International Journal of Mathematical Archive-2(4), Apr. - 2011, Page: 433-437 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

TOTAL NUMBER OF SPECIAL KINDS OF NEIGHBOURHOOD SETS OF GRAPHS

*M.P Sumathi and N. D. Soner

Department of Studies in Mathematics, University of Mysore, Mysore 570006, India

E-mail: sumathideepak@gmail.com, ndsoner@yahoo.co.in

(Received on: 16-03-11; Accepted on: 06-04-11)

ABSTRACT

This paper is concerned with special kinds of neighbourhood sets of graphs P_n and C_n . The neighbourhood set, the split neighbourhood sets of a graph are considered using a recurrence relation, we give the number of all neighbourhood sets mentioned for the graphs P_n and C_n .

INTRODUCTION:

In this paper, we consider the path P_n and cycle C_n graphs of n vertices as graphs with $V(P_n) = \{x_1, x_2...x_n\}$, $E(P_n) = \{x_1x_2, x_2x_3, ...x_{n-1}x_n\}$ for $n \ge 3$ and $V(C_n) = \{x_1, x_2...x_n\}$, $E(C_n) = \{x_1x_2, x_2x_3, ...x_{n-1}x_n, x_nx_1\}$ for $n \ge 3$. For $v \in V$, the closed neighbourhood of V is $N[v] = \{u \in v : uv \in E(G)\} \cup \{v\}$.

A subset S of V(G) is a neighbourhood set of G if $G = \bigcup_{v \in S} \langle N(v) \rangle$. Where $\langle N(v) \rangle$ is the subgraph of G induced by N[v]. The neighbourhood number $\eta(G)$ of G is the minimum cardinality of a neighbourhood set of G.

Neighbourhood sets of P_n and C_n :

The results considered in this section will be used to determine the total number of split neighbourhood sets of P_n and C_n . To determine the number of all neighbourhood sets of a path of n vertices, for all $n \ge 1$, we introduce the following notations.

 $\mathbf{N}(P_n) = \{ D \subseteq V(G) : D \text{ is a neighbourhood set of } P_n \}$.

$$\mathbf{N}_1(P_n) = \{ D \in \mathbf{N}(P_n) : X_n \in D \} .$$

 $\mathbf{N}_2(P_n) = \mathbf{N}(P_n) - \mathbf{N}_1(P_1)$

Denoting the cardinalities of the families $\mathbf{N}(P_n), \mathbf{N}_1(P_n)$ and $\mathbf{N}_2(P_n)$ respectively by $\mathbf{N}(P_n), \mathbf{N}_1(P_n)$, $\mathbf{N}_2(P_n)$. We obtain the following equality,

$$\mathbf{N}(P_n) = \mathbf{N}_1(P_n) + \mathbf{N}_2(P_n), n \ge 1$$
⁽¹⁾

of course **N** (P_n) is the total number of neighbourhood sets of a path P_n on *n* vertices. It is easy to see that **N** $(P_1) = 1$, **N** $(P_2) = 3$, **N** $(P_3) = 5$. These inequalities are the initial conditions for the recurrence relation given in the following theorem.

*Sumathi. M. P. and N. D. Soner /Ttotal number of special kinds of neighbourhood sets of graphs /IJMA- 2(4), Apr.-2011, Page: 433-437

Theorem 1: For $n \ge 3$,

$$\mathbf{N}(P_{n+1}) = \mathbf{N}(P_n) + \mathbf{N}(P_{n-1})$$

Proof: Assume the **N** is a neighborhood set of P_{n+1} for $n \ge 3$. Then we have three possibilities:

(1) If
$$X_n, X_{n+1} \in D$$
, then $D - \{X_{n+1}\} \in \mathbf{N}_1(P_n)$.
(2) If $X_n \in D$ and $X_{n+1} \notin D$, then $D \in \mathbf{N}_1(P_n)$.
(3) If $X_n \notin D$ and $X_{n-1}, X_{n+1} \in D$, then $D - \{X_{n+1}\} \in \mathbf{N}_2(P_n)$.

Thus, the number **N** (P_{n+1}) of all neighbourhood sets of P_{n+1} is described by the following equality.

$$\mathbf{N}(P_{n+1}) = \mathbf{N}_{1}(P_{n}) + \mathbf{N}_{1}(P_{n}) + \mathbf{N}_{2}(P_{n-1}),$$
(2)

it follows that for $n \ge 3$, we have

and

$$\mathbf{N}_{1}(P_{n}) = \mathbf{N}_{1}(P_{n-1}) + \mathbf{N}_{2}(P_{n-1})$$

$$\mathbf{N}_{2}(P_{n}) = \mathbf{N}_{1}(P_{n-1})$$
(3)

Applying these equalities in equation (3) to the first of the sum in equation (2), we obtain

$$\mathbf{N}(P_{n+1}) = \mathbf{N}_1(P_{n-1}) + \mathbf{N}_2(P_{n-1}) + \mathbf{N}_1(P_n) + \mathbf{N}_2(P_n)$$

Hence $\mathbf{N}(P_{n+1}) = \mathbf{N}(P_{n-1}) + \mathbf{N}(P_n)$.

The following results concern the total number of neighbourhood sets of the cycle C_n on n vertices for $n \ge 4$. First we introduce the following notations:

$$\mathbf{N}(C_n) = \{ D \text{ subseteq} V(G) : \mathbf{N} \text{ is a neighbourhood set of } C_n \}.$$

$$\mathbf{N}_{01}(c_n) = \{ D \in \mathbf{N}(Cn) : (X_1 \in D \text{ and } X_n \notin D) \text{ or } (X_1 \notin D \text{ and } X_n \in D) \}$$

$$\mathbf{N}_{11}(c_n) = \{ D \in \mathbf{N}(Cn) : X_1, X_n \in D \}$$

By $\mathbf{N}(C_n)$, $\mathbf{N}_{01}(C_n)$ and $\mathbf{N}_{11}(C_n)$ we mean the cardinalities of families $\mathbf{N}(C_n)$, $\mathbf{N}_{01}(c_n)$ and $\mathbf{N}_{11}(c_n)$ respectively. Using these numbers, we obtain the following equality.

$$N'(C_n) = N'_{01}(C_n) + N'_{11}(C_n) \qquad n \ge 4,$$
(4)

It is easy to check that $\mathbf{N}(C_4) = 7$ and $\mathbf{N}(C_5) = 11$.

Theorem 2: For $n \ge 5$,

$$N(C_{n+1}) = N(C_{n-1}) + N(C_n)$$

Proof: Let *n* be a neighbourhood set of C_n for $n \ge 5$. Consider the following cases:

(i) If
$$X_1 \notin D$$
 and $X_2, X_n \in D$, then $D \in \mathbf{N}_{11}(H_1)$ where
 $V(H_1) = V(C_n) - (X_1)$ and $E(H_1) = \{E(C_n) - (X_nX_1, X_1X_2)\} \bigcup (X_nX_2)$

Hence $H_1 \approx C_{n-1}$ (ii) $IfX_n \notin D$ and $X_1, X_{n-1} \in D$ then $D \in \mathbb{N}_{11}(H_2)$, where $V(H_2) = V(C_n) - (X_n)$ and $E(H_2) = \{E(C_n) - (X_{n-1}X_n, X_nX_1)\} \bigcup (X_{n-1}X_1)$

Hence $H_2 \approx C_{n-1}$

(iii) If $X_1, X_n \in D$ and $X_2 \notin D$ then $D \in \mathbf{N}_{01}(H_1)$

(iv) $IfX_1, X_2, X_n \in D$ then $D \in \mathbf{N}_{11}(H_1)$

Hence from case (i),(ii),(iii) and (iv) we have that

$$\begin{split} \mathbf{N}_{01}(C_n) &= \mathbf{N}_{11}(H_1) + \mathbf{N}_{11}(H_2) \\ \mathbf{N}_{01}(C_n) &= 2\mathbf{N}_{11}(C_{n-1}) \\ \mathbf{N}_{11}(C_n) &= \mathbf{N}_{01}(C_{n-1})/2 + \mathbf{N}_{11}(C_{n-1}) \\ \mathbf{N}_{11}(C_n) &= \mathbf{N}_{01}(C_n) + \mathbf{N}_{11}(C_n) \\ &= 2\mathbf{N}_{11}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1})/2 + \mathbf{N}_{11}(C_{n-1}) \\ &= 2(\mathbf{N}_{01}(C_{n-2})/2 + \mathbf{N}_{11}(C_{n-2})) + \mathbf{N}_{01}(C_{n-1})/2 + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + 2\mathbf{N}_{11}(C_{n-2}) + 1/2(2\mathbf{N}_{11}(C_{n-2})) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + 2\mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + 2\mathbf{N}_{11}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{11}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{01}(C_{n-1}) \\ &= \mathbf{N}_{01}(C_{n-1}) \\$$

From equation (4) the above equation reduces to

$$\mathbf{N}(C_{n}) = \mathbf{N}_{01}(C_{n-2}) + \mathbf{N}_{11}(C_{n-2}) + \mathbf{N}_{01}(C_{n-1}) + \mathbf{N}_{11}(C_{n-1})$$

$$\mathbf{N}(C_{n}) = \mathbf{N}(C_{n-2}) + \mathbf{N}(C_{n-1})$$

$$\mathbf{N}(C_{n+1}) = \mathbf{N}(C_{n-1}) + \mathbf{N}(C_{n})$$

Split neighbourhood set of P_n and C_n :

Using the numbers $\mathbf{N}(P_n)$ and $\mathbf{N}(C_n)$ we determine the number of split neighbourhood sets of path and the cycle of graphs on n vertices. First we give supportive theorem that characterize the split neighbourhood set of P_n and C_n .

Lemma 3: Any neighbourhood set D of P_n $n \ge 3$, is a split neighbourhood set of P_n if and only if $V(P_n) - D \ne \emptyset$, $\langle V(P_n - D) \rangle_{(P_n)} \ne K_1$.

Proof: Let S be a split neighbourhood set D of P_n . According to the definition of S, it follows that $\langle V(P_n) - D \rangle$ is disconnected. Thus $V(P_n) - D \neq \emptyset \langle V(P_n) - D \rangle_{(P_n)}$ not $\approx K_1$, proving necessity.

For sufficiency, let D be a neighbourhood set of P_n , $n \ge 3$, and suppose $V(P_n) - D \ne \emptyset$, $\langle V(P_n - D) \rangle_{(P_n)} \ne K_1$. Since $H = \langle V(P_n - D) \rangle_{(P_n)}$ is an induced subgraph of P_n , then any connected component of H is isomorphic to the path P_k , $1 \le k \le n-1$ (where $P_1 = K_1$). Let H_1 be a connected

*Sumathi. M. P. and N. D. Soner /Ttotal number of special kinds of neighbourhood sets of graphs /IJMA- 2(4), Apr.-2011, Page: 433-437

component of the subgraph H. We show that H_1 is not a unique connected component of H. First, observe that H_1 contains at most two vertices. Otherwise there would exist a vertex of $H_1 \subset H = \langle V(P_n - D) \rangle_{(P_n)}$ not neighbour of D in P_n . Consequently, $H_1 \approx P_1$ or $H_1 \approx P_2$. Hence H has at least two connected components, because $H_1 \neq P_1$ or $H_1 \neq P_2$ by premise. This shows that $H = \langle V(P_n) - D \rangle_{(P_n)}$ is disconnected. Moreover, since D is also a neighbourhood set of P_n , it is a split neighbourhood set of P_n , completes the proof of the theorem.

Similar to the case of P_n , we have a result concerning the split neighbourhood sets of C_n .

Lemma 4: Any neighbourhood set D of C_n , $n \ge 4$ is a split neighbourhood set of C_n if and only if

$$V(P_n) - D \neq \emptyset$$
, $\langle V(C_n) - D \rangle_{(C_n)} \neq K_1$.

Additionally, observe that there is only one neighbourhood set D of P_n such that $V(P_n) - D \neq \emptyset$, and there are exactly n neighbourhood sets D of P_n such that $\langle V(P_n) - D \rangle_{(P_n)} \approx K_1$.

In special cases of C_n , we have one Neighbouhood set D such that $V(C_n) - D = \emptyset$ and n for $\langle V(C_n) - D \rangle_{(C_n)} \approx K_1$.

For $n \ge 3$, we introduce the notation

 $S(G) = \{ D \subseteq V(G) : D \text{ is a split neighbourhood set of } G \}$

$$S(G) = |S(G)|$$

From the above, we have the following corollary, which will be used in proving theorem.

Corollary 5:
$$s(P_n) = d(P_n) - (1+n)$$
 for $n \ge 3$

and $s(C_n) = d(C_n) - (1+n)$ It is easy to see that $s(P_3) = 1$, $s(P_4) = 3$ and $s(P_5) = 7$.

Theorem 6: For $n \ge 5$,

$$s(P_{n+1}) = s(P_{n-1}) + s(P_n) + (n-1)$$

Proof: Let $n \ge 5$, according to corollary (3), for P_{n+1} we have that

$$s(P_{n+1}) = d(P_{n+1}) - (2+n)$$
 since $d(P_{n+1}) = d(P_{n-1}) + d(P_n)$

by theorem (1), we obtain

$$\begin{split} s(P_{n+1}) &= d(P_{n+1}) - (2+n) \\ &= d(P_{n-1}) + d(P_n) - (2+n) \\ &= d((P_{n-1}) - n + n) + d((P_n) - (n+1) + (n+1)) - (2+n) \\ &= d((P_{n-1}) - n) + d((P_n) - (n+1)) - (2+n+n+(n+1)) \\ &= d((P_{n-1}) - n) + d((P_n) - (n+1)) + (n+1+n-2-n) \end{split}$$

*Sumathi. M. P. and N. D. Soner /Ttotal number of special kinds of neighbourhood sets of graphs /IJMA- 2(4), Apr.-2011, Page: 433-437

since (n+1+n-2-n = (n-1)), it follows that

$$= d((P_{n-1}) - n) + d((P_n) - (n+1)) + (n-1)$$

Finally applying corollary (3)to the expressions in brackets,

$$s(P_{n+1}) = s(P_{n-1}) + s(P_n) + (n-1)$$
.

Theorem 7: For $n \ge 5$, $s(C_{n+1}) = s(C_{n-1}) + s(C_n) + (n-1)$

Proof: Let $n \ge 5$, putting n+1 in place of n in corollary 3, it follows

$$\begin{split} s(C_{n+1}) &= d(C_{n+1}) - (2+n) & \text{according to theorem (2),} \\ d(C_{n+1}) &= d(C_{n-1}) - d(C_n) & \text{hence,} \\ s(C_{n+1}) &= d(C_{n+1}) - (2+n) \\ &= d(C_{n-1}) + d(C_n) - (2+n) \\ &= d((C_{n-1}) - n + n) + d((C_n) - (n+1) + (n+1)) - (2+n) \\ &= d((C_{n-1}) - n) + d((C_n) - (n+1)) + (n+1+n-2-n) \end{split}$$

since (n+1+n-2-n = (n-1)), it follows that

$$= d((C_{n-1}) - n) + d((C_n) - (n+1)) + (n-1)$$

Finally applying corollary (3) to the expressions in brackets,

$$s(C_{n+1}) = s(C_{n-1}) + s(C_n) + (n-1)$$
.

REFERENCES:

- [1] B.Janakiram; Split neighbourhood in graph, Proceedings of the Jangjeon Mathematical Society, 7 (2), (2004), 129-136.
- [2] V.R.Kulli and B.Janakiram; The split domination number of a graph, Graph Theory Notes of New York, XXXII: 3, New York Academy of Sciences, (1997) 16-19
- [3] M.Zwierzchowski, Total numbers of special kinds of dominating sets of graphs, Graph Theory Notes of New York XLV1, New York Academy of Sciences, (2004) 13-19.
