡𝑡) ∗ 1 ∗ 𝑀𝑀𝑧𝑧 ,𝑇𝑇𝑇𝑇 , (𝑡𝑡) 
 
                  ≥ 𝑀𝑀𝑇𝑇𝑇𝑇 ,𝑧𝑧 , (𝑡𝑡), 
 
which implies that 𝑇𝑇𝑇𝑇 = 𝑧𝑧.Since 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑧𝑧, we have 𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑧𝑧. Therefore, by combining the above results we 
obtain,   
 
𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 = 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑧𝑧 = 𝑃𝑃𝑃𝑃. 
 
Therefore 𝑧𝑧 is the common fixed point of 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and 𝑃𝑃.  
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Finally, the uniqueness of the fixed point of 𝐴𝐴,𝐵𝐵, S, T and P.  
 
Corollary: 2.2 Let 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and  𝑃𝑃 be self maps on a complete Menger space (𝑋𝑋,𝐹𝐹,∗) with  𝑡𝑡 ∗ 𝑡𝑡 ≥ 𝑡𝑡 for all 𝑡𝑡 ∈ [0, 1], 
satisfying; 
 
(a) 𝑃𝑃(𝑋𝑋) ⊆  𝐴𝐴(𝑋𝑋)  and 𝑃𝑃(𝑋𝑋) ⊆ 𝑆𝑆(𝑋𝑋) 
 
(b) there exists a constant 𝑘𝑘 ∈ (0, 1) such that 
     𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑃𝑃𝑃𝑃 , (𝑘𝑘𝑘𝑘 ) ≥ 𝑀𝑀𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(𝑡𝑡) ∗ 𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗ 𝑀𝑀𝐴𝐴𝐴𝐴 ,𝑆𝑆𝑆𝑆 ,(𝑡𝑡) ∗

𝑀𝑀𝑃𝑃𝑃𝑃 ,𝐴𝐴𝐴𝐴 ,(𝑡𝑡)∗𝑀𝑀𝑃𝑃𝑃𝑃 ,𝑆𝑆𝑦𝑦 ,(𝑡𝑡)
𝑀𝑀𝑆𝑆𝑆𝑆 ,𝐴𝐴𝐴𝐴 ,(𝑡𝑡)

∗  𝑀𝑀𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑃𝑃 ,(3 − 𝛼𝛼)𝑡𝑡 

     for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,𝛼𝛼 ∈ (0,3) and 𝑡𝑡 > 0, 
 
 (c) 𝐴𝐴 or 𝑃𝑃 are continuous, 
 
 (d) the pair {𝑃𝑃,𝐴𝐴} is compatible, 
 
      Then 𝐴𝐴, 𝑆𝑆 and 𝑃𝑃 have a common fixed point in 𝑋𝑋. 
 
CONCLUSION 
 
In this present article we prove a common fixed point theorem in Menger spaces by using five compatible mappings. In 
fact our main result is more general then other previous known results.  
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