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ABSTRACT 
In this paper we consider entire functions represented by Dirichlet series.  We obtained some relationships involving 
orders and types of two or more entire Dirichlet series [2]. 
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1. INTRODUCTION: 
Let '' f  be an entire function represented by the Dirichlet series 
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Where Can ∈  and sn 'λ satisfy the following conditions: 
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If ''ρ  is the Ritt order [3] of '' f , then 
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Further nλ  satisfy the conditions: 

(iii) nn λλ ~1+  as ∞→n  and  
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If ''λ  is the lower order of ,'' f  then 
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Let  '' f  be an entire function of finite, positive order ''ρ . 
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If ''T   is the Ritt type of '' f  then 
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If  ''t  is lower type of '' f , then P. K. Kamthan[1] showed that 
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In this paper we investigate certain relationships between two or more entire functions. 

 
2. MAIN RESULTS 
Theorem 1: Let { }nµ  and { }nν  be real sequences such that conditions (i) and (ii)  are satisfied with '' nµ    in the 

place of  '' nλ  or '' nν  in the place of  '' nλ , for every n.  1f  and 2f  are entire functions represented by the Dirichlet 
series 
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of orders  ;, 21 ρρ  lower orders 21 ,λλ , types 21 ,TT  and lower types 21 , tt  respectively, each being positive and 
finite. 

 
Further condition (iv) is satisfied with '' nb  and '' nc  in the place of '' na .  Then the function '' f  defined by  
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where  { }nλ  satisfies (i) and (ii),  
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(vi) For some positive reals 21 ,αα  with ,121 =+αα  
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is an entire function.  Further if '','' λρ  are the order and lower order of  f  and '','' tT  are the type and lower type 
of '' f  respectively, then 
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Proof:  In view of the hypothesis it follows that 
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Let .0>k   Since 1f  and 2f  are entire functions it follows that  
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Hence, for sufficiently large ‘n’, 
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By (v) and (vi) we get that 
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  Thus ‘f’ is an entire function. 
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By the definition of ( )  ,2,1=jjρ  we have  
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Since 0∈>  is arbitrary, follows that 
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  This proves (a). 
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Remark: Theorems (1), (2) and (3) of P. K. Kamthan [1] can be deduced from our theorem by taking .
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