International Journal of Mathematical Archive-2(4), Apr. - 2011, Page: 543-548 (ब) MA Available online through www.i.jma.info ISSN 2229-5046

X-DOMATIC PARTITION OF GRAPH $V V^{+}(G)$ AND CHROMATIC NUMBER OF G

*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan
${ }^{1}$ Department of Mathematics, Sastra University, Tanjore 613 402. India
${ }^{2}$ Coordinator, Ramanujan Research Centre, S. N. College, Madurai 625 002. India
E-mail: ${ }^{1}$ sulanesri@yahoo.com, ${ }^{2}$ Venkatakrish2@maths.sastra.edu
(Received on: 10-04-11; Accepted on: 17-04-11)

Abstract

Let $G^{1}=(X, Y, E)$ be a bipartite graph. A X - domatic partition of G^{1} is a partition of X, all of whose classes are X dominating set in G^{1}. The X-domatic number of G^{1} is the maximum number of classes of X-domatic partition of G^{1}. The X-domatic number of G^{1} is denoted by $d_{X}\left(G^{1}\right)$.

Let G be a simple undirected graph. We obtain a sharp upper bound for the sum of chromatic number of G and X-domatic number of the bipartite graph $V V^{+}$obtained from G and characterize the corresponding extremal graphs.

Keywords: Bipartite graphs, Chromatic number, X-domatic number.
MSC 2000: 05C69.

1. INTRODUCTION:

Let $G=(V, E)$ be a simple undirected graph. The chromatic number $\chi(G)$ is defined to be the minimum number of colors required to color all the vertices such that adjacent vertices do not receive the same color. A domatic partition of G is a partition of $V(G)$, all of whose classes are dominating set in G . The domatic number of G is the maximum number of classes of a domatic partition of G. The domatic number is denoted by $d(G)$.

Given a graph $G=(V, E)$, the bipartite graph $V V^{+}(G)=\left(V, V^{1}, E^{1}\right)$ is defined by the edges $E^{1}=\left\{\left(u, v^{1}\right) /(u, v) \in E\right\}$ together with $\left\{\left(u, u^{1}\right) / u \in V\right\}$. Let $G^{1}=(X, Y, E)$ be a bipartite graph. A subset $D \subseteq X$ is an X-dominating set if for every $x \in X-D$, there exists atleast one vertex $u \in D$ such that x and u are adjacent to a common vertex $y \in Y$. The minimum cardinality taken over all the minimal X-dominating set is called Xdomination number and is denoted by $\gamma_{X}\left(G^{1}\right)$. A X-domatic partition of G^{1} is a partition of X, all of whose classes are X-dominating set in G^{1}. The X-domatic number of G^{1} is the maximum number of classes of a X-domatic partition of G^{1}. The X-domatic number of G^{1} is denoted by $d_{X}\left(G^{1}\right)$.

Bipartite theory of graphs was proposed in [2] and [3]. Given any problem say A, on an arbitrary graph G, there is a corresponding problem B on a bipartite graph G^{1}, such that solution for B provides a solution for A .

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph

[^0]
*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan / X-DOMATIC PARTITION OF GRAPH VV ${ }^{+}(G)$ AND ChROMATIC NUMBER OF G /IJMA- 2(4), Apr.-2011, Page: 5431-548

theoretic parameter and characterized the corresponding extremal graphs. In [5] Paulraj Joseph J and Arumugam proved $\gamma_{c}+\chi \leq p+1$. They also characterized the class of graphs for which the upper bound is attained. In [4] Mahadevan et all proved $\gamma_{d d}(G)+\chi(G) \leq 2 n$, and characterized the corresponding extremal graphs. In this paper, we obtain sharp upper bound for the sum of the chromatic number of a graph G and the X -domatic number of bipartite graph $V V^{+}(G)$ constructed from G and characterize the corresponding extremal graphs. By the theory of bipartite graph, the above gives an upper bound for the sum of the chromatic number of a graph G and the domatic number of G^{2}. [2] defines square of a graph $G^{2}=\left(V, E^{2}\right)$ as $(u, v) \in E^{2}$ if and only if distance $d(u, v) \leq 2$ in G.

Proposition 1.1: $d_{X}\left(V V^{+}\left(K_{n}\right)\right)=n$.
Proof: K_{n} is a complete graph on n vertices. Every vertex is adjacent to other vertices in G . In $V V^{+}$, every vertex is Xadjacent to other vertices. Every vertex is a X-dominating set. Therefore, $d_{X}\left(V V^{+}\left(K_{n}\right)\right)=n$.

Theorem: 1.2 In a bipartite graph $G=(X, Y, E),|X|=n$ then $d_{X}(G) \leq n$.

Theorem: 1.3 [1] For any connected graph $G, \chi(G) \leq \Delta+1$.

2. MAIN RESULT:

Theorem: 2.1 For any connected graph G, $d_{X}\left(V V^{+}(G)\right)+\chi(G) \leq 2 n$ and equality holds if and only if $G \cong K_{n}$.

Proof: $d_{X}\left(V V^{+}(G)\right)+\chi(G) \leq n+\Delta+1 \leq n+n-1+1=2 n$. If $d_{X}(V E(G))+\chi(G)=2 n$, then the possible case is $d_{X}\left(V V^{+}\right)=n$ and $\chi(G)=n$. Since, $\chi(G)=n, G \cong K_{n}$ and $d_{X}\left(V V^{+}\right)=n$. Hence, $G \cong K_{n}$. The converse of the above is obvious.
G_{1} is the family of graphs on n vertices which contains a clique $\mathrm{K}=\mathrm{K}_{\mathrm{n}-1}$ and the other vertex is adjacent to α vertices of K , where $1 \leq \alpha \leq n-2$.

Theorem: 2.2 For any connected graph G, $d_{X}\left(V V^{+}(G)\right)+\chi(G)=2 n-1$ if and only if $G \in G_{1}$.

Proof: Assume $d_{X}\left(V V^{+}(G)\right)+\chi(G)=2 n-1$. This is possible only if $d_{X}\left(V V^{+}(G)\right)=n$ and $\chi(G)=n-1$ or $d_{X}\left(V V^{+}(G)\right)=n-1$ and $\chi(G)=n$.

Case: (a) $d_{X}\left(V V^{+}(G)\right)=n$ and $\chi(G)=n-1$.

Since, $\chi(G)=n-1$, G contains a clique $K=K_{n-1}$. Let x be any vertex of G other than the vertices of K. Since G is connected x is to a vertex of K. Let us assume x is adjacent to α vertices of $K, 1 \leq \alpha \leq \mathrm{n}-2$. The vertex in $N(x)$ of the graph G is of degree n in $V V^{+}(G)$. Hence, $G \in G_{1}$

Case :(b) $d_{X}\left(V V^{+}(G)\right)=n-1$ and $\chi(G)=n$.

Since, $\chi(G)=n ; G \cong K_{n}$ and $d_{X}\left(V V^{+}(G)\right)=n \neq n-1$, a contradiction. So no graph exists.

If $G \in G_{1}$, then $d_{X}\left(V V^{+}(G)\right)+\chi(G)=2 n-1$.

*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan / X-DOMATIC PARTITION OF GRAPH VV ${ }^{+}(G)$ AND CHROMATIC NUMBER OF G /IJMA- 2(4), Apr.-2011, Page: 5431-548

G_{2} is a family of graphs on n vertices which contains a clique $K=K_{n-2}$, and the other vertices are adjacent to same vertex of K and degree of two vertices are α, β where $1 \leq \alpha, \beta \leq n-3$.
G_{3} is a family of graph on n vertices which contains a clique $K=K_{n-2}$ and the other vertices of G is K_{2} and the ends of K_{2} are adjacent to same vertex of K, the degree of two vertices are α, β where $1 \leq \alpha, \beta \leq n-2$.

Theorem: 2.3 For a connected graph $G, d_{X}\left(V V^{+}\right)+\chi(G)=2 n-2$ if and only if G belongs to G_{2} or G_{3}.
Proof: If G belongs to G_{2} or G_{3}, then $d_{X}\left(V V^{+}\right)+\chi(G)=2 n-2$ is obvious. Conversely, assume that $d_{X}\left(V V^{+}\right)+\chi(G)=2 n-2$. This is possible only if
(a) $d_{X}\left(V V^{+}\right)=n ; \chi(G)=n-2$ or
(b) $d_{X}\left(V V^{+}\right)=n-1 ; \chi(G)=n-1$ or
(c) $d_{X}\left(V V^{+}\right)=n-2 ; \chi(G)=n$.

Case: (a) $d_{X}\left(V V^{+}\right)=n ; \chi(G)=n-2$
Since $\chi(G)=n-2, G$ contains a clique $K=K_{n-2}$. Let $S=\{x, y\}$ be other vertices of $G .\langle S\rangle=K_{2}$ or $\overline{K_{2}}$.
Sub case: (i) $\langle S\rangle=\overline{K_{2}}$.
Since G is connected. Vertices of $\langle S\rangle$ are adjacent to vertices of K. If x and y are adjacent to the same vertex of K, we get $d_{X}\left(V V^{+}\right)=n$. We also get $d_{X}\left(V V^{+}\right)=n$, if x and y are adjacent to α and β vertices of K where $1 \leq \alpha, \beta \leq n-3 . G \in G_{2}$.

Sub case: (ii) $\langle S\rangle=K_{2}$
G is connected, one vertex of K_{2} is adjacent to a vertex of $K, d_{X}\left(V V^{+}\right)<n$ a contradiction.
If both ends of K_{2} are adjacent to same vertex of K, we get $d_{X}\left(V V^{+}\right)=n$. The vertices x and y can be of adjacent to α and $\beta 1 \leq \alpha, \beta \leq n-2$. Which is graph G_{3}.

Case: (b) $d_{X}\left(V V^{+}\right)=n-1 ; \chi(G)=n-1$
Since $\chi(G)=n-1, G$ contains a clique $K=K_{n-1}$. Let x be a vertex of G other than the vertices of K. Since G is connected, x should be adjacent to atleast one vertex of K. Hence, $d_{X}\left(V V^{+}(G)\right)=n \neq n-1$. A contradiction. Therefore, no such graph exists.

Case: (c) $d_{X}\left(V V^{+}\right)=n-2 ; \chi(G)=n$.

Since $\chi(G)=n, G \cong K_{n}$. But $d_{X}\left(V V^{+}\left(K_{n}\right)\right)=n \neq n-2$. A contradiction.
We define certain family of graphs

*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan / X-DOMATIC PARTITION OF GRAPH VV ${ }^{+}(G)$ AND ChROMATIC NUMBER OF G /IJMA- 2(4), Apr.-2011, Page: 5431-548

G_{4} is the family of graphs on n vertices, which contain a clique $K=K_{n-3}$ and other vertices of G are adjacent to a vertex of K and the degree of the vertices are α, β, γ where $1 \leq \alpha, \beta, \gamma \leq n-4$.
G_{5} is the family of graphs on n vertices, which contain a clique $K=K_{n-3}$ and other vertices of G forms a P_{3} and all the vertices of $\quad P_{3}$ are adjacent to same vertex of K. The degree of the vertices of P_{3} are α, β, γ where $1 \leq \alpha, \gamma \leq n-3 ; 1 \leq \beta \leq n-2$.
G_{6} is the family of graphs on n vertices, which contain a clique $K=K_{n-3}$ and other vertices of G form $K_{1} \cup K_{2}$. All the vertices in $K_{1} \cup K_{2}$ are adjacent to a vertex of K. The degree of these vertices are α, β, γ where $1 \leq \alpha \leq n-4 ; 1 \leq \beta, \gamma \leq n-3$.
G_{7} is the family of graphs on n vertices, which contain a clique $K=K_{n-3}$ and other vertices of G form a K_{3} and the vertices of K_{3} are adjacent to different vertices of K.
G_{8} is the family of graphs on n vertices, which contain a clique $K=K_{n-2}$ and the other two vertices are adjacent to different vertices of K.
G_{9} is the family of graphs on n vertices, which contain a clique $K=K_{n-2}$ and the other vertices forms a K_{2} in which the ends are adjacent to different vertices of K.

Theorem: 2.4 For a connected graph $G, d_{X}\left(V V^{+}\right)+\chi(G)=2 n-3$ if and only if $G \in G_{i} 4 \leq i \leq 9$.
Proof: If $G \in G_{i} 4 \leq i \leq 9$, then clearly $d_{X}\left(V V^{+}\right)+\chi(G)=2 n-3$. Conversely, assume that $d_{X}\left(V V^{+}\right)+\chi(G)=2 n-3$. This is possible only if
(a) $d_{X}\left(V V^{+}\right)=n-3 ; \chi(G)=n$ or
(b) $d_{X}\left(V V^{+}\right)=n-2 ; \chi(G)=n-1 \quad$ or
(c) $d_{X}\left(V V^{+}\right)=n-1 ; \chi(G)=n-2$ or
(d) $d_{X}\left(V V^{+}\right)=n ; \chi(G)=n-3$.

Case (a): $d_{X}\left(V V^{+}\right)=n-3 ; \chi(G)=n$
Since, $\chi=n G \cong K_{n}$. But $d_{X}\left(V V^{+}\left(K_{n}\right)\right)=n \neq n-3$ a contradiction. Hence, no such graph exists.
Case: (b) $d_{X}\left(V V^{+}\right)=n-2 ; \chi(G)=n-1$
Since $\chi(G)=n-1$, G contains a clique $K=K_{n-1}$. Let x be a vertex of G other than the vertices of K. Since G is connected, x is adjacent to atleast one vertex of K. $d_{X}\left(V V^{+}\right)=n \neq n-2$, a contradiction. Hence, no such graphs exist.

Case: (c) $d_{X}\left(V V^{+}\right)=n-1 ; \chi(G)=n-2$
© 2010, IJMA. All Rights Reserved

*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan / X-DOMATIC PARTITION OF GRAPH VV ${ }^{+}(G)$ AND ChROMATIC NUMBER OF G /IJMA- 2(4), Apr.-2011, Page: 5431-548

Since $\chi(G)=n-2, G$ contains a clique $K=K_{n-2}$. Let $S=\{x, y\}$ be vertices of G other than the vertices of K. Then $\langle S\rangle=K_{2}$ or $\overline{K_{2}}$.

Sub case: (i) If $\langle S\rangle=\overline{K_{2}}$.
If vertices in $\langle S\rangle$ are adjacent to same vertex of K, we get a contradiction to $d_{X}\left(V V^{+}\right)=n-1$. Hence no such graphs exists. If the vertices of $\langle S\rangle$ are adjacent to different vertices of K, we get $G \in G_{8}$.

Sub case: (ii) If $\langle S\rangle=K_{2}$.
If the end of K_{2} are adjacent to a vertex of K, we get a contradiction to $d_{X}\left(V V^{+}\right)=n-1$. Hence no such graph exists. If the vertices of $\langle S\rangle$ are adjacent to different vertices of K, we get $G \in G_{9}$.

Case: (d) $d_{X}\left(V V^{+}\right)=n ; \chi(G)=n-3$.
Since $\chi(G)=n-3$, G contains a clique $K=K_{n-3}$. Let $S=\{x, y, z\}$ be vertices of G other than the vertices of K. Then $\langle S\rangle=K_{3} ; \overline{K_{3}} ; P_{3} ; K_{2} \cup K_{1}$.

Sub case: (i) $\langle S\rangle=K_{3}$
Since G is connected, a vertex of K_{3} is adjacent to a vertex of K. If the vertices of $\langle S\rangle$ are adjacent to different vertices of K, we get $d_{X}\left(V V^{+}\right)=n$ and therefore, $G \in G_{7}$.

Sub case: (ii) $\langle S\rangle=\overline{K_{3}}$.
Since G is connected, all the vertices of $\overline{K_{3}}$ are adjacent to a vertex of K. If the vertices x, y, z are of degree α, β, γ where $1 \leq \alpha, \beta, \gamma \leq n-4$, then $d_{X}\left(V V^{+}\right)=n$. Therefore, $G \in G_{4}$.

Sub case: (iii) $\langle S\rangle=P_{3}$
Since G is connected, a vertex of P_{3} is adjacent to a vertex of K, a contradiction to $d_{X}\left(V V^{+}\right)=n$. If all the vertices of P_{3} are adjacent to a vertex of K. If the degree of the vertices are α, β, γ where $1 \leq \alpha, \gamma \leq n-3 ; 1 \leq \beta \leq n-2$. Then, $d_{X}\left(V V^{+}\right)=n$. Hence, $G \in G_{5}$.

Sub case :(iv) $\langle S\rangle=K_{2} \cup K_{1}$
If a vertex of K_{2} and K_{1} are adjacent to same vertex of K. If the degree of these vertices are α, β, γ where $1 \leq \alpha \leq n-4 ; 1 \leq \beta, \gamma \leq n-3$. Then, $d_{X}\left(V V^{+}\right)=n$. Hence $G \in G_{6}$.

Theorem: 2.5 For a connected graph $G, d\left(G^{2}\right)=d_{X}\left(V V^{+}(G)\right)$.
Proof: Let $V_{1}, V_{2}, \ldots, V_{n}$ be domatic partition of $G .^{2}$ Each V_{i} is a dominating set in G^{2}. Therefore, V_{i} is a Xdominating set in the bipartite graph $\mathrm{VV}^{+}(\mathrm{G})$. Hence, $V_{1}, V_{2}, \ldots, V_{n}$ is a X -domatic partition of $\mathrm{VV}^{+}(\mathrm{G})$. Hence, $d_{X}\left(V V^{+}(G)\right) \geq d\left(G^{2}\right)$.

*Y. B. Venkatakrishnan ${ }^{1}$ and ${ }^{2}$ V. Swaminathan / X-DOMATIC PARTITION OF GRAPH VV ${ }^{+}(G)$ AND CHROMATIC NUMBER OF G /IJMA- 2(4), Apr.-2011, Page: 5431-548

Conversely, $V_{1}, V_{2}, \ldots, V_{n}$ be X-domatic partition of $\mathrm{VV}^{+}(\mathrm{G})$. Then, $V_{1}, V_{2}, \ldots, V_{n}$ is a domatic partition in G^{2}. Therefore, $d\left(G^{2}\right) \geq d_{X}\left(V V^{+}\right)$. Hence, $d\left(G^{2}\right)=d_{X}\left(V V^{+}(G)\right)$.

REFERENCES:

[1] F. Harary, Graph Theory, Addison -Wesley, Reading, MA 1972.
[2] Stephen Hedetniemi, Renu Laskar, A Bipartite Theory of Graphs I, Congressus Numerantium Volume 55 (1986), 5-14.
[3] Stephen Hedetniemi, Renu Laskar, A Bipartite Theory of Graphs II, Congressus Numernatium Volume 64 (1988), 137146.
[4] Mahadevan G , Selvam Avadayappan A, Mydeen Azmal Hussain, "Double Domination number and Chromatic number of a Graph", Mathematical and computational models, edited by R.Nadarajan et all, published by Narosa, India. Pages 182-190.
[5] Paulraj Joseph J and Arumugam S, Domination and Colouring in Graphs, International Journal of management and systems, Vol 15, n0.1, 37-44, 1999.
[6] Teresa W.Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Newyork, 1998.

[^0]: *Corresponding author: *Y.B. Venkatakrishnan ${ }^{1}$, E-mail: Venkatakrish2@maths.sastra.edu

