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ABSTRACT
In this paper, we prove a common fixed point theorem in Menger spaces by using five compatible mappings.
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I. INTRODUCTION AND PRELIMINARIES

There have been a number of generalizations of metric space. One such generalization is Menger space in which, used
distribution functions instead of nonnegative real numbers as value of metric. A Menger space is a space in which the
concept of distance is considered to be a probabilistic, rather than deterministic. For detail discussion of Menger spaces
and their applications we refer to Schweizer and Sklar [16]. The theory of Menger space is fundamental importance in
probabilistic functional analysis.

The important development of fixed point theory in Menger spaces were due to Sehgal and Bharucha-Reid [13]. A
probabilistic metric space shortly PM-Space, is an ordered pair (X, F) consisting of a non empty set X and a mapping F
from X X Xto L, where L is the collection of all distribution functions (a distribution function F is non decreasing and
left continuous mapping of reals in to [0,1] with properties, inf F(x) = 0 and sup F(x) = 1).

The value of F at (x,y) € X X X is represented by F.,. The function F,, are assumed satisfy the following
conditions:

(FM-0) F,, (t) =1, forallt > 0,iffx = y;

(FM-1) E., (0) =0,ift = 0;

(FM'Z) Fx,y (t) :Fy,x (t);

(FM-3)F., (t) = 1and F,, (s) = 1thenF,, (t + s) =1,

A mapping T:[0,1] x [0,1] — [0,1] is a t-norm, if it satisfies the following conditions:
(FM-4) T(a, 1) = a for every a € [0,1];

(FM-5) T(0,0) = 0,

(FM-6) T (a,b) = T(b, a) for every a,b € [0,1];

(FM-7)T(c,d) =T(a,b)forc =aandd = b

(FM-8) T(T(a, b),c) = T(a,T(b,c)) where a,b,c,d € [0,1].

A Menger space is a triplet (X, F,T), where (X,F) is a PM-Space, X is a non-empty set and a t — norm satisfying
instead of (FM-8) a stronger requirement.

(FM-9) F, (¢ + ) 2 T (Fy(£), Fy,(s)) forall x > 0,y > 0.

For a given metric space (X,d) with usual metric d, one can put F,,, (¢) = H (t —d(x,y)) for all x,y € X and
t> 0. where H is defined as:
_(1ifs>0,
H@®) = {0 if s <0.
and t-norm T is defined as T'(a, b) = min {a, b}.
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For the proof of our result we required the following definitions.
Definition: 1.1 [11] Let (X, F,*) be a Menger space and * be a continuous t-norm.

a) A sequence {x,} in X is said to be converge to a point x in X (written x,—x) iff for every e > 0and\ €
(0, 1), there exists an integer ng = ny(e, A) suchthat £, ,(¢) > 1—Aforalln = n,.

b) (b) A sequence {x,} in X is said to be Cauchy if for everye > 0 and 1 € (0,1), there exists an integer ny =
ny(g, ) such that F, ) (e) >1—A\foralln = ngandp > 0.

n,Xn+
c) A Menger space in which every Cauchy sequence is convergent is said to be complete.

Remark: 1.2 If = is a continuous t-norm, it follows from (FM — 4) that the limit of sequence in Menger space is
uniquely determined.

Definition: 1.3[15] Self maps A and B of a Menger space (X, F,*) are said to be weakly compatible (or coincidentally
commuting) if they commute at their coincidence points, i.e. if Ax = Bx for some x € X then ABx = BAx.

Definition: 1.4[11] Self maps 4 and B of a Menger space (X, F,) are said to be compatible if Fp,,, pax, (t) — 1 for
allt > 0, whenever {x,, } is a sequence in X such that Ax,, - x, Bx, —» x forsome x in X asn — oo.

Remark: 1.5 If self maps A and B of a Menger space (X, F,*) are compatible then they are weakly compatible.
The following is an example of pair of self maps in a Menger space which are weakly compatible but not compatible.

Example: 1.6 Let (X, d) be a metric space where X = [0, 2] and (X, F,*) be the induced Menger space with
E., @)= H(t —d(x,y)),Vx,y € XandVvVt > 0.

Define self maps A and B as follows:

2—x,if0<x<1,
2 if1<x<2,

X, ifo<x<1,

Ax:{ 2 ifl<x<2

and Bx ={

Takex, = 1—1/n.ThenF,, ., (¢) = H (t — (1/n)) and limii — o™n 1. = g (1) = 1.

Hence Ax, — o as n — oo.Similarly, Bx, — o as n — ©.AlS0 Fypy, pax, () = H(t — (1 —1/n))
and lim,, e, Fapy,, pax, () > 1=H(t — 1) # 1,Vt > 0.

Hence the pair (4, B) is not compatible. Set of coincidence points of A and B is [1,2]. Now for any x € [1,2],
Ax =Bx =2,and AB(x) = A (2) = 2 = §(2) = SA(x). Thus A and B are weakly compatible but not compatible.

Lemma: 1.7 Let {x, } be a sequence in a Menger space(X, F,*) with continuous t-norm = and t = t t. If there exists a
constant k € (0, 1) such that

Fepxni (KO 2 Fe o (8)

forallt > 0andn = 1,2..., then {x,} is a Cauchy sequence in X.

Lemma: 1.8[15] Let (X, F,*) be a Menger space. If there exists k € (0, 1) such that

Fry(kt) = F,y ()

forallx,y e Xandt > 0,thenx = y.

2. MAIN RESULTS

Theorem: 2.1 Let A,B,S,T and P be self maps on a complete Menger space (X,F,*) with t = t > t for all
t € [0,1], satisfying:

(8) P(X) € AB(X),P(X) S ST(X);

(b) there exists a constant k € (0, 1) such that
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Mpy gy, (t) * Mpy 57y (8)
MPx,Py, (kt) = MABx,Px,(t) * MPx,STy,(t) * MABx,STy,(t) * - = .

MSTy,ABx,(t)
forallx,y € X,a € (0,3)and t > 0,

* 1\4ABx,Py,(3 - a)t

(c) PB = BP,PT =TP,AB = BAand ST =TS,

(d) Aand B are continuous,

(e) the pair (P, AB) is compatible (if compatible then it is weak compatible)

Then A, B, S, T and P have a common fixed point in X.

Proof: Since P(X) c AB(X), for x,e€ X, we can choose a point xye€ X such that Px, = ABx;.Since P(X) c ST(X), for
this point x;, we can choose a point x,€ X such that Px; = STx,. Thus by induction, we can define a sequence y, X as
follows:

Yon = Pin = ABx2n+1 and Yon+1 = Px2n+1 = 5Tx2n+1

forn = 1,2, ....from (b),

Forallt > 0and @ = 2 — q with g € (0, 2), we have

MY2n+1'YZn+2,(kt) = MPx2n+l,Px2n+2,(kt) = MY2n+1'YZn+1,(t) * M}’an)’zwl,(t)
« M (t) * My ont1y2n, O*Myon11y2n 41,
V2nY2n+1, M}’Zn+1'}’2n,(t)
* MYZn'YZn+2,(1 + q)t'

MY2n+1'YZn+2,(kt) 2 M}’Zn'YZn+l,(t) * MYZn'YZn+2,(1 + q)t
2 MYvay2n+1, (t) * MYvaY2n+1,(t) * M}’Zn+1v}’2n+2, (qt)

= MYZn'YZn +1, (t)* MYZn +1.Y2n+2, (t)

as g — 1.Sincexis continuous and M, ,, () is continuous, letting g — 1 in above eq., we get

M}’Zn+1vy2n+2,(kt) 2 MYvay2n+1, (t) * M}’Zn+1r}’2n+2, (t) """ (l)
Similarly, we have

MY2n+2'YZn+3,(kt) 2 MY2n+1'YZn+2,(t) * MY2n+2tYZn+2,(t) """ (2)

Thus from (1) and (2), it follows that

MYn+1'Yn+2,(kt) = ManYn+1,(t) * MYn+1'Yn+2,(t)

forn = 1,2, ... and then for positive integers n and p,

t
M}’n+1vyn+2,(kt) = M}’nv}’n+1,(t) * M}’n+1r}’n+2, (k_p)

Thus, since M.

t
Yn+1.Yn+1, (k_p) - 1las p — oo we have

M kt)yz M, . ., (©.

Yn+1.Yn+2,
v, is Cauchy sequence in X and since x is complete, y,, converges to a point z € X.

Since Px,, ABx,, ., and STx,, ., are subsequences of y,, they also converge to the point z, since A, B are continuous
and pair {P, AB} is compatible and also weak compatible, we have

limn_,oo PABx2n+1 = ABz and limn_,oo (AB)Z Xopn+1 = ABZ,
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From (b) with @ = 2, we get

MPABx2n+1, Px2n+2, (kt) 2 M(AB)2X2n+1,(t) * MPABx2n+1, STx 2n+2,,(t)

Mpa B 41,48 )2 xan 1, (D MPABY 2341, sTx 5745, )
* M(AB)Z (t) *

X2n+1, STx 2n+2,

)

M1 on+2,(4B)2 x2n 41, )

* M(AB)2X2n+1, PX2n+42,
which implies that

MABz,z (kt) = limn—wo MPAsz,H_Z, (kt)

1M yp, Z )
Mz,ABZ (t)

=1x MABZ,Z, (t) * MABZ,Z, (t) * * MABZ,Z,Z (t)

We have
ABz = z,since M, sr, (t) = M, 45,(t) = 1forall t > 0,

We get STz = z. again by (b) with a = 2,

We have
MPABx2n+1, Pz (kt) = M(AB)2x2n+1’ PABX 2n 41, (t) * MPABx2n+1, STz, (t)

) M p Ay 3n41,(48)2 x2n+1,(t)*M”ABX 2n+1, STz,_,(t)
X2n+1, STz, M

* M 4py2
AB
(4B) .S'Tz_(AB’)Z X2n+1, ®

* M(AB)2x2n+l, Pz_.(t)

which implies that
Mgy, prpr (kt) = limy o Mpapy,, ., pr (k)

2 1x1x1x1xMyp,p, (1)
= Myg, p,, (0)
We have ABz = Pz.Now, we show that Bz = z.Infact, from (b) with « = 2, and (c¢) we get,
Mg, ., (kt) = Mpp, p,,(kt)
= Mpp, ps,(kt)

Mpp, apgz,(t) * Mpg, , , (£)
Mz,PBz, (t)

Mpg, p,,(kt) = Mpg, 57, () * Mapp, 57, (L) * * Mpg, ,(t)

= 1% Mp,, (t) x Mp,,, (£) *1xMp,, (t)
= Mg, , (1).
which implies that Bz = z.Since ABz = z,
we have Az = z.Next, we show that Tz = z. Indeed from (b) with « = 2, and (c) we get
My, ,, (kt) = Mrp, p, (kt) = Mp, p,, (kt)
2 1%M,r, (t) * Myq, (€) x1xM,r, ()
> My,, (1),

which implies that Tz = z.Since STz = z, we have Sz = STz = z. Therefore, by combining the above results we
obtain,

Az=Bz=S5z=Tz = Pz.

Therefore z is the common fixed point of 4, B, S, T and P.
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Finally, the uniqueness of the fixed point of 4, B, S, T and P.

Corollary: 2.2 Let A,B,S,T and P be self maps on a complete Menger space (X, F,*) with t =t >t forall t € [0, 1],
satisfying;

(a) P(X) € A(X) and P(X) € S(X)

(b) there exists a constant k € (0, 1) such that
Mp, py, (kt) = My py (£) * Mpy sy (£) * Mgy 5y, (£) *
forallx,y € X,a € (0,3)and t > 0,

Mpyx ax ,(t)*MPx ,Sy,(t)
MSy ,Ax,(t)

* Myy py (3 — a)t

(c) A or P are continuous,
(d) the pair {P, A} is compatible,

Then 4, S and P have a common fixed point in X.
CONCLUSION

In this present article we prove a common fixed point theorem in Menger spaces by using five compatible mappings. In
fact our main result is more general then other previous known results.
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