ON TEXTURE α-SEPARATION AXIOMS IN DITOPOLOGICAL TEXTURE SPACES

¹I. Arockia Rani & ²A. A. Nithya*

¹Department of Mathematics, Nirmala College, Coimbatore-641 018, India ²Department of Mathematics, Nirmala College, Coimbatore-641 018, India

(Received on: 20-10-12; Revised & Accepted on: 10-01-13)

ABSTRACT

The content of this paper is to study the basic separation axioms in α open sets under the Ditopological texture setting. Here we also analyse the relationships between them and discuss their characterizations of these separation axioms.

Keywords: Texture spaces, Ditopology, Ditopological Texture spaces, Texture α $-T_0$ space, Texture α $-T_1$ space, Texture α $-T_2$ space.

2000 AMS Subject Classification: 54A20.

1. INTRODUCTION

L. M. Brown [2] laid foundation to the notion of Textures which was initially called as fuzzy structures as a point-set for the study of fuzzy sets in 1998. Here in textures, it offers a convenient setting for the investigation of complement-free concepts in general. Extensive research has been done on texture using generalized form of sets by many authors. [4, 5, 15].

In this paper we present some classes of new spaces namely the T_{α} - T_0 , T_{α} - T_1 , T_{α} - T_2 spaces in dichotomous topologies or ditopology. Let S be a set, a texturing T [2] of S is a subset of P(S). If

- (1) (T, \subseteq) is a complete lattice containing S and ϕ , and the meet and join operations in (T, \subseteq) are related with the intersection and union operations in $(P(S), \subseteq)$ by the equalities $\Lambda_{\{i \in I\}} A_i = \bigcap_{\{i \in I\}} A_i$, $A_i \in T, I \in I$, for all index sets I, while $V_{\{i \in I\}} A_i = \bigcup_{\{i \in I\}} A_i$, $A_i \in T$, $i \in I$, for all finite index sets I.
- (2) T is completely distributive.
- (3) T separates the points of S. That is, given $s_1 \neq s_2$ in S we have $A \in T$ with $s_1 \in A$, $s_2 \notin A$, or $A \in T$ with $s_2 \in A$, $s_1 \notin A$.

If S is textured by T we call (S, T) a texture space or simply a texture.

For a texture (S; T), most properties are conveniently defined in terms of the p-sets $P_S = \bigcap \{A \in T \setminus s \in A \}$ and the q-sets, $Q_S = V \{A \in T \mid s \notin A \}$ The following are some basic examples of textures.

Examples 1.1: Some examples of texture spaces,

- (1) If X is a set and P(X) the power set of X, then (X; P(X)) is the discrete texture on X. For $x \in X$, $P_X = \{x\}$ and $Q_X = X \setminus \{x\}$.
- (2) Setting $I = [0; 1], T = \{ [0; r); [0; r]/r \in I \}$ gives the unit interval texture (I; T). For $r \in I, P_r = [0; r]$ and $Q_r = [0; r)$.
- (3) $T=\phi$, { a,b }, { b }, { b,c },S } is a simple texturing of $S=\{a,b,c\}$ $P_a=\{a,b\}$, $P_b=\{b\}$ and $P_{C}=b,c\}$.

1 I. Arockia Rani & 2 A. A. Nithya*/On Texture α -Separation axioms in Ditopological Texture Spaces/ IJMA- 4(1), Jan.-2013.

Definition1.2. [4] The texture (S, T) is called coseparated if $Q_S \subset Q_t \Rightarrow P_S \subseteq P_t$ for all $s, t \in S$.

Since a texturing T need not be closed under the operation of taking the set complement, the notion of topology is replaced by that of dichotomous topology or ditopology, namely a pair (τ, κ) of subsets of T, where the set of open sets τ satisfies

- 1. $S, \phi \in \tau$,
- 2. G_1 ; $G_2 \in \tau$ then $G_1 \cap G_2 \in \tau$ and
- 3. $G_i \in \tau$, $i \in I$ then $V_i G_i \in \tau$,

and the set of closed sets κ satisfies

- 1. S, $\varphi \in \kappa$
- 2. K_1 ; $K_2 \in \kappa$ then $K_1 \cup K_2 \in \kappa$ and
- 3. $K_i \in K$, $i \in I$ then $\bigcap K_i \in K$. Hence a ditopology is essentially a 'topology" for which there is no a priori relation between the open and closed sets.

For $A \in T$ we define the closure [A] or cl(A) and the interior [A] or int(A) under (τ, κ) by the equalities $[A] = \bigcap \{K \in \kappa / A \subseteq K \}$ and $[A] = \bigvee \{G \in \tau / G \subseteq A \}$:

An mapping $\sigma: T \to T$ is said to be complementation on (S,T) if $\kappa = \sigma(\tau)$, then (S,T,σ,τ,κ) is said to be a complemented ditopological texture—space. The ditopology (τ,τ^c) is clearly complemented for the complementation $\pi_X: P(X) \to P(X)$ given by $\pi_X(Y) = X \setminus Y$.

We denote by $O(S; T; \tau, \kappa)$, or when there can be no confusion by O(S), the set of open sets in S. Likewise, $C(S; T; \tau, \kappa)$ or C(S) will denote the set of closed sets.

Definition 1.3. For a ditopological texture space (S; T; τ , κ):

1. $A \in T$ is called α -open (b-open) if $A \subseteq intclintA$ ($A \subseteq clint(A) \cup intcl(A)$). $B \in T$ is called α -closed (resp. b-closed) if $clintclB \subset B$ (intcl $B \cup clintB \subset B$)

We denote by $\alpha O(S; T; \tau, \kappa)$ (bO(S; T; τ, κ)), or simply by $\alpha O(S)$ (bO(S)), the set of α -open sets (b-open sets) in S. Likewise, $\alpha C(S; T; \tau, \kappa)$ (bC(S; T; τ, κ)), or $\alpha C(S)$ (bC(S)) will denote the set of α -closed (b-closed sets) sets.

Now using $\alpha O(S)$ and $\alpha CO(S)$ we construct a new α -topology and α -closed topology or α - ditopology, namely a pair $(\tau \alpha, \kappa \alpha)$ of subsets of T, where the set of α -open sets $\tau \alpha$ satisfies

- 1. $S, \phi \in \tau \alpha$,
- 2. G_1 ; $G_2 \in \tau \alpha$ then $G_1 \cap G_2 \in \tau \alpha$ and
- 3. $G_i \in \tau \alpha$, $i \in I$ then $V_i G_i \in \tau \alpha$,

and the set of α closed sets $\kappa\alpha$ satisfies

- 1. S, $\phi \in \kappa \alpha$
- 2. K_1 ; $K_2 \in \kappa \alpha$ then $K_1 \cup K_2 \in \kappa \alpha$ and
- 3. $K_i \in \kappa\alpha$, $i \in I$ then $\cap K_i \in \kappa\alpha$. Hence a α ditopology is essentially a 'topology' for which there is no a priori relation between the α open and α closed sets.

Definition1.4. Let A ditopological texture space (S,T,τ,κ) is said to be

- 1. αR_0 if $G \in \tau \alpha$, $G \not\subset Q_S \implies \alpha cl(P_S) \subseteq G$.
- 2. $\text{Co-}\alpha R_0$ if $F \in \kappa\alpha$, $P_S \not\subset F \Longrightarrow F \subseteq \alpha \text{int}(Q_S)$.
- $3. \ \alpha R_1 \ \text{ if } G \in \tau\alpha, \ G \not\subset Q_S \ , P_t \not\subset G \implies \text{ there exists } H \in \tau\alpha \ \text{with } H \not\subset Q_S \ , P_t \not\subset cl(H).$
- 4. $\text{Co-}\alpha R_1$, if $F \in \alpha C(S)$, $P_S \not\subset F$, $F \not\subset Q_t \Rightarrow \text{ there exists } F \in \kappa \alpha \text{ with } P_S \not\subset K, \text{ int}(K) \not\subset Q_t$.
- 5. α -Regular, if $G \in \tau \alpha$, $G \not\subset Q_S \Rightarrow$ there exists $H \in \tau \alpha$ with $H \not\subset Q_S$, $cl(H) \subseteq G$.
- 6. Co- α Regular if $F \in \kappa\alpha$, $P_S \not\subset F \Rightarrow$ there exists $K \in \kappa\alpha$ with $P_S \not\subset K$, $F \subseteq int(K)$.
- 2. Texture α-separation axioms

¹I. Arockia Rani & ²A. A. Nithya*/On Texture α-Separation axioms in Ditopological Texture Spaces/IJMA-4(1), Jan.-2013.

Definition 2.1: A ditopological space (S, T, τ , κ) is said to be Texture α -T₀(T_{α}-T₀) if it satisfies the equivalent conditions obtained by setting $A = (\tau \alpha \cup \kappa \alpha)^V$ in Theorem.2.2 and $B = (\tau \alpha \cup \kappa \alpha)^{\cap}$ in Theorem.2.3.

Theorem.2.2. [4] Let $A \subseteq S$ contains S, φ and be closed under arbitrary joins. Then the following are equivalent.

- 1. For every $A \in T$, there exists $A_j \in A$, $j \in J$, with $A = \bigcap_j \in J A_j$.
- 2. For s, t \in S, $P_s \not\subset P_t \Longrightarrow$ there exists $A \in A$ with $P_t \subseteq A$ and $P_s \not\subset A$.
- 3. For s,t \in S, $P_S \not\subset P_+ \Longrightarrow$ there exists $A \in A$ with $P_+ \subseteq A \subseteq Q_\circ$.
- 4. There exists a complete family of dipods $(L_k, M_k)_{k \in K}$ satisfying $L'_k \not\subset L_k \implies$ there exists $A \in A$ with $L_k \subseteq A \subseteq M_k$
- 5. for every $A \in T$ there exists $A_i^j \in A$, $j \in J$, $i \in I_j$ with $A = V_j \in J \cap i \in I_j A_i^j$
- 6. For $s, t \in S, Q_s \not\subset Q_t \Longrightarrow$ there exists $A \in A$ with $P_s \not\subset A \not\subset Q_t$.
- 7. For s, t \in , S , Q $_s \not\subset Q_t \Longrightarrow$ there exists $A \in A$ with $P_t \subseteq A \subseteq Q_S$.
- 8. $Q_t \in A$ for every $t \in S$.

Theorem 2.3: [4] Let $B \subseteq S$ contains S, φ and be closed under arbitrary joins. Then the following are equivalent.

- 1. For every $B \in T$, there exists $B_j \in \mathcal{F}$, $j \in J$, with $B = \forall j \in J B_j$.
- 2. For s, t \in S, $Q_S \not\subset Q_t \implies$ there exists $B \in \mathcal{B}$ with $P_S \not\subset B \not\subset Q_t$
- 3. For s, t \in S, $Q_S \not\subset Q_t \implies$ there exists $B \in \mathcal{B}$ with $P_t \subset B \subset Q_S$.
- 4. There exists a complete family of dipods $(L_k, M_k)_{k \in K}$ satisfying $M^{\emptyset} \not\subset M_K$ \Longrightarrow there exists with $B \in \mathcal{B}$ with $L_k \subseteq B \subseteq M'k$
- 5. For every $B \in T$ there exists $Bi^{j} \in \mathcal{B}$, $j \in J$, $i \in I_{j}$ with $B = \bigcap_{j} \in J \lor i \in I_{j}$, B^{j} If (S,T) is coseparated, each of the following is also equivalent to the above:
- $\text{6. For } s,t \in S, P_S \quad \not\subset P_t \implies \text{there exists } B \in \textbf{\textit{g}} \text{ with } P_S \not\subset B \not\subset Q_t.$
- 7. For $s, t \in S, P_S \not\subset P_t \implies$ there exists $B \in \mathcal{E}$ with $P_t \subseteq B \subseteq Q_s$.
- 8. $P_S \in \mathcal{B}$ for every $s \in S$

Theorem 2.4: Characterizations of T_{α} - T_0 . Let (S, T, τ, κ) be a ditopological texture space. Then following are equivalent. :

- 1. $P_S \not\subset P_t \Longrightarrow$ there exists $C_j \in \tau\alpha \cup \kappa\alpha, j \in J$ with $P_t \subseteq V_j \in J C_j \subseteq Q_S$.
- $2. \ Q_S \not\subset \ Q_t \Longrightarrow \text{ there } \ \text{exists } C_j \in \tau\alpha \cup \kappa\alpha, \ j \in J \ \text{with } P_t \subseteq \cap_j \in J \ C_j \subseteq Q_S \ .$
- 3. For A \in T there exists Ci^j $\in \tau \alpha \cup \kappa \alpha$, $j \in J$, $i \in I$, with A = V $j \in J \cap i \in I$ Ci^j
- 4. $Q_S \not\subset Q_t \implies$ there exists $C \in \tau \alpha \cup_{\kappa \alpha}$ with $P_S \not\subset C \not\subset Q_t$.
- 5. $cl(P_S) \subseteq cl(P_t)$ and $int(Q_S) \subseteq int(Q_t) \Longrightarrow Q_S \subseteq Q_t$.
- 6. For $s \in S$ we have $Q_S = \bigvee_j \in JC_j$ for $C_j \in \tau\alpha \cup \kappa\alpha$. If (S,T) is coseparated the following condition also characterizes the $T_\alpha T_0$ property,
- 7. For all $s \in S$ we have $P_S = \bigcap_{i \cap J} C_i$ for $C_i \in \tau \alpha \cup \kappa \alpha$

Proof: Here (1) and (7) are equivalent for any collection \mathcal{B} by Theorem.2.3. Therefore, in particular these are also equivalent for $\mathbf{B} = (\tau \alpha \cup \kappa \alpha)^{\cap}$.

Similarly (2), (3), (6) are equivalent for any collection A in Theorem.2.2. Therefore, if is also true for $A=(\tau\alpha\cup\kappa\alpha)^V$. Since Theorem 2.2 holds for $A=\tau\alpha\cup\kappa\alpha)^V$, then any element of T can be written in the form of $\bigcap_{j\in J}(\forall_{i\in I}C_i)$ with $C_i\in\tau\alpha\cup\kappa\alpha$, by completely distributive property this set is equal to $\forall_{\alpha\in I_j}(\cap C_i)$. Thus any element of A can be written in the form of B Similarly the converse holds. Therefore the two theorems (2.2 and 2.3) are equivalent for this choice of A and B.

(3)=(4): Let $Q_S \not\subset Q_t$ then by definition $Q_S = \bigvee \{P_t | P_S \not\subset P_t \}$ so there exists $t \in S$ with $P_S \not\subset P_t$ and $P_t \not\subset Q_t$, using (3) we can write $P_t = \bigvee j \in J$ $\cap_{i \in I_j} C_i$ $j \in \tau \alpha \cup \kappa \alpha$ so we have $j \in J$ with $\cap_{i \in I_j} C_i$ $\not\subset Q_t$ then $P_S \not\subset C_i$ $j \not\subset Q_t$ for some $i \in I_j$.

¹I. Arockia Rani & ²A. A. Nithya*/On Texture α -Separation axioms in Ditopological Texture Spaces/IJMA- 4(1), Jan.-2013.

- (2) \Rightarrow (4): Since every $C = \bigcap_{i \in J} C_i$. Therefore (2) can be written as $P_t \subseteq C \subseteq Q_s$. Thus we obtained $P_s \not\subset C \not\subset Q_t$.
- $(4) \Rightarrow (2)$: Similarly the converse.
- (4) \Longrightarrow (5): if $Q_S \not\subset Q_t$ we have $C \in \tau \alpha \cup \alpha C(S)$ with $P_S \not\subset C \not\subset Q_t$ using(4). Then two cases arise,
- Case (i): If $C \in \tau \alpha$ then $P_S \not\subset C \Longrightarrow C \subset Q_S$ which implies $C \subset intQ_S$ and thus we have $intQ_S \not\subset intQ_S$
- $\textbf{Case (ii):} \ \text{If} \ \ C \in \alpha C(S) \ \text{then} \ \ C \not\subset Q_t \Longrightarrow P_t \subseteq C \ \Longrightarrow \ \text{cl}(P_t) \subseteq C \ \ \text{which implies cl}(P_S) \not\subset \ \text{cl}(P_t).$
- (5) \Rightarrow (2): If $Q_S \not\subset Q_t$ then $cl(P_S) \not\subset cl(P_t)$ or $int(Q_S) \not\subset int(Q_t)$. If first occur then $P_t \subseteq cl(P_t) \subseteq Q_S$ and if the other happen then $P_t \subseteq int(Q_S) \subseteq Q_S$.

Definition.2.5. A ditopological texture space is said to be,

- 1. $T\alpha$ - T_1 if it is $T\alpha$ - T_0 and α - R_0 .
- 2. co T_{α} - T_{1} if it is T_{α} - T_{0} and co- α R_{0} .
- 3. b_i - $T\alpha$ - T_1 if it is T_{α} - T_0 and b_i $-\alpha R_0$.

Theorem.2.6. Let (S, T, τ, κ) be a ditopological texture space,

- 1. (S, T, τ , κ) is T_{α} – T_{1} if and only if it satisfies the conditions of Theorem 2.3 with $\mathcal{B} = \kappa \alpha$. In particular, the following are characteristic of a T_{α} – T_{1} ditopological space.
- (i) For any $A \in T$ we have $F_i \in \kappa\alpha$, $i \in I$ with $A = \forall i \in I F_i$.
- (ii) For s, t \in S, $Q_S \not\subset Q_t \Longrightarrow$ there exists $F \in \kappa \alpha$ with $P_S \not\subset F \not\subset Q_t$.
- (iii) If (S,T) is coseparated then $P_S \in \kappa \alpha$ for each $s \in S$.
- **2.** (S, T, τ , κ) is co-T_{α}-T₁ if and only if it satisfies the conditions of Theorem.2.2 with $A = \tau \alpha$, In particular, the following properties.
- (i) For any $A \in T$ we have $G_i \in \tau \alpha$, $i \in I$ with $A = \bigcap_{i \in I} G_i$.
- (ii) For s, $t \in S$, $Q_S \not\subset Q_t \Longrightarrow$ there exists $G \in \tau \alpha$ with $P_S \not\subset G \not\subset Q_t$.
- (iii) $Q_S \in \tau \alpha$ for all $s \in S$.

Proof: Here we prove (2). Let the space be $\text{co-T}_{\alpha}\text{-}T_1$, (i.e) it is $T_{\alpha}\text{-}T_0$ and $\text{co-}\alpha$ R_0 . To prove it satisfies the conditions with $A = \tau \alpha$. Let us consider for any $s, t \in S$ satisfying $Q_S \not\subset Q_t$, we have $B \in \tau \alpha \cup \kappa \alpha$ with $P_S \not\subset B$ $\not\subset Q_t$, since the space is $T\alpha$ - T_0 . Then two cases arise,

Case (i): If $B \in \tau \alpha$ then $B = G \in \tau \alpha$ which satisfies $P_t \subseteq G \subseteq Q_S$.

Case (ii): If $B \in \kappa \alpha$ then $P_S \not\subset B$ which implies $B \subseteq int(Q_S)$ by $co \alpha - R_0$ then $G = intQ_S$ then we have $P_t \subseteq G \subseteq Q_S$, Thus the (ii)of (2) is proved. Since all the above conditions are equivalent it is enough to prove anyone of them, hence proved for $A = \tau \alpha$.

Conversely, Let (S, T, τ, κ) satisfies Theorem 2.2 with $A = \tau \alpha$. Then we have to prove it is T_{α} - T_0 and co- αR_0 . It is obliviously true for $A = (\tau \alpha \cap \kappa \alpha)^V$.(i.e) it is T_{α} - T_0 . Take $F \in \kappa \alpha$ such that $P_S \not\subset F$ in Theorem 2.2, we have $F = \bigcap_{\mathbf{j} \in \mathbf{J}} G_{\mathbf{j}}$, $G_{\mathbf{j}} \in \alpha O(S)$. From the equivalent conditions, $Q_S \in \tau \alpha$. Hence $F \subseteq Q_S$, (i.e.) $F \subseteq int(Q_S)$. Hence the proof.

Similarly we can prove (1).

Definition.2.7: A ditopological texture space is called,

- 1. T_{α} - T_{2} if it is T_{α} - T_{0} and α - R_{1} .
- 2. co- T_{α} - T_2 if it is T_{α} - T_0 and co $-\alpha R$.
- 3. b_i - T_{α} - T_2 if it is T_{α} - T_0 and b_i - αR_1 .

Theorem 2.8: The following are equivalent for a ditopology (S, T, τ, κ)

¹I. Arockia Rani & ²A. A. Nithya*/On Texture α -Separation axioms in Ditopological Texture Spaces/IJMA- 4(1), Jan.-2013.

- 1. (S, T, τ , κ) is bi-T_{α}-T_{γ}.
- 2. For s, t \in S, $Q_S \not\subset Q_t \Longrightarrow$ there exists $H \in \tau \alpha$, $K \in \kappa \alpha$ with $H \subseteq K$, $P_S \not\subset K$ and $H \not\subset Q_t$.
- 3. For $A \in T$ there exist $Hi^{\hat{\mathbf{J}}} \in \tau \alpha$, $Ki^{\hat{\mathbf{J}}} \in \kappa \alpha$, $i \in I$ and $j \in J$ with $Hi^{\hat{\mathbf{J}}} \subseteq K$ $i^{\hat{\mathbf{J}}}$, for all i, j and $A = V_{i} \in I$ $0 \in I$

Proof: (1) \Rightarrow (2): Let $Q_S \not\subset Q_t$. Since the given space is bi- $T_\alpha T_2$ it is $T\alpha - T_0$ so we have $B \in \tau\alpha \cup \kappa\alpha$ with $P_S \not\subset B$ $\not\subset Q_t$ by theorem 2.2.

Case(i): If $B \in \tau \alpha$ then we have $H \in \tau \alpha$ with $P_S \not\subset cl(H)$, $H \not\subset Q_t$ by α -R0. Here take K=cl(H) then we get the required result.

Case (ii): If $B \in \kappa\alpha$ then we have $K \in \kappa\alpha$ with $P_S \not\subset K$, $int(K) \not\subset Q_t$ by $co-\alpha-R_1$. Here take H=int(K) then we get the required result.

- $\textbf{(2)} \Rightarrow \textbf{(3):} \text{ For } A \in T \text{ we can write } A = V\{P_t | A \not\subset Q_t \ \} = \bigcap \{Q_s | P_s \not\subset A \ \} \text{. For } s, t \text{ such that } A \not\subset Q_t \text{ and } P s \not\subset A \text{ we have } Q_s \not\subset Q_t \text{ and so there exist } Hs^t \in \alpha O(S), \ Ks^t \in \alpha C(S) \text{ with } Hs^t \subseteq Ks^t, \text{ and } Ps \not\subseteq Ks^t, \ Hs^t \not\subseteq Qt. \text{ Hence we get } A = V_{\{A} \not\subseteq_{Ot\}} \bigcap_{\{P_s \not\subseteq_{A\}} Ks^t} \bigcap_{\{P_s \not\subseteq_{A\}} Ks^t} Ks^t$
- $(3) \Rightarrow (1)$: Similarly we can prove this result.

Definition 2.9: Let (S, T, τ, κ) , be ditopological texture spaces then it is said to be T-α normal if $G \in \tau \alpha$ and $F \in \kappa \alpha$ with $F \subseteq G$ there exists $H \in \tau \alpha$ with $F \subseteq H \subseteq cl(H) \subseteq G$.

Remark 2.10: From the Definitions it is clear that

- (i) Every $T\alpha$ - T_2 space is $T\alpha T_1$ space.
- (ii) Every $T\alpha$ - T_1 space is $T\alpha$ - T_0 space.

The converse need not be true always.

Theorem 2.11: Let $(S, P(X), \tau, \kappa, \sigma)$ be a complemented ditopological texture space then we have the following result

- 1. S be T α normal space.
- 2. for each $A \in \tau \alpha$ and each $U \in \tau \alpha$ containing A, there exists $G \in \tau \alpha \cap \kappa \alpha$ such that $A \subseteq G \subseteq U$.
- 3. for each pair of disjoint $A,B \in \kappa \alpha$ there exists disjoint $\tau \alpha$ U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof:

- (1) \Rightarrow (2): It is clear from the definition.
- (2) \Rightarrow (3): Let A and B be any pair of disjoint α closed sets. Then we have $A \subseteq S B \in \tau \alpha$ and there exists $U \in \tau \alpha \cap \kappa \alpha$ such that $A \subseteq U \subseteq S B$. Now put V = S U, then we obtain $A \subseteq U$, $B \subseteq V \in \tau \alpha$ and $A \subseteq U \cap V = \alpha$.

The converse need not be true always.

REFERENCES

- [1] L.M Brown and M. Diker: Ditopological texture spaces and intuitionistic sets, Fuzzy Sets Syst., 98(1998), 217-224.
- [2] L. M. Brown and R. Erturk: Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets Syst., 110(2000), No. 2, 227-236.
- [3] L. M. Brown and R. Erturk: Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Sets Syst., 110(2000), No. 2, 237-245.
- [4] L.M. Brown, R. Erturk and S. Dost: Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets Syst., 147(2004), No. 2, 171-199.
- [5] L.M. Brown, R. Erturk and S. Dost: Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets Syst., 147(2004), No. 2, 201-231.

¹I. Arockia Rani & ²A. A. Nithya*/On Texture α -Separation axioms in Ditopological Texture Spaces/IJMA- 4(1), Jan.-2013.

- [6] L.M. Brown, R. Erturk and S. Dost: Ditopological texture spaces and fuzzy topology, III. Separation Axioms, Fuzzy Sets Syst., 157(2006), No. 14, 1886-1912.
- [7] L. M. Brown and M. Gohar: Compactness in ditopological texture spaces, Hacettepe J. Math. Stat., 38(2009), No. 1, 21-43.
- [8] L. M. Brown, S. Ozcag and F. Yldz: Convergence of regular di-filters and the completeness of diuniformities, Hacettepe J. Math. Stat., 34S (2005), 53-68.
- [9] S. G. Crossley and S. K. Hildebrand: Semi-topological properties, Fund Math., 74(1972), 233-2
- [10] M. Diker: Connectedness in ditopological texture spaces, Fuzzy Sets Syst., 108(1999), 223-230.
- [11] J. Dontchev: On door spaces, Indian J. Pure Appl. Math., 26(1995), No. 9, 873-881.
- [12] S. Dost, L. M. Brown and R. Erturk: β -open and β -closed sets in di-topological setting, Filomat, 24 (2010), No. 2, 11-26.
- [13] T. Noiri: A note on hyperconnected sets, Math. Vesnik, 31(1979), No.3, 53-60
- [14] Pipitone and G. Russo: Spazi semiconnesi e spazi semiaperti, Rend. Circ. Mat. Palermo, 24 1975), No. 2, 273-285.
- [15] Senol Dost, Semi-open and Semi-closed sets in ditopological texture spaces, J. Adv. Math. Stud. vol. 5(2012) No.1, 97-110.
- [16] L. A. Steen and J. A. Seebach: Counterexamples in Topology, Holt, Reinhart and Winston, Inc., New York, 1970.

Source of support: Nil, Conflict of interest: None Declared