ON A MAP OF XIA ET.AL AND SOME FIXED POINT THEOREMS FOR A CLASS OF CONTRACTIVE MAPPINGS IN G-DISLOCATED METRIC SPACES

CLEMENT AMPADU*

31 Carrolton Road, Boston, Massachusetts, 02132, U.S.A.

(Received on: 14-10-13; Revised & Accepted on: 14-11-13)

ABSTRACT

In Xia et.al [Common fixed points for two self-mappings on symmetric sets and complete metric spaces, Advances in Mathematics, vol. 36, no. 4, pp. 415–420, 2007.], the following map is introduced: Let $R_+ = [0, \infty)$, let $T_1: R_+^2 \to R_+$, and $T_2: R_+^3 \to R_+$, satisfy the following: (i) if $w \le T_1(u,v)$, then there exist $c \in (0,1)$, such that $w \le c \max\{u,v\}$; (ii) if $w \le T_2(u,v,r)$, then there exists $c \in (0,1)$, such that $w \le c \max\{u,v,r\}$. The authors use these maps to prove the following fixed point result: Let (X,d) be a complete metric space, and let $f,g:X\to X$ be continuous mappings, and for all $x,y\in X$ such that

$$d(f(x), g(y)) \le T_1(d(x, f(x)), d(y, g(y))), \text{ or } d(f(x), g(y)) \le T_2(d(x, y), d(x, f(x)), d(y, g(y))),$$

then, f,g have a unique common fixed point. In the present paper we define an analogous map in the setting of G-dislocated metric spaces and use it to obtain fixed point theorems.

AMS Subject Classification: 47H10, 54H25.

I. INTRODUCTION

Fixed point theory, a pivotal branch of analysis, has several applications. One of the most celebrated fixed point theorems is due to Banach [1], and several generalizations of it have appeared in the literature, see [2-9] for examples. In this paper we extend the map of Xia *et. al* [Common fixed points for two self-mappings on symmetric sets and complete metric spaces, Advances in Mathematics, vol. 36, no. 4, pp. 415–420, 2007], and use it to obtain fixed point theorems in the setting of G-dislocated metric spaces.

II. BASIC NOTIONS AND NOTATIONS

In analogy to Zeyada *et.al* [A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, The Arabian Journal for Science and Engineering Section A, vol. 31, no. 1, pp. 111–114, 2006], we introduce the following .

Definition 1: Let X be a non-empty set. We will say $G: X \times X \times X \to R_+$ is a distance function if for all $x, y, z, w \in X$

- (a) $G(x, y, z) \ge 0$
- (b) $G(x, y, z) = 0 \Leftrightarrow x = y = z$
- (c) $G(x, y, z) \le G(w, y, z) + G(x, w, z) + G(x, y, w)$

Here $(X,G)_q$ will denote a G-quasi-metric space.

Corresponding author: CLEMENT AMPADU*
31 Carrolton Road, Boston, Massachusetts, 02132, U.S.A.
E-mail: drampadu@hotmail.com

Definition: 2 Let X be a non-empty set, and $G: X \times X \times X \to R_+$ be a distance function . If for all $x, y, z, w \in X$

- (a) $G(x, y, z) \ge 0$
- (b) $G(x, y, z) = G(y, x, z) = ... = 0 \Rightarrow x = y = z$
- (c) $G(x, y, z) \le G(w, y, z) + G(x, w, z) + G(x, y, w)$

Here $(X,G)_{da}$ will denote a G-dislocated quasi-metric space.

Definition: 3 Let X be a non-empty set, and let $G: X \times X \times X \to R_+$ be a distance function. If for all $x, y, z, w \in X$

- (a) $G(x, y, z) \ge 0$
- (b) $G(x, y, z) = G(y, x, z) = ... = 0 \Rightarrow x = y = z$
- (c) G(x, y, z) = G(y, x, z) = ...
- (d) $G(x, y, z) \le G(w, y, z) + G(x, w, z) + G(x, y, w)$

Here $(X,G)_d$ will denote G-dislocated metric space

Definition: 4 A sequence $\{x_n\}$ in $(X,G)_{dq}$ will be called a G-dq-Cauchy sequence if for a given $\varepsilon > 0$, there exist $n_0 \in N$ such that $G(x_m, x_l, x_n) < \varepsilon$, or $G(x_l, x_m, x_n) < \varepsilon$, or ..., that is, $\min\{G(x_m, x_n, x_l), G(x_n, x_m, x_l), \ldots\} < \varepsilon$ for all $m, n, l \ge n_0$.

Definition: 5 A sequence $\{x_n\}$ in the G-metric space (X,G) will be called G-convergent to some $x \in X$ provided that $\lim G(x_n, x_m, x) = \lim G(x_m, x_n, x) = \dots = 0$. We will call x, the G-limit of $\{x_n\}$.

Definition: 6 We will say the G-metric space (X,G) is G-complete if every G-Cauchy sequence in it converges with respect to $x \in X$.

Lemma 7: Every convergent sequence in (X,G) is a Cauchy sequence

Proof: Let $\left\{x_n\right\}$ be a sequence which converges to some $x \in X$. Suppose $\varepsilon > 0$ is arbitrary, then there exists $n_0 \in N$ with $G(x_m, x_n, x) < \frac{\varepsilon}{3}$ for all $n, m \geq n_0$. So for $n, m, l \geq 0$,

We obtain
$$G(x_m, x_n, x) + G(x_m, x, x_l) + G(x, x_n, x_l) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
. Hence $\{x_n\}$ is Cauchy.

Lemma: 8 Limit in $(X,G)_d$ are unique.

Proof: Suppose x, y, z are limits of the sequence $\{x_n\}$. Then $x_n \to x, x_n \to y, x_n \to z$ as $n \to \infty$. By triangle inequality,

$$G(x, y, z) \le G(x, x_n, x_n) + G(x_n, y, x_n) + G(x_n, x_n, z)$$
. If we take the limit as $n \to \infty$, this implies that

 $G(x, y, z) \le G(x, x, x) + G(y, y, y) + G(z, z, z)$. Since G is symmetric in the variables we see that

... =
$$G(x, y, z) = G(x, y, z) \le G(x, x, x) + G(y, y, y) + G(z, z, z)$$
.

Obviously,

$$|G(y,x,z) - G(x,y,z)| \le 0, |G(z,y,x) - G(x,y,z)| \le 0,..., \text{ etc. So}$$

$$\dots = G(z, y, x) = G(y, x, z) = G(x, y, z) \le G(x, x, x) + G(y, y, y) + G(z, z, z)$$
. Also if we go in the limit of

$$G(x, y, z) \le G(x, x_n, x_n) + G(x_n, y, x_n) + G(x_n, x_n, z)$$
, we see that $G(x, y, z) = 0$. So obviously,

$$\dots = G(z, y, x) = G(y, x, z) = G(x, y, z) = 0$$
. In particular $x = y = z$.

Example: 9 Let $X = R_+$. Define G(x, y, z) = |x - y| + |x - z| + |y - z| = d(x, y) + d(x, z) + d(y, z), then $(X, G)_d$ is a metric space. If $\{x_n\}$ is an arbitrary sequence in X; suppose there exists a positive integer N, such that k > N gives $|x_k - a| < \frac{\mathcal{E}}{6}$, then for any m, n, l > N, we see that

$$G(x_n, x_m, x_l) = d(x_n, x_m) + d(x_n, x_l) + d(x_m, x_l) \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
.

Since $d(x_n, x_m) = |x_n - x_m| \le |x_n - a| + |x_m - a| < \frac{\mathcal{E}}{6} + \frac{\mathcal{E}}{6} = \frac{\mathcal{E}}{3}$. So $\{x_n\}$ is a Cauchy sequence in X. Also as $n \to \infty$, $x_n \to a \in X$. Hence every Cauchy sequence in X is convergent with respect to G. It follows that $(X, G)_d$ is a complete metric space.

III. MAIN RESULTS

Before stating the main result, we introduce some definitions and a lemma that will be useful in the sequel.

Definition: 10 [R. Chen, Fixed Point Theory and Applications, National Defense Industry press, 2012]: There exist $\phi(t)$ that satisfy condition ϕ' , if one lets $\phi:[0,\infty) \to [0,\infty)$ be a nondecreasing and nonnegative, then $\lim \phi_n(t) = 0$ for a given t > 0

Lemma: 11[R. Chen, Fixed Point Theory and Applications, National Defense Industry press, 2012]: If ϕ satisfy ϕ' , then $\phi(t) < t$, for a given t > 0

In analogy to Xia *et.al* [Common fixed points for two self-mappings on symmetric sets and complete metric spaces, Advances in Mathematics, vol. 36, no. 4, pp. 415–420, 2007] we have the following lemma

Lemma: 12 Let $F: R_+^4 \to R_+$ be a mapping, and suppose it satisfies the condition ϕ' , for all $u, v \ge 0$, such that, $u \le F(v, v, v, u)$, or $u \le F(v, v, u, v)$, or $u \le F(v, v, v, v)$, then $u \le \phi(v)$

Our main result is as follows.

Theorem: 13 Let $(X,G)_d$ be a complete metric space, and let $f,g,h:X\times X\to R_+$ be mappings such that (i) either f,g,h is continuous, and (ii) there exist F satisfying the condition ϕ' , for all $x,y,z,u,v,w\in X$, such that $G(f(x,u),g(y,v),h(z,w))\leq F(G(x,y,z),G(x,u,f(x,u)),G(y,v,g(y,v)),G(z,w,h(z,w)))$, then f,g,h have a unique fixed point.

Proof:

Put
$$x_n = u_n = (fgh)^n (x_0, u_0) = fgh(x_{n-2}, u_{n-2})$$
, $y_n = v_n = g(fgh)^{n-1} (x_0, u_0)$, $z_n = w_n = h(fgh)^{n-2} (x_0, u_0)$, for $n = 2, 3, 4, 5, ...$

Obviously,

$$y_n = g(x_{n-1}, u_{n-1}), \ z_n = h(x_{n-2}, u_{n-2}), \ fg(z_n, w_n) = y_n, \ fg(y_n, v_n) = x_n,$$

$$z_{n+2} = h(x_n, u_n) = hfg(y_n, v_n), y_{n+1} = g(x_n, u_n) = gfg(y_n, v_n).$$

Let $x = u = gh(x_n, u_n)$, $y = z = x_n$, $v = w = u_n$, then by the condition, we have

$$G(x_{n+2}, y_{n+1}, z_{n+2}) \le F \begin{bmatrix} G(gh(x_n, u_n), x_n, x_n), G(gh(x_n, u_n), gh(x_n, u_n), fgh(x_n, u_n), \\ G(x_n, u_n, g(x_n, u_n)), G(x_n, u_n, h(x_n, u_n)) \end{bmatrix}$$

By Lemma 12,

$$G(x_{n+2}, y_{n+1}, z_{n+2}) \le \phi(G(x_n, x_n, gh(x_n, u_n)))$$

Also we notice that

$$G(x_n, x_n, gh(x_n, u_n)) \le \phi(G(x_n, x_n, y_n))$$

By Lemma 11

$$G(x_{n+2}, y_{n+1}, z_{n+2}) \le \phi^2 (G(x_n, x_n, y_n))$$

By induction, we notice that

$$G(x_{n+2}, y_{n+1}, z_{n+2}) \le \varphi^{2n} (G(x_2, g(x_0, u_0), h(x_0, u_0)))$$

Similarly, we obtain

$$G(y_{n+1}, x_{n+1}, z_{n+2}) \le \varphi^{2n-1} \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right)$$

$$G(y_{n+1}, z_{n+2}, x_n) \le \varphi^{2n-2} \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right)$$

If $n \ge 2$, we obtain

$$\begin{split} G(x_{n+2},x_{n+1},x_n) &\leq G(x_{n+2},y_{n+1},z_{n+2}) + G(y_{n+1},x_{n+1},z_{n+2}) + G(y_{n+1},z_{n+2},x_n) \\ &\leq \varphi^{2n} \left(G(x_2,g(x_0,u_0),h(x_0,u_0)) + \varphi^{2n-1} \left(G(x_2,g(x_0,u_0),h(x_0,u_0)) + \varphi^{2n-2} \left(G(x_2,g(x_0,u_0),h(x_0,u_0)) \right) \right) \\ &\leq 3\varphi^{2n-2} \left(G(x_2,g(x_0,u_0),h(x_0,u_0)) + \varphi^{2n-2} \left(G(x_2,g(x_0,u_0),h(x_0,u_0)) \right) \end{split}$$

Now we observe by the condition ϕ' for $n, m, l \in N$ such that l > m > n, we have

$$\begin{split} G(x_n, x_m, x_{n+m+l}) &\leq G(x_{n+2}, x_{n+1}, x_n) + G(x_{n+3}, x_{n+2}, x_{n+1}) + \ldots + G(x_{n+m+l-2}, x_{n+m+l-1}, x_{n+m+l}) \\ &\leq 3\varphi^{2n-2} \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) + 3\varphi^{2(n+3)-2} \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) + \ldots \right. \\ &\left. + 3\varphi^{2(n+m+l-2)-2} \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right) \right. \\ &\leq 3\sum_{i=2n-2}^{2(n+m+l-2)-2} \varphi^i \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right. \\ &\leq 3\sum_{i=2n-2}^{\infty} \varphi^i \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right. \\ &\leq 3\sum_{i=2n-2}^{\infty} \varphi^i \left(G(x_2, g(x_0, u_0), h(x_0, u_0)) \right) \to 0 \end{split}$$

It follows that $G(x_n, x_m, x_l) \to 0$ as $m, n, l \to \infty$. Hence $\{x_n\}$ is a Cauchy sequence in X.

Since $(X,G)_d$ is complete, $\{x_n\}$ converges to some $x_* \in X$. In a similar way, $\{u_n\}$ converges to $u_* = x_* \in X$, say. If h,g are both continuous, the by their continuity, we see that as. $n \to \infty$ $z_{n+2} = z_* = h(x_*,u_*)$, and $y_{n+1} = y_* = g(x_*,u_*)$. So as $n \to \infty$, $G(x_{n+2},y_{n+1},z_{n+2}) \le G(x_*,y_*,z_*) \le 0$. So, (x_*,u_*) is a fixed point of h,g.

By the given condition (note : $u_* = x_* \in X$, say), then,

$$G(f(x_*,u_*),g(x_*,u_*),h(x_*,u_*)) \le F(0,G(x_*,u_*,f(x_*,u_*),0,0))$$

It follows that $G(x_*, u_*, f(x_*, u_*)) \le \phi(0) = 0$, thus, $f(x_*, u_*) = x_* = u_*$. So (x_*, u_*) is a common fixed point of f, g, h.

Regarding uniqueness, if y_* is another common fixed point of f, g, h, then by the given condition,

$$G(x_*, x_*, y_*) = G(f(x_*, x_*), g(x_*, x_*), h(y_*, y_*))$$

$$\leq F(G(x_*, x_*, y_*), G(x_*, x_*, f(x_*, x_*)), G(x_*, x_*, g(x_*, x_*)), G(y_*, y_*, f(y_*, y_*)))$$

$$= F(G(x_*, x_*, y_*), 0, 0, 0)$$

Since $G(x_*, x_*, y_*) \le \phi(0) = 0$, it follows that $x_* = y_*$, and uniqueness follows, completing the proof.

IV. CONCLUDING REMARKS

Matthews [Metric domains for completeness. Technical Report 76 [Ph.D. thesis], Department of Computer Science, University of Warwick, Coventry, UK, 1986] generalized Banach contraction mapping theorem in dislocated metric space that is a wider space than metric space. In this paper, we established common fixed point theorems for a class of contractive mappings in the setting of G-dislocated metric spaces.

Let $\{x_n\}$ be a sequence of points, we will say that x_* is the condensation point of $\{x_n\}$, if there exists subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x_*$.

By way of this definition, we have the following theorem

Theorem 14: Let $(X,G)_d$ be a complete metric space, and let $f,g,h:X\times X\to R_+$ be continuous mappings, if

- (a) There exists F satisfying the condition ϕ' , for all $x, y, z, u, v, w \in X$ such that $G(f(x,u),g(y,v),h(z,w)) \leq F(G(x,y,z),G(x,u,f(x,u)),G(y,v,g(y,v)),G(z,w,h(z,w)))$
- (b) There exists $(x_0, y_0) \in X \times X$, such that $\{(fgh)^n(x_0, y_0)\}$ have a condensation point.

Then f, g, h have a unique common fixed point

REFERENCES

- [1] S. Banach, Sur le operations les ensembles abstraits et leur application aux equations integrals, Fund. Math 3 (1922), 131-181
- [2] B. K. Dass and S. Gupta, "An extension of Banach contraction principle through rational expression," Indian Journal of Pure and Applied Mathematics, vol. 6, no. 12, pp. 1455–1458, 1975.
- [3] B. E. Rhoades, "A comparison of various definitions of contractive mappings," Transactions of the American Mathematical Society, vol. 226, pp. 257–290, 1977.
- [4] S. G. Matthews, Metric domains for completeness. Technical Report 76 [Ph.D. thesis], Department of Computer Science, University of Warwick, Coventry, UK, 1986.
- [5] P. Hitzler, Generalized metrices and topology in logic programming semantics [Ph.D. thesis], University College Cork, National University of Ireland, 2001.
- [6] P. Hitzler and A. K. Seda, "Dislocated topologies," Journal of Electrical Engineering, vol. 51, no. 12, pp. 3–7, 2000.
- [7] F. M. Zeyada, G. H. Hassan, and M. A. Ahmed, "A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces," Thee Arabian Journal for Science and Engineering Section A, vol. 31, no. 1, pp. 111–114, 2006.

CLEMENT AMPADU*/ On a map of Xia et.al and Some Fixed Point Theorems for a class of Contractive Mappings in G-Dislocated Metric Spaces / IJMA- 4(11), Nov.-2013.

- [8] C. T. Aage and J. N. Salunke, "The results on fixed points in dislocated and dislocated quasi-metric space," Applied Mathematical Sciences, vol. 2, no. 57–60, pp. 2941–2948, 2008.
- [9] A. Isufati, "Fixed point theorems in dislocated quasi-metric space," Applied Mathematical Sciences, vol. 4, no. 5–8, pp. 217–223, 2010.

Source of support: Nil, Conflict of interest: None Declared