RESULTS ON FIXED POINT THEOREM AND MENGER SPACES

Rajesh Shrivastava¹, Rajendra Kumar Dubey² and Pankaj Tiwari^{1*}

¹Govt. Science & Comm. College Benjeer, Bhopal - (M.P.), India.

²Govt. Science P. G. College, Rewa - (M.P.), India.

(Received on: 07-10-13; Revised & Accepted on: 31-10-13)

ABSTRACT

 $m{I}$ n this paper, we prove a common fixed point theorem in Menger spaces by using five compatible mappings.

Keywords: Menger space, t-norm, Common fixed point, Compatible maps, Weak - compatible maps.

AMS subject classification (2000): 45H10, 54H25.

I. INTRODUCTION AND PRELIMINARIES

There have been a number of generalizations of metric space. One such generalization is Menger space in which, used distribution functions instead of nonnegative real numbers as value of metric. A Menger space is a space in which the concept of distance is considered to be a probabilistic, rather than deterministic. For detail discussion of Menger spaces and their applications we refer to Schweizer and Sklar [16]. The theory of Menger space is fundamental importance in probabilistic functional analysis.

The important development of fixed point theory in Menger spaces were due to Sehgal and Bharucha-Reid [13]. A probabilistic metric space shortly PM-Space, is an ordered pair (X, F) consisting of a non empty set X and a mapping F from $X \times X$ to L, where L is the collection of all distribution functions (a distribution function F is non decreasing and left continuous mapping of reals in to [0,1] with properties, $inf\ F(x) = 0$ and $sup\ F(x) = 1$).

The value of F at $(x,y) \in X \times X$ is represented by $F_{x,y}$. The function $F_{x,y}$ are assumed satisfy the following conditions:

```
(FM-0) F_{x,y}(t) = 1, for all t > 0, iff x = y;
```

(FM-1)
$$F_{x,y}(0) = 0$$
, if $t = 0$;

(FM-2)
$$F_{x,y}(t) = F_{y,x}(t)$$
;

(FM-3)
$$F_{x,y}(t) = 1$$
 and $F_{y,z}(s) = 1$ then $F_{x,z}(t + s) = 1$.

A mapping $T: [0,1] \times [0,1] \to [0,1]$ is a *t*-norm, if it satisfies the following conditions:

(FM-4) T(a, 1) = a for every $a \in [0,1]$;

(FM-5) T(0,0) = 0,

(FM-6) T(a, b) = T(b, a) for every $a, b \in [0,1]$;

(FM-7) $T(c,d) \ge T(a,b)$ for $c \ge a$ and $d \ge b$

(FM-8) T(T(a, b), c) = T(a, T(b, c)) where $a, b, c, d \in [0,1]$.

A Menger space is a triplet (X, F, T), where (X, F) is a PM-Space, X is a non-empty set and a t – norm satisfying instead of (FM-8) a stronger requirement.

(FM-9)
$$F_{x,z}(t + s) \ge T(F_{x,y}(t), F_{y,z}(s))$$
 for all $x \ge 0, y \ge 0$.

For a given metric space (X, d) with usual metric d, one can put $F_{x,y}(t) = H(t - d(x, y))$ for all $x, y \in X$ and t > 0. where H is defined as:

$$H(t) = \begin{cases} 1 & \text{if } s > 0, \\ 0 & \text{if } s < 0 \end{cases}$$

and t-norm T is defined as $T(a, b) = min \{a, b\}$.

For the proof of our result we required the following definitions.

Definition: 1.1 [11] Let (X, F, *) be a Menger space and * be a continuous t-norm.

- a) A sequence $\{x_n\}$ in X is said to be converge to a point x in X (written $x_n \to x$) iff for every $\varepsilon > 0$ and $\lambda \in (0,1)$, there exists an integer $n_0 = n_0(\varepsilon,\lambda)$ such that $F_{x_n,x}(\varepsilon) > 1 \lambda$ for all $n \ge n_0$.
- b) (b) A sequence $\{x_n\}$ in X is said to be Cauchy if for every $\varepsilon > 0$ and $\lambda \in (0, 1)$, there exists an integer $n_0 = n_0(\varepsilon, \lambda)$ such that $F_{x_n, x_{n+n}}(\varepsilon) > 1 \lambda$ for all $n \ge n_0$ and p > 0.
- c) A Menger space in which every Cauchy sequence is convergent is said to be complete.

Remark: 1.2 If * is a continuous t-norm, it follows from (FM - 4) that the limit of sequence in Menger space is uniquely determined.

Definition: 1.3[15] Self maps A and B of a Menger space (X, F, *) are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if Ax = Bx for some $x \in X$ then ABx = BAx.

Definition: 1.4[11] Self maps A and B of a Menger space (X, F, *) are said to be compatible if $F_{ABx_m, BAx_n, t}(t) \to 1$ for all t > 0, whenever $\{x_n\}$ is a sequence in X such that $Ax_n \to x$, $Bx_n \to x$ for some x in X as $n \to \infty$.

Remark: 1.5 If self maps A and B of a Menger space (X, F, *) are compatible then they are weakly compatible.

The following is an example of pair of self maps in a Menger space which are weakly compatible but not compatible.

Example: 1.6 Let (X, d) be a metric space where X = [0, 2] and (X, F, *) be the induced Menger space with $F_{x,y}(t) = H(t - d(x, y)), \forall x, y \in X \text{ and } \forall t > 0$.

Define self maps A and B as follows:

$$Ax = \begin{cases} 2 - x, & \text{if } 0 \le x < 1, \\ 2 & \text{if } 1 \le x \le 2, \end{cases} \text{ and } Bx = \begin{cases} x, & \text{if } 0 \le x < 1, \\ 2 & \text{if } 1 \le x \le 2, \end{cases}$$

Take $x_n = 1 - 1/n$. Then $F_{Ax_{n+1}}(t) = H(t - (1/n))$ and $\lim_{t \to \infty} f_{Ax_{n+1}}(t) = H(t) = 1$.

Hence $Ax_n \to \infty$ as $n \to \infty$. Similarly, $Bx_n \to \infty$ as $n \to \infty$. Also $F_{ABx_n,BAx_n}(t) = H(t - (1 - 1/n))$ and $\lim_{n \to \infty} F_{ABx_n,BAx_n}(t) \to 1 = H(t - 1) \neq 1, \forall t > 0$.

Hence the pair (A, B) is not compatible. Set of coincidence points of A and B is [1, 2]. Now for any $x \in [1, 2]$, Ax = Bx = 2, and AB(x) = A(2) = 2 = S(2) = SA(x). Thus A and B are weakly compatible but not compatible.

Lemma: 1.7 Let $\{x_n\}$ be a sequence in a Menger space (X, F, *) with continuous t-norm * and t * t t. If there exists a constant $k \in (0, 1)$ such that

$$F_{x_{n},x_{n+1}}(kt) \geq F_{x_{n-1},x_n}(t)$$

for all t > 0 and n = 1, 2..., then $\{x_n\}$ is a Cauchy sequence in X.

Lemma: 1.8[15] Let (X, F, *) be a Menger space. If there exists $k \in (0, 1)$ such that

$$F_{x,y}(kt) \geq F_{x,y}(t)$$

for all $x, y \in X$ and t > 0, then x = y.

2. MAIN RESULTS

Theorem: 2.1 Let A, B, S, T and P be self maps on a complete Menger space (X, F, *) with $t * t \ge t$ for all $t \in [0, 1]$, satisfying:

- (a) $P(X) \subseteq AB(X), P(X) \subseteq ST(X)$;
- (b) there exists a constant $k \in (0,1)$ such that

Rajesh Shrivastava¹, Rajendra Kumar Dubey² and Pankaj Tiwari^{1*}/ Results On Fixed Point Theorem And Menger Spaces / IJMA- 4(11), Nov.-2013.

$$M_{Px,Py,}(kt) \ge M_{ABx,Px,}(t) * M_{Px,STy,}(t) * M_{ABx,STy,}(t) * \frac{M_{Px,ABx,}(t) * M_{Px,STy,}(t)}{M_{STy,ABx,}(t)} * M_{ABx,Py,}(3-\alpha)t$$
 for all $x,y \in X$, $\alpha \in (0,3)$ and $t > 0$,

- (c) PB = BP, PT = TP, AB = BA and ST = TS,
- (d) A and B are continuous,
- (e) the pair (P, AB) is compatible (if compatible then it is weak compatible)

Then A, B, S, T and P have a common fixed point in X.

Proof: Since $P(X) \subset AB(X)$, for $x_0 \in X$, we can choose a point $x_0 \in X$ such that $Px_0 = ABx_1$. Since $P(X) \subset ST(X)$, for this point x_1 , we can choose a point $x_2 \in X$ such that $Px_1 = STx_2$. Thus by induction, we can define a sequence $y_n \in X$ as follows:

$$y_{2n} = Px_{2n} = ABx_{2n+1}$$
 and $y_{2n+1} = Px_{2n+1} = STx_{2n+1}$

for n = 1, 2, from (b),

For all t > 0 and $\alpha = 2 - q$ with $q \in (0, 2)$, we have

$$\begin{split} M_{y_{2n+1},y_{2n+2,}}(kt) &= M_{p_{x_{2n+1},p_{x_{2n+2,}}}}(kt) \geq M_{y_{2n+1},y_{2n+1,}}(t) * M_{y_{2n},y_{2n+1,}}(t) \\ &* M_{y_{2n},y_{2n+1,}}(t) * \frac{M_{y_{2n+1},y_{2n,}}(t) * M_{y_{2n+1},y_{2n,}}(t)}{M_{y_{2n+1},y_{2n,}}(t)} \\ &* M_{y_{2n},y_{2n+2,}}(1+q)t, \end{split}$$

$$\begin{split} M_{y_{2n+1},y_{2n+2},}(kt) &\geq M_{y_{2n},y_{2n+1},}(t) * M_{y_{2n},y_{2n+2},}(1+q)t \\ &\geq M_{y_{2n},y_{2n+1},}(t) * M_{y_{2n},y_{2n+1},}(t) * M_{y_{2n+1},y_{2n+2},}(qt) \\ &\geq M_{y_{2n},y_{2n+1},}(t) * M_{y_{2n+1},y_{2n+2},}(t) \end{split}$$

as $q \to 1$. Since*is continuous and $M_{x,y}(*)$ is continuous, letting $q \to 1$ in above eq., we get

$$M_{y_{2n+1},y_{2n+2}}(kt) \ge M_{y_{2n},y_{2n+1}}(t) * M_{y_{2n+1},y_{2n+2}}(t) \dots \dots$$
 (1)

Similarly, we have

$$M_{y_{2n+2},y_{2n+3}}(kt) \ge M_{y_{2n+1},y_{2n+2}}(t) * M_{y_{2n+2},y_{2n+2}}(t) \dots \dots$$
(2)

Thus from (1) and (2), it follows that

$$M_{y_{n+1},y_{n+2}}(kt) \ge M_{y_n,y_{n+1}}(t) * M_{y_{n+1},y_{n+2}}(t)$$

for n = 1, 2, ... and then for positive integers n and p,

$$M_{y_{n+1},y_{n+2}}(kt) \ge M_{y_n,y_{n+1}}(t) * M_{y_{n+1},y_{n+2}}(\frac{t}{k^p}).$$

Thus, since $M_{y_{n+1},y_{n+1}}\left(\frac{t}{k^p}\right) \to 1$ as $p \to \infty$ we have

$$M_{y_{n+1},y_{n+2}}(kt) \ge M_{y_n,y_{n+1}}(t).$$

 y_n is Cauchy sequence in X and since x is complete, y_n converges to a point $z \in X$.

Since Px_n , ABx_{2n+1} and STx_{2n+2} are subsequences of y_n , they also converge to the point z, since A, B are continuous and pair $\{P,AB\}$ is compatible and also weak compatible, we have

$$\lim_{n\to\infty} PABx_{2n+1} = ABz$$
 and $\lim_{n\to\infty} (AB)^2 x_{2n+1} = ABz$,

From (b) with $\alpha = 2$, we get

$$\begin{split} M_{PABx_{2n+1, Px_{2n+2, }}}(kt) &\geq M_{(AB)^2x_{2n+1, }}(t) * M_{PABx_{2n+1, STx_{2n+2, }}}(t) \\ &* M_{(AB)^2x_{2n+1, STx_{2n+2, }}}(t) * \frac{M_{PABx_{2n+1, (AB)^2x_{2n+1, }}(t) * M_{PABx_{2n+1, (AB)^2x_{2n+1, }}}(t) * M_{STx_{2n+2, (AB)^2x_{2n+1, }}}(t)}{M_{STx_{2n+2, (AB)^2x_{2n+1, }}}(t)} \end{split}$$

which implies that

$$M_{ABz,z}(kt) = \lim_{n \to \infty} M_{PABx_{2n+2}}(kt)$$

$$\geq 1 * M_{ABz,z,}(t) * M_{ABz,z,}(t) * \frac{1 * M_{ABz,z}(t)}{M_{z,ABz}(t)} * M_{ABz,z,z}(t)$$

We have

$$ABz = z$$
, since $M_{z,STz}(t) \ge M_{z,ABz}(t) = 1$ for all $t > 0$,

We get STz = z. again by (b) with $\alpha = 2$,

We have

$$\begin{split} M_{PABx_{2n+1,}Pz}(kt) &\geq M_{(AB)^2x_{2n+1,}PABx_{2n+1,,}}(t) * M_{PABx_{2n+1,}STz_{,,,}}(t) \\ &* M_{(AB)^2x_{2n+1,}STz_{,,,}}(t) * \frac{M_{PABx_{2n+1,}(AB)^2x_{2n+1,}}(t) * M_{PABx_{2n+1,}STz_{,,,}}(t)}{M_{STz_{,}(AB)^2x_{2n+1,}}(t)} \\ &* M_{(AB)^2x_{2n+1,}Pz_{,,,}}(t) \end{split}$$

which implies that

$$M_{ABz,Pz,Pz}(kt) = \lim_{n \to \infty} M_{PABx_{2n+1},Pz}(kt)$$

 $\geq 1 * 1 * 1 * 1 * M_{ABz,Pz}(t)$
 $\geq M_{ABz,Pz}(t).$

We have ABz = Pz. Now, we show that Bz = z. In fact, from (b) with $\alpha = 2$, and (c) we get,

$$M_{Bz,z,}(kt) = M_{BPz,Pz,}(kt)$$
$$= M_{PBz,Pz,}(kt)$$

$$\begin{split} M_{PBz,Pz,}(kt) &\geq M_{PBz,STz,}(t) * M_{ABBz,STz,}(t) * \frac{M_{PBz,ABBz,}(t) * M_{PBz,z,z}(t)}{M_{z,PBz,}(t)} * M_{PBz,z,z}(t) \\ &= 1 * M_{Bz,z,}(t) * M_{Bz,z,}(t) * 1 * M_{Bz,z,}(t) \\ &= M_{Bz,z,}(t). \end{split}$$

which implies that Bz = z. Since ABz = z,

we have Az = z. Next, we show that Tz = z. Indeed from (b) with $\alpha = 2$, and (c) we get

$$M_{Tz,z,}(kt) = M_{TPz,Pz,}(kt) = M_{Pz,Pz,}(kt)$$

 $\geq 1 * M_{z,Tz,}(t) * M_{z,Tz,}(t) * 1 * M_{z,Tz,}(t)$
 $\geq M_{Tz,z,}(t),$

which implies that Tz = z. Since STz = z, we have Sz = STz = z. Therefore, by combining the above results we obtain,

$$Az = Bz = Sz = Tz = Pz.$$

Therefore z is the common fixed point of A, B, S, T and P.

Finally, the uniqueness of the fixed point of A, B, S, T and P.

Corollary: 2.2 Let A, B, S, T and P be self maps on a complete Menger space (X, F, *) with $t * t \ge t$ for all $t \in [0, 1]$, satisfying;

- (a) $P(X) \subseteq A(X)$ and $P(X) \subseteq S(X)$
- (b) there exists a constant $k \in (0, 1)$ such that

$$M_{Px,Py,}(kt) \ge M_{Ax,Px,}(t) * M_{Px,Sy,}(t) * M_{Ax,Sy,}(t) * \frac{M_{Px,Ax,}(t) * M_{Px,Sy,}(t)}{M_{Sy,Ax,}(t)} * M_{Ax,Py,}(3-\alpha)t$$
 for all $x, y \in X$, $\alpha \in (0,3)$ and $t > 0$,

- (c) A or P are continuous,
- (d) the pair $\{P, A\}$ is compatible,

Then A, S and P have a common fixed point in X.

CONCLUSION

In this present article we prove a common fixed point theorem in Menger spaces by using five compatible mappings. In fact our main result is more general then other previous known results.

ACKNOWLEDGEMENT

The authors thank the referees for their careful reading of the manuscript and for their valuable suggestions.

REFERENCES

- G. Constantin, I. Istratescu, Elements of Probabilistic Analysis, Ed. Acad. Bucure, sti and Kluwer Acad. Publ., 1989.
- 2. O. Hadzic, Common fixed point theorems for families of mapping in complete metric space, *Math. Japon.*, 29 (1984), 127-134.
- 3. T. L. Hicks, Fixed point theory in probabilistic metric spaces, Rev. Res. Novi Sad, 13 (1983), 63-72.
- 4. I. Istratescu, On some fixed point theorems in generalized Menger spaces, *Boll. Un. Mat. Ital.*, 5 (13-A) (1976), 95-100.
- 5. I. Istratescu, On generalized complete probabilistic metric spaces, *Rev. Roum. Math. Pures Appl.*, XXV (1980), 1243-1247.
- 6. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263.
- 7. G. Jungek, Compatible mappings and common fixed points, *Internat. J. Math. Sci.*, 9 (1986), 771-779.
- 8. G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, *Internat. J. Math. & Math. Sci.*, 3 (1993), 417-428.
- 9. S. Kutukcu, D. Turkoglu, C. Yildiz, Common fixed points of compatible maps of type (β) on fuzzy metric spaces, *Commun. Korean Math. Soc.*, in press.
- 10. K. Menger, Statistical metric, *Proc. Nat. Acad.*, 28 (1942), 535-537.
- 11. S. N. Mishra, Common fixed points of compatible mappings in PM spaces, ic spaces, *Math. Japon.*, 36 (1991), 283-289.
- 12. E. Pap, O. Hadzic, R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, *J. Math. Anal. Appl.*, 202 (1996), 433-449.
- 13. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping on PM spaces, *Math. Systems Theory*, 6 (1972), 97-100.
- 14. S. Sessa, On a weak commutative condition in fixed point consideration, Publ. Inst. Math., 32 (1982), 146-153.
- 15. S. L. Singh and B. D. Pant, Common fixed point theorem in probabilistic metric space and extension to uniform spaces, Honam Math. J. 6 (1984), 1-12.
- 16. B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier North-Holland, 1983.
- 17. R. M. Tardiff, Contraction maps on probabilistic metric spaces, J. Math. Anal. Appl., 165 (1992), 517-523.

Source of support: Nil, Conflict of interest: None Declared