International Journal of Mathematical Archive-2(4), Apr. - 2011, Page: 465-475 Www.ijma.info ISSN 2229 - 5046

REMARKS ON BITOPOLOGICAL (1, 2)*-rω-HOMEOMORPHISMS

*O. Ravi¹, S. Pious Missier², T. Salai Parkunan³ and A. Pandi⁴

¹DEPARTMENT OF MATHEMATICS, P. M.THEVAR COLLEGE, USILAMPATTI, MADURAI DT, TAMILNADU, INDIA.

Email: siingam@yahoo.com

²DEPARTMENT OF MATHEMATICS, V. O. CHIDAMBARAM COLLEGE, TUTICORIN, TAMILNADU, INDIA.

Email: spmissier@yahoo.com

³DEPARTMENT OF MATHEMATICS, ARUL ANANDAR COLLEGE, KARUMATHUR, MADURAI DT., TAMILNADU, INDIA.

Email: parkunan@yahoo.com

⁴DEPARTMENT OF MATHEMATICS, P. M.THEVAR COLLEGE, USILAMPATTI, MADURAI DT, TAMILNADU, INDIA.

Email: pandi2085@yahoo.com

(Received on: 24-03-11; Accepted on: 10-04-11)

ABSTRACT

The aim of this paper is to introduce the concepts of $(1, 2)^*$ - $r\omega$ - continuous mappings and study some of its properties. Their corresponding $(1,2)^*$ - $r\omega$ -irresolute mappings and $(1,2)^*$ - $r\omega$ -homeomorphisms are also defined and investigated in this paper.

2000 Mathematics Subject Classification: 54E55

Keywords and phrases: $(1,2)^*$ - $r\omega$ -continuous map, $(1,2)^*$ - $r\omega$ -irresolute map, $(1,2)^*$ -gpr-continuous map, $(1,2)^*$ - π g-continuous map, $(1,2)^*$ - π g-continuous map.

1. INTRODUCTION:

Regular open sets have been introduced and investigated by Stone [32]. Levine [16, 17], Cameron [3], Sundaram and Sheik John [34], and Gnanambal [7] introduced and investigated semi-open sets, regular semiopen sets, weakly closed sets and generalized pre-regular closed sets respectively. Regular ω -closed sets have been introduced and investigated by Benchalli and Wali [2] respectively, which is properly placed in between the class of ω -closed sets [33] and the class of regular-generalized closed sets [19]. Recently Ravi, Lellis Thivagar, Ekici and Many others [20-31] defined different weak forms of semi-open sets, preopen sets, regular open sets, regular semi open sets etc., in bitopological spaces.

In this paper, we introduce the notions of $(1,2)^*$ -r ω -continuous mappings, $(1,2)^*$ -r ω -irresolute mappings and $(1,2)^*$ -r ω -homeomorphisms in bitopological spaces and study some of their basic properties. In most of the occasions our ideas are illustrated and substantiated by some suitable examples.

2. PRELIMINARIES:

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) respectively.

Corresponding author O. Ravi¹, *E-mail: <u>siingam@yahoo.com</u>
¹DEPARTMENT OF MATHEMATICS, P. M.THEVAR COLLEGE, USILAMPATTI, MADURAI DT, TAMILNADU, INDIA.

Definition: 2.1

Let S be a subset of a bitopological space X. Then S is called $\tau_{1,2}$ -open [11] if $S = A \bigcup B$, where $A \in \tau_1 B \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open sets of X is denoted by $(1,2)^*$ -O(X).

Definition: 2.2

Let S be a subset of a bitopological space X. Then

- (i) the $\tau_{1,2}$ -closure of S [11], denoted by $\tau_{1,2}$ -cl(S), is defined by \cap {U: S \subseteq U and U is $\tau_{1,2}$ -closed };
- (ii) the $\tau_{1,2}$ -interior of S [11], denoted by $\tau_{1,2}$ -int(S), is defined by \cup {U: U \subseteq S and U is $\tau_{1,2}$ -open}.

Remark: 2.3

Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Now we recall some definitions and results, which are used in this paper.

Definition: 2.4

A subset S of a bitopological space X is said to be

- (i) $(1, 2)^*$ - α -open [13] if $S \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(S)));
- (ii) (1, 2)*-semi-open [13] if $S \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(S));
- (iii) regular (1,2)*-open [20] if $S = \tau_{1,2}$ -int($\tau_{1,2}$ -cl(S));
- (iv) $(1, 2)^*$ -preopen [13] if $S \subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(S));
- (v) $(1, 2)^*$ - π -open [15] if S is the finite union of regular $(1, 2)^*$ -open sets.

The complements of all the above mentioned open sets are called their respective closed sets.

The family of all $(1,2)^*$ - α -open (resp. $(1,2)^*$ -semi-open, $(1,2)^*$ -preopen, regular $(1,2)^*$ -open, $(1,2)^*$ - π -open) sets of X will be denoted by $(1,2)^*$ - α O(X) (resp. $(1,2)^*$ -SO(X), $(1,2)^*$ -PO(X), $(1,2)^*$ -RO(X), $(1,2)^*$ - π O(X)).

The $(1,2)^*$ -semi-closure [25](resp. $(1,2)^*$ -preclosure [21], $(1,2)^*$ - α -closure [21]) of a subset S of X is, denoted by $(1,2)^*$ -scl(S) (resp. $(1,2)^*$ -pcl(S) $(1,2)^*$ - α -closed, defined as the intersection of all $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ -preclosed, $(1,2)^*$ - α -closed) sets containing S.

Definition: 2.5

A subset S of a bitopological space X is said to be

- (i) a regular (1,2)*-generalized closed (briefly, (1,2)*-rg-closed [22]) if $\tau_{1,2}$ -cl(S) \subset U whenever S \subset U and U \in (1,2)*-RO(X).
- (ii) a $(1,2)^*$ - ω -closed or $(1,2)^*$ - \hat{g} -closed [9] if $\tau_{1,2}$ -cl(S) \subset U whenever S \subset U and U \in $(1,2)^*$ -SO(X).
- (iii) a $(1,2)^*$ -gpr-closed [28] if $(1,2)^*$ -pcl(S) \subset U whenever S \subset U and U \in $(1,2)^*$ -RO(X).
- (iv) a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed [23]) if $\tau_{1,2}$ -cl(S) \subset U whenever S \subset U and U \in $(1,2)^*$ -O(X).
- (v) a weakly (1,2)*-generalized closed (briefly, (1,2)*-wg-closed [29]) if $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(S)) \subset U whenever S \subset U and U \in (1,2)*-O(X).
- (vi) a $(1,2)^*$ - π g-closed [15] if $\tau_{1,2}$ -cl(S) \subset U whenever S \subset U and U \in $(1,2)^*$ - π O(X).

The complements of all the above mentioned closed sets are called their respective open sets.

Definition: 2.6[27]

A subset S of a bitopological space X is called

- (i) regular $(1,2)^*$ -semiopen if there is a regular $(1,2)^*$ -open set U such that $U \subset S \subset \tau_{1,2}$ -cl(U).
- (ii) regular $(1,2)^*$ - α -open (briefly, $(1,2)^*$ -r α -open) if there is a regular $(1,2)^*$ -open set U such that $U \subset S \subset (1,2)^*$ - α -cl(U).

The family of all regular $(1, 2)^*$ -semiopen(resp. regular $(1, 2)^*$ - α -open) sets of X is denoted by $(1, 2)^*$ -RSO(X) (resp. R α O(X)).

Definition: 2.7 [31]

A subset A of a bitopological space X is called a regular generalized- $(1,2)^*$ - α -closed set (briefly, $(1,2)^*$ -rg α -closed) if $(1,2)^*$ - α -cl(A) \subset U whenever A \subset U and U \in R α O(X).

We denote the set of all (1,2)*-rg α -closed sets in X by (1,2)*-RG α C(X).

Definition: 2.8 [27]

A subset S of a bitopological space X is called regular $(1, 2)^*$ - ω -closed (briefly $(1, 2)^*$ -r ω -closed) if $\tau_{1, 2}$ -cl(S) \subset U whenever S \subset U and U \in $(1, 2)^*$ -RSO(X).

The complement of regular $(1,2)^*$ - ω -closed set is called regular $(1,2)^*$ - ω -open (briefly $(1,2)^*$ -r ω -open).

We denote the family of all (1,2)*-r ω -closed (resp. (1,2)*-r ω -open) sets in X by (1,2)*-R ω C(X)(resp. (1,2)*-R ω C(X)).

Definition: 2.9

A map $f: X \to Y$ is said to be

- (i) $(1, 2)^*$ -continuous [20] if $f^1(V)$ is $\tau_{1,2}$ -closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (ii) (1, 2)*-semi-continuous [25] if $f^{-1}(V)$ is (1, 2)*-semi-closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (iii) $(1, 2)^*$ - ω -continuous [28] if $f^{-1}(V)$ is $(1, 2)^*$ - ω -closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (iv) (1, 2)*-rg-continuous [22] if $f^{-1}(V)$ is (1, 2)*-rg-closed in X, for every σ_1 2-closed set V in Y.
- (v) $(1, 2)^*$ - π g-continuous [15] if $f^1(V)$ is $(1, 2)^*$ - π g-closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (vi) (1, 2)*-g-continuous [24] if $f^{-1}(V)$ is (1, 2)*-g-closed in X, for every $\sigma_{1, 2}$ -closed set V in Y.
- (vii)(1, 2)*-gpr-continuous [12] if $f^1(V)$ is (1, 2)*-gpr-closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (viii) $(1, 2)^*$ -wg-continuous [29] if $f^{-1}(V)$ is $(1, 2)^*$ -wg-closed in X, for every $\sigma_{1,2}$ -closed set V in Y.

Definition: 2.10

A map $f: X \rightarrow Y$ is said to be

- (i) (1, 2)*-semi-irresolute [13] if $f^1(V)$ is (1, 2)*-semi-open in X, for every (1, 2)*-semi-open V in Y.
- (ii) $(1, 2)^*$ - ω -irresolute [28] if $f^{-1}(V)$ is $(1, 2)^*$ - ω -closed in X, for every $(1, 2)^*$ - ω -closed V in Y.

Definition 2.11

A bijective $f: X \to Y$ is said to be

- (i) (1, 2)*-g-homeomorphism [26] if both f and f⁻¹ are (1, 2)*-g continuous
- (ii) $(1, 2)^*$ - ω -homeomorphism [28] if both f and f¹ are $(1, 2)^*$ - ω -continuous
- (iii) $(1, 2)^*$ -homeomorphism [26] if both f and f^{-1} are $(1, 2)^*$ continuous

Remark: 2.12

Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -r ω -closed set but not conversely [27].

3. (1, 2)*-rω-CONTINUOUS MAPPINGS:

Definition: 3.1

A subset A of a bitopological space X is called a regular weakly generalized- $(1,2)^*$ -closed set (briefly, $(1,2)^*$ -rwg-closed) if $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) \subseteq U whenever A \subseteq U and U is regular $(1,2)^*$ -open in X.

Definition: 3.2

A map $f: X \to Y$ is said to be

- (i) $(1, 2)^*$ -r ω -continuous if $f^1(V)$ is $(1, 2)^*$ -r ω -closed in X, for every $\sigma_{1,2}$ -closed set V in Y.
- (ii) $(1, 2)^*$ -rwg-continuous if $f^{-1}(V)$ is $(1, 2)^*$ -rwg-closed in X, for every $\sigma_{1, 2}$ -closed set V in Y.

Theorem: 3.3

Every $(1, 2)^*$ -continuous map is $(1,2)^*$ -r ω -continuous.

Proof:

Let $f: X \to Y$ be $(1,2)^*$ -continuous and V be any $\sigma_{1,2}$ -closed set in Y. Then $f^1(V)$ is $\tau_{1,2}$ -closed set in X. By Remark 2.12, $f^1(V)$ is $(1,2)^*$ -r ω -closed in X. Therefore, f is $(1,2)^*$ -r ω -continuous.

Remark: 3.4

The converse of Theorem 3.3 need not be true as shown in the following example.

Example: 3.5

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y, \{b, c\}\}$ and $\sigma_2 = \{\phi, Y, \{c\}\}$. Then the sets in $\{\phi, Y, \{c\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -closed. The map $f : X \to Y$ defined by f(a) = a, f(b) = b, f(c) = c is $(1,2)^*$ -ro-continuous but not $(1,2)^*$ -continuous.

Theorem: 3.6

If $f: X \to Y$ is $(1,2)^*$ - ω -continuous map then it is $(1,2)^*$ - $r\omega$ -continuous.

Proof:

Let V be any $\sigma_{1,2}$ -closed set of Y. Then by hypothesis $f^1(V)$ is $(1, 2)^*$ - ω -closed set in X. But every $(1, 2)^*$ - ω -closed set is $(1, 2)^*$ -r ω -closed, by Theorem 3.3[27]. Therefore, f is $(1, 2)^*$ -r ω -continuous.

Remark: 3.7

The converse of Theorem 3.6 need not be true as shown in the following example.

Example: 3.8

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}, \{b, c, d\}\}$. Then the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, b, d\}, \{a, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a, b, c\}\}$ and $\sigma_2 = \{\phi, Y, \{a, c\}\}$. Then the sets in $\{\phi, Y, \{a, c\}, \{a, b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{d\}, \{b, d\}\}$ are called $\sigma_{1,2}$ -closed. The map $f: X \to Y$ defined by f(a) = a, f(b) = b, f(c) = c and f(d) = d is $(1,2)^*$ -r ω -continuous but not $(1,2)^*$ - ω -continuous.

Theorem: 3.9

If $f: X \to Y$ is $(1,2)^*$ -r ω -continuous map then it is $(1,2)^*$ -rg-continuous.

Proof:

Let V be any $\sigma_{1,2}$ -closed set of Y. Then by hypothesis $f^{-1}(V)$ is $(1, 2)^*$ -r ω -closed set in X. But every $(1, 2)^*$ -r ω -closed set is $(1, 2)^*$ -rg-closed, by Theorem 3.6[27]. Therefore f is $(1, 2)^*$ -rg-continuous.

Remark: 3.10:

The converse of Theorem 3.9 need not be true as shown in the following example.

Example: 3.11

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a, b, c\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{d\}\}$ are called $\sigma_{1,2}$ -closed. The map $f: X \to Y$ defined by f(a) = b, f(b) = a, f(c) = c and f(d) = d is $(1,2)^*$ -rg-continuous but not $(1,2)^*$ -r σ -continuous.

Theorem: 3.12

If $f: X \to Y$ is $(1,2)^*$ -r ω -continuous map then it is $(1,2)^*$ -gpr-continuous.

Proof:

Let V be any $\sigma_{1,2}$ -closed set of Y. Then by hypothesis $f^{-1}(V)$ is $(1, 2)^*$ -r ω -closed set in X. But every $(1, 2)^*$ -r ω -closed set is $(1, 2)^*$ -gpr-closed, by Theorem 3.12[27]. Therefore, f is $(1, 2)^*$ -gpr-continuous.

Remark: 3.13

The converse of Theorem 3.12 need not be true as shown in the following example.

Example: 3.14

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}, \{b, c, d\}\}$. Then the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a, b, c\}\}$ and $\sigma_2 = \{\phi, Y, \{a, c\}\}$. Then the sets in $\{\phi, Y, \{a, c\}, \{a, b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{d\}, \{b, d\}\}$ are called $\sigma_{1,2}$ -closed. The map $f: X \to Y$ defined by f(a) = a, f(b) = b, f(c) = c and f(d) = d is $(1,2)^*$ -gpr-continuous but not $(1,2)^*$ -r ω -continuous.

Remark: 3.15

The concepts of

- (i) $(1, 2)^*$ -r ω -continuous and $(1, 2)^*$ -g-continuous are independent.
- (ii) $(1, 2)^*$ -r ω -continuous and $(1, 2)^*$ -semi-continuous are independent.
- (iii) $(1, 2)^*$ -r ω -continuous and $(1, 2)^*$ -wg-continuous are independent.
- (iv) $(1, 2)^*$ -r ω -continuous and $(1, 2)^*$ - π g-continuous are independent.

Example: 3.16

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then the sets in $\{\phi, X, \{b\}, \{c\}, \{c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a\}\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\}$ are called $\sigma_{1,2}$ -closed and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\}$ are called $\sigma_{1,2}$ -closed in $\sigma_{1,2}$ -closed in

Example: 3.17

Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Then the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ are called $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -r ω -closed and the sets in $\{\phi, X, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -g-closed in X. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b, f(c) = c and f(d) = d. Then f is $(1, 2)^*$ -g-continuous but not $(1, 2)^*$ -r ω -continuous.

Example: 3.18

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ -ro-closed and the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ -semi-closed in X. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b and f(c) = c. Then f is $(1, 2)^*$ -ro-continuous but not $(1, 2)^*$ -semi-continuous.

Example: 3.19

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{b\}, \{a, b\}, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{b\}, \{a, b\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$ are called $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1, 2)^*$ -ro-closed and the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1, 2)^*$ -semi-closed in X. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b and f(c) = c. Then f is $(1, 2)^*$ -semi-continuous but not $(1, 2)^*$ -ro-continuous.

Example: 3.20

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{c\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{c\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1, 2)^*$ -ro-closed and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1, 2)^*$ -wg-closed in X. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b and f(c) = c. Then f is $(1, 2)^*$ -ro-continuous but not $(1, 2)^*$ -wg-continuous.

Example: 3.21

Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b, c\}\}$ and $\sigma_2 = \{\phi, Y, \{c\}, \{a, c\}, \{a, b, c\}\}$. Then the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ are called $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -r σ -closed and the sets in $\{\phi, X, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -wg-closed in X. Define $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b, f(c) = c and f(d) = d. Then $f: (1, 2)^*$ -wg-continuous but not $(1, 2)^*$ -r σ -continuous.

Example: 3.22

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -r σ_2 -closed and the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -r σ_2 -closed in X. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b and f(c) = c. Then f is $(1, 2)^*$ -r σ_2 -continuous but not $(1, 2)^*$ -r σ_2 -continuous.

Example: 3.23

Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a, d\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b, d\}\}$. Then the sets in $\{\phi, Y, \{a, d\}, \{a, b, d\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -closed. Also, the sets in $\{\phi, X, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -ro-closed and the sets in $\{\phi, X, \{c\}, \{d\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $(1, 2)^*$ -rg-closed in X. Define $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = a, f(b) = b, f(c) = c and f(d) = d. Then f is $(1, 2)^*$ -rg-continuous but not $(1, 2)^*$ -ro-continuous.

Remark: 3.24

The following diagram summarizes the above discussions.

Remark: 3.25

The following Example shows that the composition of two $(1, 2)^*$ -r ω -continuous maps need not be a $(1, 2)^*$ -r ω -continuous.

Example: 3.26

Let $X = Y = Z = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$, $\tau_2 = \{\phi, X, \{c\}\}$, $\sigma_1 = \{\phi, Y, \{b\}\}$, $\sigma_2 = \{\phi, Y, \{a, c\}\}$, $\eta_1 = \{\phi, Z, \{a\}\}$ and $\eta_2 = \{\phi, Z, \{a, b\}\}$. The map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ defined as f(a) = b, f(b) = a, f(c) = c and the map $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be an identity map are $(1,2)^*$ -ro-continuous but $g \circ f$ is not $(1,2)^*$ -ro-continuous, since $(g \circ f)^{-1}$ ($\{c\}$) = $\{c\}$ is not $(1,2)^*$ -ro-closed set in X.

Result: 3.27 [31]

Every $(1, 2)^*$ -r ω -continuous map is $(1, 2)^*$ -rg α -continuous

4. (1,2)*- rω-IRRESOLUTE MAPPINGS:

Definition: 4.1

A map $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $(1, 2)^*$ -r ω -irresolute if the inverse image of every $(1, 2)^*$ -r ω -closed set in Y is $(1, 2)^*$ -r ω -closed in X.
- (ii) $(1, 2)^*$ -rg α -irresolute if $f^1(V)$ is $(1, 2)^*$ -rg α -closed in X, for every $(1, 2)^*$ -rg α -closed V in Y.

Theorem: 4.2

Every $(1, 2)^*$ -r ω -irresolute function is $(1, 2)^*$ -r ω -continuous but not conversely.

Proof:

Assume that $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -r ω -irresolute and V is $\sigma_{1,2}$ -closed set in Y. So it is $(1,2)^*$ -r ω -closed set in Y by Remark 2.12. By our assumption inverse image of V is a $(1,2)^*$ -r ω -closed set in X. Therefore, f is $(1,2)^*$ -r ω -continuous.

Example: 4.3

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}, \{a, b\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -closed. Then the map $f : X \to Y$ defined as f(a) = b, f(b) = a and f(c) = c is $(1,2)^*$ -r ω -continuous but not $(1,2)^*$ -r ω -irresolute because $f^1(\{b\}) = \{a\}$ is not an $(1,2)^*$ -r ω -closed set in X.

Theorem: 4.4

Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2)\to (Z,\eta_1,\eta_2)$ be any two maps. Then $g\circ f$ is $(1,2)^*$ -ro-continuous if g is $(1,2)^*$ -continuous and f is $(1,2)^*$ -ro-continuous.

Proof:

Let V be any $\eta_{1,2}$ -closed set in Z. Then $g^{\text{-1}}(V)$ is $\sigma_{1,2}$ -closed in Y, since g is $(1,2)^*$ -continuous. Then $f^{\text{-1}}(g^{\text{-1}}(V))$ is $(1,2)^*$ -r ω -closed in X, as f is $(1,2)^*$ -r ω -continuous. That is, $(g \circ f)^{\text{-1}}(V)$ is $(1,2)^*$ -r ω -closed in X. Hence $g \circ f$ is $(1,2)^*$ -r ω -continuous.

Theorem: 4.5

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be any two maps. Then $g \circ f$ is $(1, 2)^*$ -r ω -irresolute if g is $(1, 2)^*$ -r ω -irresolute and f is $(1, 2)^*$ -r ω -irresolute.

Proof:

Let V be any $(1, 2)^*$ -r ω -closed set in Z. Since g is $(1, 2)^*$ -r ω -irresolute, $g^{-1}(V)$ is $(1, 2)^*$ -r ω -closed in Y. Then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $(1, 2)^*$ -r ω -closed in X, as f is $(1, 2)^*$ -r ω -irresolute. Therefore, $g \circ f$ is $(1, 2)^*$ -r ω -irresolute.

Theorem: 4.6

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g:(Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be any two maps. Then $g \circ f$ is $(1, 2)^*$ -r ω -continuous if g is $(1, 2)^*$ -r ω -continuous and f is $(1, 2)^*$ -r ω -irresolute.

Proof:

Let V be any $\eta_{1,2}$ -closed set in Z. Since g is $(1,2)^*$ -r ω -continuous, $g^{-1}(V)$ is $(1,2)^*$ -r ω -closed in Y. Then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $(1,2)^*$ -r ω -closed in X, as f is $(1,2)^*$ -r ω -irresolute. Therefore, $g \circ f$ is $(1,2)^*$ -r ω -continuous. © 2010, IJMA. All Rights Reserved

5. (1,2)*-rω-HOMEOMORPHISMS:

We introduce the following definitions.

Definition: 5.1

A bijection $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1,2)^*$ -rw-homeomorphism if both f and f^{-1} are $(1,2)^*$ -rw-continuous.

Definition: 5.2

A bijection $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $(1,2)^*$ -regular generalized α -homeomorphism (briefly, $(1, 2)^*$ -rg α -homeomorphism) if f and f^1 are $(1,2)^*$ -rg α -continuous.
- (ii) (1, 2)*-rwg-homeomorphism if both f and f⁻¹ are (1, 2)*- rwg-continuous.

Definition: 5.3

A bijection $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1,2)^*-\omega^*$ -homeomorphism if both f and f^1 are $(1,2)^*-\omega$ -irresolute.

Definition: 5.4

- (i) A bijection $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1, 2)^*$ -rgac-homeomorphism if both f and f^1 are $(1, 2)^*$ -rga-irresolute.
- (ii) A bijection $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1, 2)^*$ -roc-homeomorphism if both f and f^{-1} are $(1, 2)^*$ -ro-irresolute.

Example 5.5

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\sigma_{1,2}$ -closed. If the map $f: X \to Y$ is an identity map, then f is bijective, $(1,2)^*$ -r ω -continuous and f^{-1} is $(1,2)^*$ -r ω -continuous. Therefore f is $(1,2)^*$ -r ω -homeomorphism.

Theorem: 5.6

Every $(1, 2)^*$ -homeomorphism is an $(1, 2)^*$ -r ω -homeomorphism.

Proof:

Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be a $(1,2)^*$ -homeomorphism. Then f and f^1 are $(1,2)^*$ -continuous and f is bijection. As every $(1,2)^*$ -continuous map is $(1,2)^*$ -r ω -continuous, we have f and f^1 are $(1,2)^*$ -r ω -continuous. Therefore f is $(1,2)^*$ -r ω -homeomorphism.

Remark: 5.7

The converse of Theorem 5.6 need not be true as shown in the following example.

Example: 5.8

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\sigma_{1,2}$ -closed. If the map $f: X \to Y$ is an identity map, then f is $(1,2)^*$ -r ω -homeomorphism but it is not $(1,2)^*$ -homeomorphism.

Theorem: 5.9

Every $(1, 2)^*$ - ω -homeomorphism is an $(1, 2)^*$ -r ω - homeomorphism.

Proof:

Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be a $(1,2)^*$ - ω -homeomorphism. Then f and f^1 are $(1,2)^*$ - ω -continuous and f is bijection. As every $(1,2)^*$ - ω -continuous map is $(1,2)^*$ -r ω -continuous, we have f and f^1 are $(1,2)^*$ -r ω -continuous. Therefore f is $(1,2)^*$ -r ω -homeomorphism.

Remark: 5.10

The converse of Theorem 5.9 need not be true as shown in the following example.

Example: 5.11

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\sigma_{1,2}$ -closed. If the map $f: X \to Y$ is the identity map, then this map is $(1,2)^*$ -rw-homeomorphism but it is not $(1,2)^*$ -w-homeomorphism.

Theorem 5.12

Every $(1, 2)^*$ -r ω -homeomorphism is an $(1, 2)^*$ -rg α -homeomorphism.

Proof:

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -r ω -homeomorphism. Then f and f^1 are $(1,2)^*$ -r ω -continuous and f is bijection. As every $(1,2)^*$ -r ω -continuous map is $(1,2)^*$ -rg α -continuous, we have f and f^1 are $(1,2)^*$ -rg α -continuous. Therefore f is $(1,2)^*$ -rg α -homeomorphism.

Remark: 5.13

The converse of Theorem 5.12 need not be true as shown in the following example.

Example: 5.14

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\sigma_{1,2}$ -closed. If the map $f: X \to Y$ is the identity map, then the map is $(1,2)^*$ -rg α -homeomorphism but it is not $(1,2)^*$ -r α -homeomorphism.

Corollary: 5.15

Every $(1, 2)^*$ - ω^* -homeomorphism is an $(1, 2)^*$ -r ω -homeomorphism.

Proof:

It is evident that every $(1,2)^*$ - ω^* -homeomorphism is a $(1,2)^*$ - ω -homeomorphism. By Theorems 5.9 and 5.12., every $(1,2)^*$ - ω -homeomorphism is a $(1,2)^*$ -rg α -homeomorphism is a $(1,2)^*$ -rg α -homeomorphism.

Theorem: 5.16

Every $(1, 2)^*$ -rwg-homeomorphism is an $(1, 2)^*$ -rwg-homeomorphism.

Proof:

Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be $(1,2)^*$ -rw-homeomorphism. Then f and f^1 are $(1,2)^*$ -rw-continuous and f is bijection. Since every $(1,2)^*$ -rw-continuous map is $(1,2)^*$ -rw-continuous, we have f and f^1 and $(1,2)^*$ -rw-continuous. Therefore f is $(1,2)^*$ -rw-homeomorphism.

Remark: 5.17

The converse of Theorem 5.16 need not be true as shown in the following example.

Example: 5.18

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -closed. If the map $f: X \to Y$ is defined as f(a) = c, f(b) = b, f(c) = a and f(d) = d, then f is rwg-homeomorphism but it is not r ω -homeomorphism.

Remark: 5.19

The concepts of

- (i) $(1, 2)^*$ -r ω c-homeomorphisms and ω^* -homeomorphisms are independent.
- (ii) $(1, 2)^*$ -r ω -homeomorphisms and $(1, 2)^*$ -g-homeomorphisms are independent.

Example: 5.20

In Example 5.18, if the map $f: X \to Y$ is an identity map, then f is $(1,2)^*-\omega^*$ -homeomorphism but it is not $(1,2)^*$ -r ω -homeomorphism, since f is not $(1,2)^*$ -r ω -irresolute.

Example: 5.21

In Example 5.18, if the map $f: X \to Y$ is an identity map, then f is $(1,2)^*$ -r ω c-homeomorphism but it is not $(1,2)^*$ - ω -homeomorphism, since f is not $(1,2)^*$ - ω -irresolute.

Example: 5.22

In Example 5.18, if the map $f: X \to Y$ is defined as f(a) = c, f(b) = b, f(c) = a and f(d) = d, then f is $(1,2)^*$ -rw-homeomorphism but it is not $(1,2)^*$ -g-homeomorphism.

Example: 5.23

In Example 5.18, if the map $f: X \to Y$ is defined as f(a) = c, f(b) = b, f(c) = a and f(d) = d, then f is $(1,2)^*$ -g-homeomorphism but it is not $(1,2)^*$ -r ω -homeomorphism.

Theorem: 5.24

Every $(1, 2)^*$ -r ω c-homeomorphism is an $(1, 2)^*$ -r ω -homeomorphism.

Proof:

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an $(1,2)^*$ -r ω c-homeomorphism. Then f and f^{-1} are $(1,2)^*$ -r ω -irresolute and f is bijection. By Theorem 4.2 f and f^{-1} are $(1,2)^*$ -r ω -continuous. Therefore f is $(1,2)^*$ -r ω -homeomorphism.

Remark: 5.25

The converse of Theorem 5.24 need not be true as shown in the following example.

Example: 5.26

In Example 5.18, if the map $f: X \to Y$ is the identity map, then f is $(1,2)^*$ -r ω -homeomorphism but it is not $(1,2)^*$ -r ω -homeomorphism, since f is not $(1,2)^*$ -r ω -irresolute.

Theorem: 5.27

Every $(1,2)^*$ -rwc-homeomorphism is $(1,2)^*$ -rwg-homeomorphism.

Proof:

Proof follows from Theorems 5.16. and 5.24.

Example: 5.28

In Example 5.18, if the map $f: X \to Y$ is an identity map, then f is $(1,2)^*$ -rwg-homeomorphism but it is not $(1,2)^*$ -rwc-homeomorphism, since f is not $(1,2)^*$ -rw-irresolute.

Remark: 5.29

The following diagram summarizes the above discussions.

REFERENCES:

- [1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.,12(1991), 5-13.
- [2] S. S. Benchalli and R. S. Wali, On rω-closed sets in topological spaces, Bull. Malayas. Math. Sci. Soc., (2) 30(2) (2007), 99-110.
- [3] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math.Soc., 72(1978), 581-586.
- [4] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.

- *O. Ravi¹, S. Pious Missier², T. Salai Parkunan³ and A. Pandi⁴/Remarks on bitopological (1, 2)*-rω-Homeomorphisms/ IJMA- 2(4), Apr.-2011, Page: 465-475
- [5] J. Dontchev and T. Noiri, Quasi normal spaces and πg-closed sets, Acta Math. Hungar., 89(2000), 211-219.
- [6] T. Fukutake, P. Sundaram and N. Nagaveni, On weakly generalized closed sets, weakly generalized continuous maps and T_{os} -spaces in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 48(1999), 33-40.
- [7] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3) (1997), 351-360.
- [8] Y. Gnanambal and K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl Math., 30(6) (1999), 581-593.
- [9] S. Jafari, M. Lellis Thivagar and Nirmala Mariappan, On (1,2)*-αĝ-closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.
- [10] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [11] M. Lellis Thivagar and O. Ravi, On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra, 14 (6) (2004), 481-492.
- [12] M. Lellis Thivagar and Nirmala Mariappan, (1,2)*-strongly semi-pre-T_{1/2} spaces, Bol. Soc. Paran. de. Mat., 27(2)(2009), 15-22.
- [13] M. Lellis Thivagar, O. Ravi and M. E. Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [14] M. Lellis Thivagar and Nirmala Mariappan, On weak separation axioms associated with (1, 2)*-sg-closed sets, Int. Journal of Math. Analysis, 4(13) (2010), 631-644.
- [15] M. Lellis Thivagar, O. Ravi and M. Joseph Isreal, A bitopological approach on πg -closed sets and continuity. International Mathematical Forum. (To appear).
- [16] N. Levine, Generalized closed sets in topology, Rend. Circ. Math.Palermo, 19(1970), 89-96.
- [17] N. Levine, Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [18] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [19] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.
- [20] O. Ravi, M. Lellis Thivagar and E. Ekici, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3 (2008), 181-189.
- [21] O. Ravi, M. Lellis Thivagar and E. Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical notes, 10(2) (2009), 163-171.
- [22] O. Ravi, M. Lellis Thivagar, K. Kayathri and M. Joseph Israel, Decompositions of (1,2)*-rg-continuous maps in bitopological spaces. Antarctica J. Math. 6(1)(2009), 13-23.
- [23] O. Ravi, M. Lellis Thivagar and Jin Jinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., (To appear).
- [24] O. Ravi, M. Lellis Thivagar, K. Kayathri and M. Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological spaces. Mathematica Bohemica. 135 (1) (2010), 1-13.
- [25] O. Ravi and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2) 29(1) (2006), 79-88.
- [26] O. Ravi, S. Pious Missier and T. Salai Parkunan, On bitopological (1,2)*-generalized Homeomorphisms, Internat. J. Contemp. Math. Sci., 5(11) (2010), 543-557.
- [27] O. Ravi, S. Pious Missier and K. Mahaboob Hassain Sherieff, On (1,2)*- rω-closed sets and (1,2)*-rω-open sets.(submitted)
- [28] O. Ravi, S. Pious Missier and K. Mahaboob Hassain Sherieff, A note on (1, 2)*-gpr-closed sets, Archimedes Journal of Mathematics. (To appear).
- [29] O. Ravi, S. Pious Missier and K. Mahaboob Hassain Sherieff, On (1,2)*-sets and weakly generalized (1,2)*-continuous maps in bitopological spaces (submitted).
- [30] O. Ravi, M. Lellis Thivagar and E. Ekici, Decompositions of (1, 2)*- continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea Fasc. Matematica, 15(2008), 29-37.
- [31] O. Ravi, A. Pandi, S. Pious Missier and R. Nagendran, (1,2)*-rgα-Interior and (1,2)*-rgα-Closure in Topological Spaces(submitted).
- [32] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-381
- [33] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Actaciencia Indica, 4(2000), 389-392.
- [34] P. Sundaram and M. Sheik John, Weakly closed sets and Weakly continuous maps in topological spaces, Proc. 82nd Indian Sci. Cong., Calcutta 49(1995).
- [35] A. Vadivel and K. Vairamanickam, rgα-Homeomorphism in topological spaces, Int. Journal of Math. Analysis, 4 (18) (2010), 881-890.
- [36] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad Naur SSSR, (1918), 778-779.
