International Journal of Mathematical Archive-4(2), 2013, 260-265

ON bT-CLOSED SETS IN SUPRA TOPOLOGICAL SPACES

K. Krishnaveni* & M. Vigneshwaran

Department of Mathematics Kongunadu Arts and Science College, Coimbatore, (T.N.), India

(Received on: 04-01-13; Revised & Accepted on: 13-02-13)

ABSTRACT

In this paper, we introduce a new class of set namely bT^{μ} -closed sets in supra topological space. We further discuss the concept of bT^{μ} -continuity and obtained their applications.

Keywords: supra bT-closed and supra bT-continuity.

1. INTRODUCTION

In 1983 Mashhour et al [2] introduced Supra topological spaces and studied S- continuous maps and S^{μ} continuous maps. In 2010, Sayed *et al* [3] introduced and investigated several properties of supra b-open set and supra b-continuity. In 2011, Arockiarani and Trintia Pricilla [5] introduced and investigated several properties of a new type of sets called supra T-closed set and supra T-continuity maps. In this paper, we introduced the concept

of bT^{μ} - closed sets and study its basic properties. Also, we introduce the concept of bT^{μ} - continuous functions and investigated several properties for these classes of functions in supra topological spaces.

2. PRELIMINARIES

Definition: 2.1[2, 3] A subfamily of μ of X is said to be a supra topology on X, if (i) X, $\phi \in \mu$ (ii) if $A_i \in \mu$ for all $i \in J$ then $\bigcup A_i \in \mu$.

The pair (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of a supra open set is called a supra closed set.

Definition: 2.2[3] (i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed set and } A \subseteq B \}$.

(ii) The supra interior of a set A is denoted by $int^{\mu}(A)$ and defined as $int^{\mu}(A) = \bigcup \{B: B \text{ is a supra open set and } A \supseteq B \}$.

Definition: 2.3[2] Let (X, τ) be a topological spaces and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition: 2.4[3] Let (X, μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq cl^{\mu}$ $(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition: 2.5[6] Let (X,μ) be a supra topological space. A set A of X is called supra generalized b-closed set (simply $g^{\mu}b$ -closed) if bcl^{μ} (A) \subseteq U whenever A \subseteq U and U is supra open. The complement of supra generalized b-closed set is supra generalized b-open set.

Definition: 2.6[5] A subset A of (X, μ) is called T^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\mu}b$ - open in (X,μ) . The complement of T^{μ} - closed set is called T^{μ} -open set.

Corresponding author: K. Krishnaveni*

Department of Mathematics Kongunadu Arts and Science College Coimbatore, India

K. Krishnaveni* & M. Vigneshwaran/ON bT-CLOSED SETS IN SUPRA TOPOLOGICAL SPACES/IJMA- 4(2), Feb.-2013.

Definition: 2.7[4] A subset A of a supra topological space (X, μ) is called supra regular open if A $=cl^{\mu}(int^{\mu}(A))$. The complement of supra regular open set is called supra regular closed set.

Definition: 2.8[4] A subset A of a supra topological space (X,μ) is called supra generalized b- regular closed set if bcl^{μ} (A) \subseteq U and whenever A \subseteq U and U is supra regular open of (X,μ) . The complement of supra generalized b- regular closed set is called supra generalized b- regular open set.

3. BASIC PROPERTIES OF bT^µ-CLOSED SETS

Definition: 3.1 A subset A of a supra topological space (X, μ) is called bT^{μ} -closed set if bcl^{μ}(A) \subseteq U whenever A \subseteq U and U is T^{μ} - open in (X, μ).

The complement of supra bT^{μ} - closed set is called supra bT^{μ} -open set. We denote the family of all bT^{μ} - closed set by $bT^{\mu}(X, \mu)$.

Theorem: 3.2 Every supra closed set is bT^{μ} - closed.

Proof: Let $A \subseteq U$ and U is T^{μ} - open set. Since A is supra closed then $cl^{\mu}(A) = A \subseteq U$. We know that $bcl^{\mu}(A) \subseteq cl^{\mu}(A) \subseteq U$, implies $bcl^{\mu}(A) \subseteq U$. Therefore A is bT^{μ} - closed.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.3 Let $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a\}\}$. Then the set $\{a, c\}$ is bT^{μ} - closed set in (X, μ) but not supra closed.

Theorem: 3.4 Every bT^{μ} - closed set is $g^{\mu}b$ - closed set.

Proof: Let $A \subseteq U$ and U is supra open set. We know that every supra open set is T^{μ} - open set, then U is T^{μ} -open set. Since A is bT^{μ} -closed set, we have $bcl^{\mu}(A) \subseteq U$. Therefore A is $g^{\mu}b$ -closed set.

Example: 3.5 Let $X = \{a, b, c\}$. and $\mu = \{X, \phi, \{a\}\}$. Then the set $\{a, b\}$ is $g^{\mu}b$ - closed but not bT^{μ} - closed.

Theorem: 3.6 Every bT^{μ} - closed set is $g^{\mu}br$ - closed set.

Proof: Let $A \subseteq U$ and U is supra regular open set. We know that every supra regular open set is T^{μ}-open set, then U is T^{μ}-open set. Since A is bT^{μ}-closed set, we have bcl^{μ}(A) \subseteq U. Therefore A is g^{μ}br- closed set.

Example: 3.7 Let $X = \{a, b, c\}$. and $\mu = \{X, \phi, \{a\}\}$. Then the set $\{a, b\}$ is g^{μ} br- closed set but not bT^{μ} - closed set.

Theorem: 3.8 The union of two bT^{μ} - closed set is bT^{μ} - closed set.

Proof: Let A and B two bT^{μ} - closed set. Let $A \cup B \subseteq G$, where G is T^{μ} - open.

Since A and B are bT^{μ} -closed sets. Therefore $bcl^{\mu}(A) \cup bcl^{\mu}(B) \subseteq G$. Thus $bcl^{\mu}(A \cup B) \subseteq G$. Hence $A \cup B$ is bT^{μ} -closed set.

Theorem 3.9 Let A be bT $^{\mu}$ -closed set of (X, μ). Then bcl $^{\mu}$ (A) - A does not contain any non empty T $^{\mu}$ -closed set.

Proof: Necessity Let A be bT^{μ} - closed set. suppose $F \neq \phi$ is a T^{μ} - closed set of $bcl^{\mu}(A)$ - A. Then $F \subseteq bcl^{\mu}(A)$ - A implies $F \subseteq bcl^{\mu}(A)$ and A^{c} . This implies $A \subseteq F^{c}$. Since A is bT^{μ} - closed set, $bcl^{\mu}(A) \subseteq U^{c}$. Consequently, $F \subseteq [bcl^{\mu}(A)]^{c}$. Hence $F \subset bcl^{\mu}(A) \cap [bcl^{\mu}(A)]^{c} = \phi$. Therefore F is empty, a contradition.

Sufficiency: Suppose $A \subseteq U$ and that U is T^{μ} - open. If $bcl^{\mu}(A) \not\subset U$. Then $bcl^{\mu}(A) \cap U^{c}$ is a not empty T^{μ} - closed subset of $bcl^{\mu}(A) - A$.

Hence $bcl^{\mu}(A) \cap U^{c} = \phi$ and $bcl^{\mu}(A) \subseteq U$. Therefore A is bT^{μ} - closed.

Theorem: 3.10 If A is bT^{μ} -closed set in a supra topological space (X,μ) and $A \subseteq B \subseteq bcl^{\mu}(A)$ then B is also bT^{μ} - closed set.

Proof: Let U be T^{μ} - open in set (X,μ) such that $B \subseteq U$. Since $A \subseteq B \Rightarrow A \subseteq U$ and since A is bT^{μ} -closed set in (X,μ) bcl^{μ} (A) \subseteq U, since $B \subseteq bcl^{\mu}(A)$. Then $bcl^{\mu}(B) \subseteq U$. Therefore B is also bT^{μ} - closed set in (X,μ)

Theorem: 3.11 Let A be bT^{μ} - closed set then A is b^{μ} - closed iff $bcl^{\mu}(A)$ -A is T^{μ} - closed.

Proof: Let A be bT^{μ} - closed set. If A is b^{μ} - closed, we have $bcl^{\mu}(A)$ -A = ϕ , which

is T^{μ} - closed. Conversely, let $bcl^{\mu}(A)$ -A is bT^{μ} - closed. Then by the theorem 3.13, $bcl^{\mu}(A)$ - A does not contain any non empty T^{μ} - closed and $bcl^{\mu}(A)$ -A= ϕ . Hence A is b^{μ} - closed.

Theorem: 3.12 A subset $A \subseteq X$ is bT^{μ} - open iff $F \subseteq bint^{\mu}(A)$ whenever F is T^{μ} - closed and $F \subseteq A$.

Proof: Let A be bT^{μ} - open set and suppose $F \subseteq A$, where F is T^{μ} - closed. Then X-A is bT^{μ} - closed set contained in the T^{μ} - open set X-F. Hence $bcl^{\mu}(X-A)\subseteq X$ -F. Thus $F \subseteq bint^{\mu}(A)$. Conversely, if F is T^{μ} - closed set with $F \subseteq bint^{\mu}(A)$ and $F \subseteq A$, then X-bint^{\mu}(A) \subseteq X - F. This implies that $bcl^{\mu}(X-A)\subseteq X$ -F. Hence X-A is bT^{μ} - closed. Therefore A is bT^{μ} - open set.

Theorem: 3.13 If B is T^{μ} - open and bT^{μ} - closed set in X, then B is b^{μ} - closed.

Proof: Since B is T^{μ} - open and bT^{μ} - closed then $bcl^{\mu}(B) \subseteq B$, but $B \subseteq bcl^{\mu}(B)$. Therefore $B = bcl^{\mu}(B)$. Hence B is b^{μ} - closed.

Corollary:3.14 If B is supra open and bT^{μ} - closed set in X. Then B is b^{μ} -closed.

Theorem: 3.15 Let A be supra g^{μ} b-open and bT^{μ} - closed set. Then A \cap F is T^{μ} - closed whenever F is supra b- closed.

Proof: Let A be supra g^{μ} b-open and bT^{μ} - closed set then $bcl^{\mu}(A) \subseteq A$ and also $A \subseteq bcl^{\mu}(A)$. Therefore $bcl^{\mu}(A) = A$. Hence A is supra b-closed. Since F is supra b-closed. Therefore $A \cap F$ is supra b-closed in X. Hence $A \cap F$ is T^{μ} - closed in X.

From the above theorem and example we have the following diagram

Supra closed \downarrow Supra bT-closed \rightarrow supra gb-closed \downarrow Supra gbr-closed

4. bT^µ- CONTINUOUS FUNCTIONS.

Definition: 4.1 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called bT^{μ} - Continuous if $f^{-1}(V)$ is bT^{μ} - closed in (X,μ) for every closed set V of (Y, σ) .

Definition: 4.2 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called bT^{μ} - irresolute if $f^{-1}(V)$ is bT^{μ} -closed in (X,μ) for every bT^{μ} -closed set V of (Y, σ) .

© 2013, IJMA. All Rights Reserved

Theorem: 4.3 Every continuous function is bT^{μ} - continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous function and A is closed in Y. Since f is continuous, then $f^{-1}(A)$ is a closed set in X. Since μ is associated with τ , then $\tau \subseteq \mu$. Therefore $f^{-1}(A)$ is supra closed in X and it is bT^{μ} -closed in(X, μ). Hence f is bT^{μ} - continuous.

Remark: 4.4 The converse of the above theorem need not be true as seen from the following example.

Example: 4.5 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi\{a\}\}$ and $\sigma = \{X, \phi, \{a\}\{b\}\{a, b\}\}.$

Let f: $(X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = c, f(b) = a, f(c)=b. Let $f^{-1}(\{b, c\}) = \{a, c\}$ is bT^{μ} -closed but not closed. Then f is bT^{μ} -continuous but not continuous.

Theorem: 4.6 Every supra continuous function is bT^{μ} - continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a supra continuous and A is supra closed in Y. Since f is supra continuous, then $f^{-1}(A)$ is supra closed in X. Since μ is associated with τ , then $\tau \subseteq \mu$. Therefore $f^{-1}(A)$ is supra closed and it is bT^{μ} - closed in (X, μ) . Hence f is bT^{μ} - continuous.

Remark: 4.7 The converse of the above theorem need not be true as seen from the following example.

Example: 4.8 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\} \{b\} \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = c, f(b) = a, f(c) = b. Let $f^{-1}(\{b, c\}) = \{a, c\}$ is is bT^{μ} -closed but not supra closed. Then f is bT^{μ} -continuous but not supra continuous.

Theorem: 4.9

(i) Every bT^{μ} - continuous is $g^{\mu}br$ - continuous.

(ii) Every bT^{μ} - irresolute is bT^{μ} - continuous.

Proof: (i) Let $f : (X, \tau) \to (Y, \sigma)$ be a bT^{μ} - continuous function. Let V be a supra closed set in Y. Since f is bT $^{\mu}$ -continuous, $f^{-1}(V)$ is bT^{μ} -closed in X. We know that every bT^{μ} -closed is $g^{\mu}br$ - closed set, then $f^{-1}(V)$ is $g^{\mu}br$ - closed set in X. Therefore f is $g^{\mu}br$ -continuous.

(ii) Suppose $f : (X, \tau) \to (Y, \sigma)$ be a bT^{μ} - irresolute .Let V be any supra closed set in Y, then V is bT^{μ} -closed. Since f is bT^{μ} -irresolute, f^{-1} is bT^{μ} -closed in X. Hence f is bT^{μ} -continuous.

Remark: 4.10 The converse of the above theorem need not be true as seen from the following examples.

Example: 4.11 (i) Let $X=Y=\{a, b, c\}, \tau = \{X, \phi \{a\}\{a, b\}\{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}.$

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. $f^{-1} \{b, c\} = \{a, b\}$ which is g^{μ} brcontinuous but not bT^{μ} - continuous

Example: 4.12 (ii) Let $X=Y=\{a,b,c\}, \tau=\{X,\phi,\{a\}\{a,b\}\{b,c\}\}$ and $\sigma=\{Y,\phi,\{a\}\{a,b\}\}$.

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is bT^{μ} -continuous. Since $f^{-1}{b,c} = {a, b}$ is not bT^{μ} closed in (X, τ) . Therefore f is not bT^{μ} -irresolute.

Theorem: 4.13 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be any two function then (i) gof is bT^{μ} -continuous if g is supra continuous and f is bT^{μ} -continuous.

(ii) gof is bT^{μ} - irresolute if g is bT^{μ} - irresolute and f is bT^{μ} - irresolute.

(iii) gof is bT^{μ} -continuous if g is bT^{μ} -continuous and f is bT^{μ} - irresolute. © 2013, IJMA. All Rights Reserved

Proof: (i) Let V be supra closed in (Z, γ) . Then $g^{-1}(V)$ is supra closed in (Y, σ) . Since g is supra continuous, then $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is bT^{μ} -closed in (X, τ) . Hence gof is bT^{μ} -continuous.

(ii) Let V be bT^{μ} -closed in (Z, γ) . Then $g^{-1}(V)$ is bT^{μ} -closed in (Y, σ) . Since g is bT^{μ} -irresolute, then $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is bT^{μ} -closed in (X, τ) . Hence gof is bT^{μ} -irresolute.

(iii) Let V be supra closed in (Z, γ) . Then $g^{-1}(V)$ is bT^{μ} -closed in (Y, σ) . Since g is bT^{μ} -continuous, then $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is bT^{μ} -closed in (X, τ) . Hence gof is bT^{μ} -continuous.

Remark: 4.14 The composition of two bT^{μ} -continuous function need not bT^{μ}- continuous and it is shown by the following example.

Example: 4.15 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\} \{b\} \{a, b\}\}$ and $\sigma = \{X, \phi, \{a\} \{c\} \{a, c\}\}$

Let $f: (X, \tau) \to (X, \tau)$ be a function defined by f(a) = b, f(b) = c, f(c) = d and f(d)=a.

Let g: $(X, \tau) \rightarrow (X, \sigma)$ be a function defined by g(a) = b, g(b) = c,g(c) = d and g(d)=a. Then f and g are bT^{μ} -continuous, since {b, c, d} is supra closed in $(X, \sigma), (gof)^{-1}$ {b, c, d} ={a, b, d} which is not bT^{μ} -closed in (X, τ) . Therefore gof is not bT^{μ} -continuous.

From the above theorem and example we have the following diagram

Continous \rightarrow Supra continuous $\downarrow \qquad \downarrow$ Supra bT-continuous \leftarrow supra bT-irresolute \downarrow Supra gbr- continuous

5. APPLICATIONS

Definition: 5.1 A supra topological space (X,μ) is called ${}_{bT}T_{c}^{\mu}$ -space. If every bT^{μ} -closed set is supra closed set.

Theorem: 5.2 Let (X,τ) be a supra topological space then (i) $O^{\mu}(\tau) \subset BT^{\mu}O(\tau)$ (ii) A space (X,τ) is ${}_{bT}T_{c}^{\mu}$ -space iff $O^{\mu}(\tau) = BT^{\mu}O(\tau)$.

Proof:

(i) Let A be supra open. Then X-A is supra closed and so bT^{μ} -closed. This implies that A is bT^{μ} -open. Hence $O^{\mu}(\tau) \subset BT^{\mu}O(\tau)$.

(ii) Let (X,τ) be ${}_{bT}T_{c}^{\mu}$ -space. Let $A \in BT^{\mu}O(\tau)$, then X-A is bT^{μ} -closed. By hypothesis X-A is supra closed and thus $A \in O^{\mu}(\tau)$. Hence $O^{\mu}(\tau) = BT^{\mu}O(\tau)$. Conversely, let $O^{\mu}(\tau) = BT^{\mu}O(\tau)$.Let A be bT^{μ} -closed, then X-A is bT^{μ} -open.

Hence X-A is supra open. Thus X is supra closed. This implies (X,τ) is ${}_{bT}T_{c}^{\mu}$ -space.

Theorem: 5.3 If (X,τ) is ${}_{bT}T_{c}^{\mu}$ -space then for each $x \in X$, $\{x\}$ is either bT^{μ} -closed or supra open.

Proof: Suppose (X,τ) is ${}_{bT}T_c^{\mu}$ -space. Let $x \in X$ and assume that $\{x\}$ is not supra open, then $X-\{x\}$ is not supra closed. Then $X-\{x\}$ is bT^{μ} -closed. Since (X,τ) is ${}_{bT}T_c^{\mu}$ -space, then $X-\{x\}$ is supra closed or equivalently $\{x\}$ is supra open.

Definition: 5.4 A supra topological space (X,μ) is called ${}_{gb}T_{bT}^{\mu}$ -space. If every $g^{\mu}b$ -closed set is bT^{μ} - closed set.

Theorem: 5.5 Let (X,τ) be a supra topological space then (i)BT^{μ}O(τ) \subset G^{μ}BO(τ) (ii) A space (X,τ) is ${}_{gb}T_{bT}^{\mu}$ -space iff BT^{μ}O(τ) = G^{μ}BO(τ).

Proof: (i) Let A be bT^{μ} - open. Then X-A is bT^{μ} - closed and so $g^{\mu}b$ -closed. This implies that A is $g^{\mu}b$ -open. Hence $BT^{\mu}O(\tau) \subset G^{\mu}BO(\tau)$.

K. Krishnaveni^{*} & M. Vigneshwaran/ON bT-CLOSED SETS IN SUPRA TOPOLOGICAL SPACES/IJMA- 4(2), Feb.-2013.

(ii) Let (X,τ) be ${}_{gb}T_{bT}^{\mu}$ -space. Let $A \in G^{\mu}BO(\tau)$, then X-A is $g^{\mu}b$ -closed. By hypothesis X-A is bT^{μ} - closed and thus $A \in BT^{\mu}O(\tau)$. Hence $BT^{\mu}O(\tau) = G^{\mu}BO(\tau)$.Conversely, let $BT^{\mu}O(\tau) = G^{\mu}BO(\tau)$.Let A be $g^{\mu}b$ -closed, then X-A is $g^{\mu}b$ -open. Hence X-A is bT^{μ} - open. Thus X is bT^{μ} - closed. This implies (X,τ) is ${}_{gb}T_{bT}^{\mu}$ -space.

Theorem: 5.6 If (X,τ) is ${}_{bT}^{\mu}$ -space then for each $x \in X$, $\{x\}$ is either $g^{\mu}b$ -closed or bT^{μ} - open.

Proof: Suppose (X,τ) is ${}_{gb}T_{bT}{}^{\mu}$ -space. Let $x \in X$ and assume that $\{x\}$ is not bT^{μ} - open, then $X-\{x\}$ is not bT^{μ} -closed. Then $X-\{x\}$ is $g^{\mu}b$ -closed. Since (X,τ) is ${}_{gb}T_{bT}{}^{\mu}$ -space, then $X-\{x\}$ is bT^{μ} -closed or equivalently $\{x\}$ is bT^{μ} -open.

Definition: 5.7 A supra topological space (X, μ) is called $_{gbr}T_{bT}^{\mu}$ - space. If every $g^{\mu}br$ -closed set is bT^{μ} - closed set.

Theorem: 5.8 Let (X,τ) be a supra topological space then (i)BT^µO(τ)⊂G^µBRO(τ) (ii) A space (X,τ) is ${}_{bT}T_{c}^{\mu}$ -space iff BT^µO(τ) = G^µBRO(τ).

Proof: (i) Let A be bT^{μ} - open. Then X-A is bT^{μ} - closed and so $g^{\mu}br$ -closed. This implies that A is $g^{\mu}br$ -open. Hence $BT^{\mu}O(\tau) \subset G^{\mu}BRO(\tau)$.

(ii) Let (X,τ) be $_{gbr}T_{bT}^{\mu}$ -space. Let $A \in G^{\mu}BRO(\tau)$, then X-A is $g^{\mu}br$ -closed. By hypothesis X-A is bT^{μ} - closed and thus $A \in BT^{\mu}O(\tau)$. Hence $BT^{\mu}O(\tau) = G^{\mu}BRO(\tau)$. Conversely, let $BT^{\mu}O(\tau) = G^{\mu}BRO(\tau)$.Let A be $g^{\mu}br$ -closed, then X-A is $g^{\mu}br$ -open. Hence X-A is bT^{μ} - open. Thus X is bT^{μ} - closed. This implies (X,τ) is $_{gbr}T_{bT}^{\mu}$ -space.

Theorem: 5.9 If (X,τ) is ${}_{gbr}T_{bT}^{\mu}$ -space then for each $x \in X$, $\{x\}$ is either $g^{\mu}br$ -closed or bT^{μ} - open.

Proof: Suppose (X,τ) is ${}_{gbr}T_{bT}^{\mu}$ -space. Let $x \in X$ and assume that $\{x\}$ is not bT^{μ} - open, then X- $\{x\}$ is not bT^{μ} -closed. Then X- $\{x\}$ is $g^{\mu}br$ -closed. Since (X,τ) is ${}_{gbr}T_{bT}^{\mu}$ -space, then X- $\{x\}$ is bT^{μ} -closed or equivalently $\{x\}$ is bT^{μ} -open.

Theorem: 5.10

- (a) Every $_{gbr}T_{bT}^{\mu}$ -space is $_{bT}T_{c}^{\mu}$ -space.
- (b) Every $_{gbr}T_{bT}^{\mu}$ -space is $_{gb}T_{bT}^{\mu}$ -space.
- (c) Every $_{bT}T_{c}^{\mu}$ -space is $_{gb}T_{bT}^{\mu}$ -space.

Proof: It is obvious.

REFERENCES

[1] D. Andrijevic, On b- open sets, mat. Vesnik 48(1996), no.1-2, 59-64.

[2] A. S. Mashhour, A. A. Allam, F. S. Mohamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl.Math.No.4, 14 (1983), 502-510.

[3] O.R. Sayed and Takashi Noiri, On b-open sets and supra b- Continuity on topological spaces, European Journal of Pure and applied Mathematics, 3(2) (2010), 295-302.

[4] I. Arockiarani and M. Trinita Pricilla, On generalized b- regular closed sets, in supra topological spaces, Asian Journal of current engineering and maths (1), 2012, 1-4.

[5] I. Arockiarani and M. Trinita Pricilla, On supra T-closed sets, International Journal of Mathematics Archive-2(8), 2011, 1376-1380.

[6] I. Arockiarani and M. Trinita Pricilla, On supra generalized b- closed sets, Antartica Journal of Mathematics, Volume 8(2011).

Source of support: Nil, Conflict of interest: None Declared